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Abstract

A new finite element procedure for the solution of the incompressible Navier–Stokes equations is presented. In the

Petrov–Galerkin formulation employed, the velocities are interpolated using the flow conditions over the elements and

the pressure is interpolated to satisfy the inf–sup condition for incompressible analysis. Element control volumes are

employed to satisfy local mass and momentum conservation (as in finite volume methods), which corresponds to using

step functions as weight functions in the finite element method. An important achievement of the discretization scheme

is that no artificial parameters are set in the scheme to reach stability for low and high Reynolds (and P�eeclet) number

flows. The solutions of nontrivial test problems are presented to demonstrate the capability and potential of the

scheme.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Finite element methods are now abundantly used in

the analysis of solids and structures. The methods are

employed in research and commercial computer pro-

grams for static and dynamic, linear and nonlinear an-

alyses. Many high technology companies rely extensively

on finite element analyses of their structural designs in

order to reach optimum functionality and cost-effec-

tiveness.

However, considering fluid flow analysis, the situa-

tion is quite different. While much research effort has

been expended over the last three decades resulting in

numerous publications on finite element methods for

fluid flows, by far most fluid flow solutions in industry

are still obtained using finite volume methods, see e.g.

[1,2]. Of course, researchers in finite element analysis

may––and can––claim that finite volume methods are

just special finite element procedures, if finite element

methods are interpreted as discretization techniques in a

broad sense [3].

Major reasons why industrial computer programs for

fluid flow analysis are not based on the classical finite

element methods, after all the research expended, are

that the ‘‘traditional finite element methods’’ do not

satisfy directly local conservation in the traditional sense

and have difficulty to converge for high Reynolds num-

ber flows.

There are of course also shortcomings in the finite

volume methods. Compared with finite element meth-

ods, the mathematical theory for incompressible fluid

flows is less strong. However, a strong mathematical

theory is needed to reach an optimal solution scheme.

Optimal convergence, as the mesh is refined, is a major

aim in fluid flow analysis because of the fine discretiza-

tions that frequently need be used and which lead to

high cost of solutions. This shortcoming arises in part
