
Chapter 11

Tutorial: The Kalman Filter

Tony Lacey.

11.1 Introduction

The Kalman �lter [1] has long been regarded as the optimal solution to many tracking and data prediction
tasks, [2]. Its use in the analysis of visual motion has been documented frequently. The standard Kalman
�lter derivation is given here as a tutorial exercise in the practical use of some of the statistical techniques
outlied in previous sections. The �lter is constructed as a mean squared error minimiser, but an alternative
derivation of the �lter is also provided showing how the �lter relates to maximum likelihood statistics.
Documenting this derivation furnishes the reader with further insight into the statistical constructs within
the �lter.

The purpose of �ltering is to extract the required information from a signal, ignoring everything else.
How well a �lter performs this task can be measured using a cost or loss function. Indeed we may de�ne
the goal of the �lter to be the minimisation of this loss function.

11.2 Mean squared error

Many signals can be described in the following way;

yk = akxk + nk (11.1)

where; yk is the time dependent observed signal, ak is a gain term, xk is the information bearing signal
and nk is the additive noise.

The overall objective is to estimate xk. The di�erence between the estimate of x̂k and xk itself is termed
the error;

f (ek) = f (xk � x̂k) (11.2)

The particular shape of f (ek) is dependent upon the application, however it is clear that the function
should be both positive and increase monotonically [3]. An error function which exhibits these charac-
teristics is the squared error function;

f (ek) = (xk � x̂k)
2

(11.3)
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Since it is necessary to consider the ability of the �lter to predict many data over a period of time a more
meaningful metric is the expected value of the error function;

lossfunction = E (f (ek)) (11.4)

This results in the mean squared error (MSE) function;

� (t) = E
�
e2
k

�
(11.5)

11.3 Maximum likelihood

The above derivation of mean squared error, although intuitive is somewhat heuristic. A more rigorous
derivation can be developed using maximum likelihood statistics. This is achieved by rede�ning the goal
of the �lter to �nding the x̂ which maximises the probability or likelihood of y. That is;

max [P (yjx̂)] (11.6)

Assuming that the additive random noise is Gaussian distributed with a standard deviation of �k gives;

P (ykjx̂k) = Kkexp �

�
(yk � akx̂k)

2

2�2
k

�
(11.7)

where Kk is a normalisation constant. The maximum likelihood function of this is;

P (yjx̂) =
Y
k

Kkexp �

�
(yk � akx̂k)

2

2�2
k

�
(11.8)

Which leads to;

logP (yjx̂) = �
1

2

X
k

�
(yk � akx̂k)

2

�2
k

�
+ constant (11.9)

The driving function of equation 11.9 is the MSE, which may be maximised by the variation of x̂k.
Therefore the mean squared error function is applicable when the expected variation of yk is best modelled
as a Gaussian distribution. In such a case the MSE serves to provide the value of x̂k which maximises
the likelihood of the signal yk.

In the following derivation the optimal �lter is de�ned as being that �lter, from the set of all possible
�lters which minimises the mean squared error.

11.4 Kalman Filter Derivation

Before going on to discuss the Kalman �lter the work of Norbert Wiener [4], should �rst be acknowledged
. Wiener described an optimal �nite impulse response (FIR) �lter in the mean squared error sense. His
solution will not be discussed here even though it has much in common with the Kalman �lter. Su�ce to
say that his solution uses both the auto correlation and the cross correlation of the received signal with
the original data, in order to derive an impulse response for the �lter.

Kalman also presented a prescription of the optimal MSE �lter. However Kalman's prescription has
some advantages over Weiner's; it sidesteps the need to determine the impulse response of the �lter,
something which is poorly suited to numerical computation. Kalman described his �lter using state
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space techniques, which unlike Wiener's perscription, enables the �lter to be used as either a smoother, a
�lter or a predictor. The latter of these three, the ability of the Kalman �lter to be used to predict data
has proven to be a very useful function. It has lead to the Kalman �lter being applied to a wide range of
tracking and navigation problems. De�ning the �lter in terms of state space methods also simpli�es the
implementation of the �lter in the discrete domain, another reason for its widespread appeal.

11.5 State space derivation

Assume that we want to know the value of a variable within a process of the form;

xk+1 = �xk + wk (11.10)

where; xk is the state vector of the process at time k, (nx1); � is the state transition matrix of the process
from the state at k to the state at k+1, and is assumed stationary over time, (nxm); wk is the associated
white noise process with known covariance, (nx1).

Observations on this variable can be modelled in the form;

zk = Hxk + vk (11.11)

where; zk is the actual measurement of x at time k, (mx1); H is the noiseless connection between the
state vector and the measurement vector, and is assumed stationary over time (mxn); vk is the associated
measurement error. This is again assumed to be a white noise process with known covariance and has
zero cross-correlation with the process noise, (mx1).

As was shown in section ?? for the minimisation of the MSE to yield the optimal �lter it must be
possible to correctly model the system errors using Gaussian distributions. The covariances of the two
noise models are assumed stationary over time and are given by;

Q = E
�
wkw

T

k

�
(11.12)

R = E
�
vkv

T

k

�
(11.13)

The mean squared error is given by 11.5. This is equivalent to;

E
�
eke

T

k

�
= Pk (11.14)

where; Pk is the error covariance matrix at time k, (nxn).

Equation 11.14 may be expanded to give;

Pk = E
�
eke

T

k

�
= E

h
(xk � x̂k) (xk � x̂k)

T
i

(11.15)

Assuming the prior estimate of x̂k is called x̂0
k
, and was gained by knowledge of the system. It posible to

write an update equation for the new estimate, combing the old estimate with measurement data thus;

x̂k = x̂0k + Kk (zk � Hx̂0k) (11.16)

where; Kk is the Kalman gain, which will be derived shortly. The term zk � Hx̂0
k
in eqn. 11.16 is known

as the innovation or measurement residual;

ik = zk � Hx̂k (11.17)
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Substitution of 11.11 into 11.16 gives;

x̂k = x̂0k + Kk (Hxk + vk � Hx̂0k) (11.18)

Substituting 11.18 into 11.15 gives;

Pk = E [[(I � KkH) (xk � x̂0
k
) � Kkvk]

[(I � KkH) (xk � x̂0
k
) � Kkvk]

T
i (11.19)

At this point it is noted that xk � x̂0
k
is the error of the prior estimate. It is clear that this is uncorrelated

with the measurement noise and therefore the expectation may be re-written as;

Pk = (I � KkH)E
h
(xk � x̂0

k
) (xk � x̂0

k
)
T
i
(I � KkH)

+ KkE
�
vkv

T

k

�
KT

k (11.20)

Substituting equations 11.13 and 11.15 into 11.19 gives;

Pk = (I � KkH)P 0

k (I � KkH)
T

+ KkRK
T

k (11.21)

where P 0

k
is the prior estimate of Pk.

Equation 11.21 is the error covariance update equation. The diagonal of the covariance matrix contains
the mean squared errors as shown;

Pkk =

2
4 E

�
ek�1e

T

k�1

�
E
�
eke

T

k�1

�
E
�
ek+1e

T

k�1

�
E
�
ek�1e

T

k

�
E
�
eke

T

k

�
E
�
ek+1e

T

k

�
E
�
ek�1e

T

k+1

�
E
�
eke

T

k+1

�
E
�
ek+1e

T

k+1

�
3
5 (11.22)

The sum of the diagonal elements of a matrix is the trace of a matrix. In the case of the error covariance
matrix the trace is the sum of the mean squared errors. Therefore the mean squared error may be
minimised by minimising the trace of Pk which in turn will minimise the trace of Pkk.

The trace of Pk is �rst di�erentiated with respect to Kk and the result set to zero in order to �nd the
conditions of this minimum.

Expansion of 11.21 gives;

Pk = P 0

k � KkHP 0

k � P 0

kH
TKT

k + Kk

�
HP 0

kH
T + R

�
KT

k (11.23)

Note that the trace of a matrix is equal to the trace of its transpose, therefore it may written as;

T [Pk] = T [P 0

k] � 2T [KkHP 0

k] + T
�
Kk

�
HP 0

kH
T + R

�
KT

k

�
(11.24)

where; T [Pk] is the trace of the matrix Pk.

Di�erentiating with respect to Kk gives;

dT [Pk]

dKk

= � 2(HP 0

k)
T + 2Kk

�
HP 0

kH
T + R

�
(11.25)

Setting to zero and re-arranging gives;
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(HP 0

k)
T

= Kk

�
HP 0

kH
T + R

�
(11.26)

Now solving for Kk gives;

Kk = P 0

kH
T
�
HP 0

kH
T + R

�
�1

(11.27)

Equation 11.27 is the Kalman gain equation. The innovation, ik de�ned in eqn. 11.17 has an associated
measurement prediction covariance. This is de�ned as;

Sk = HP 0

kH
T + R (11.28)

Finally, substitution of equation 11.27 into 11.23 gives;

Pk = P 0

k � P 0

kH
T
�
HP 0

kH
T + R

�
�1

HP 0

k

= P 0

k
� KkHP 0

k

= (I � KkH)P 0

k (11.29)

Equation 11.29 is the update equation for the error covariance matrix with optimal gain. The three
equations 11.16, 11.27, and 11.29 develop an estimate of the variable xk. State projection is achieved
using;

x̂0
k+1

= �x̂k (11.30)

To complete the recursion it is necessary to �nd an equation which projects the error covariance matrix
into the next time interval, k + 1. This is achieved by �rst forming an expressions for the prior error;

e0k+1 = xk+1 � x̂0k+1

= (�xk + wk) � �x̂k

= �ek + wk (11.31)

Extending equation 11.15 to time k + 1;

P 0

k+1 = E
�
e0k+1e

T 0

k+1

�
= E

h
(�ek + wk) (�ek + wk)

T
i

(11.32)

Note that ek and wk have zero cross-correlation because the noise wk actually accumulates between k
and k + 1 whereas the error ek is the error up until time k. Therefore;

P 0

k+1 = E
�
e0k+1e

T 0

k+1

�
= E

h
�ek (�ek)

T
i

+ E
�
wkw

T

k

�
= �Pk�

T + Q (11.33)

This completes the recursive �lter. The algorithmic loop is summarised in the diagram of �gure 11.5.
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Kalman Gain

Update Estimate

Update Covariance

Project into k+1

Projected Estimates

Initial Estimates

Updated State Estimates

Measurements

Description Equation

Kalman Gain Kk = P 0

k
HT

�
HP 0

k
HT + R

�
�1

Update Estimate x̂k = x̂0
k
+ Kk (zk � Hx̂0

k
)

Update Covariance Pk = (I � KkH)P 0

k

Project into k + 1 x̂0
k+1

= �x̂k
Pk+1 = �Pk�

T + Q

Figure 11.1: Kalman Filter Recursive Algorithm

11.6 The Kalman �lter as a chi-square merit function

The objective of the Kalman �lter is to minimise the mean squared error between the actual and estimated
data. Thus it provides the best estimate of the data in the mean squared error sense. This being the
case it should be possible to show that the Kalman �lter has much in common with the chi-square.
The chi-square merit function is a maximum likelihood function, and was derived earlier, equation 11.9.
It is typically used as a criteria to �t a set of model parameters to a model a process known as least

squares �tting. The Kalman �lter is commonly known as a recursive least squares (RLS) �tter. Drawing
similarities to the chi-square merit function will give a di�erent perspective on what the Kalman �lter is
doing.

The chi-square merit function is;

�2 =

kX
i=1

�
zi � h (ai; x)

�i

�
2

(11.34)

where; zi is the measured value; hi is the data model with parameters x, assumed linear in a; �i is the
variance associated with the measured value.

The optimal set of parameters can then be de�ned as that which minimises the above function. Expanding
out the variance gives;
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�2 =

kX
i=1

1

�i�i
[zi � h (ai; x)]

2

(11.35)

Representing the chi-square in vector form and using notation from the earlier Kalman derivation;

�2k = [zk � h (a; xk)]R
�1 [zk � h (a; xk)]

T
(11.36)

where; R�1 is the matrix of inverse squared variances, i.e. 1=�i�i.

The above merit function is the merit function associated with the latest, kth, measurement and provides
a measure of how accurately the model predicted this measurement. Given that the inverse model
covariance matrix is known up to time k, the merit function up to time k may be re-written as;

�2k�1 = (xk�1 � x̂k�1)P
0�1

k�1
(xk�1 � x̂k�1)

T
(11.37)

To combine the new data with the previous, �tting the model parameters so as to minimise the overall
chi-square function, the merit function becomes the summation of the two;

�2 = (xk�1 � x̂k�1)P
0�1

k�1
(xk�1 � x̂k�1)

T
+ [zk � h (a; xk)]R

�1 [zk � h (a; xk)]
T

(11.38)

Where the �rst derivative of this is given by;

d�2

dx
= 2P 0�1

k�1
(xk�1 � x̂k�1) � 2rxh (a; xk)

T
R�1 [zk � h (a; xk)] (11.39)

The model function h(a; xk) with parameters �tted from information to date, may be considered as;

h(a; xk) = h (a; (x̂k + �xk)) (11.40)

where �xk = xk � x̂k. The Taylor series expansion of the model function to �rst order is;

h (x̂k + �x) = h (x̂k) + �xrxh (x̂k) (11.41)

Substituting this result into the derivative equation 11.39 gives;

d�2

dx
= 2P 0�1

k
(xk � x̂k)

� 2rxh (a; x̂k)
T
R�1 [zk � h (a; x̂k) � (xk � x̂k)rxh (a; x̂kk)] (11.42)

It is assumed that the estimated model parameters are a close approximation to the actual model param-
eters. Therefore it may be assumed that the derivatives of the actual model and the estimated model are
the same. Further, for a system which is linear in a the model derivative is constant and may be written
as;

rxh (a; xk) = rxh (a; x̂k) = H (11.43)

Substituting this into equation 11.39 gives;

d�2

dx
= 2P 0�1

k
�xk + 2HTR�1H�xk � 2HTR�1 [zk � h (a; x̂k)] (11.44)
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Re-arranging gives;

d�2

dx
= 2

�
P 0�1

k
+ HTR�1H

�
�xk � 2HTR�1 [zk � h (a; x̂k)] (11.45)

For a minimum the derivative is zero, rearrange in terms of �xk gives;

�xk =
�
P 0�1

k
+ HTR�1H

�
�1

HTR�1 [zk � h (a; x̂k)] (11.46)

x = x̂k +
�
P 0�1

k
+ HTR�1H

�
�1

HTR�1 [zk � h (a; x̂)] (11.47)

Comparison of equation 11.47 to 11.16 allows the gain, Kk to be identi�ed as;

Kk =
�
P 0�1

k
+ HTR�1H

�
�1

HTR�1 (11.48)

Giving a parameter update equation of the form;

xk = x̂k + Kk [zk � h (a; x̂k)] (11.49)

Equation 11.49 is identical to 11.16 and describes the improvement of the parameter estimate using the
error between measured and model projected values.

11.7 Model covariance update

The model parameter covariance has been considered in its inverted form where it is known as the
information matrix1. It is possible to formulate an alternative update equation for the covariance matrix
using standard error propogation;

P�1

k
= P 0�1

k
+ HR�1HT (11.50)

It is possible to show that the covariance updates of equation 11.50 and equation 11.29 are equivalent.
This may be achieved using the identity Pk�P

�1

k
= I . The original, eqn 11.29 and alternative, eqn 11.50

forms of the covariance update equations are;

Pk = (I � KkH)P 0

k
and P�1

k
= P 0�1

k
+ HR�1HT

Therefore;

(I � KkH)P 0

k
� P 0�1

k
+ HR�1HT = I (11.51)

Substituting for Kk gives;

h
P 0

k
� P 0

k
HT

�
HP 0

k
HT + R

�
�1

HP 0

k

i �
P 0�1

k
+ HTR�1H

�

= I � P 0

k
HT

h�
HP 0

k
HT + R

�
�1

� R�1 +
�
HP 0

kH
T + R

�
�1

HP 0

kH
TR�1

i
H

= I � P 0

k
HT

h�
HP 0

k
HT + R

�
�1 �

I + HP 0

k
HTR�1

�
� R�1

i
H

= I � P 0

k
HT

�
R�1 � R�1

�
H

= I (11.52)

1
when the Kalman �lter is built around the information matrix it is known as the information �lter
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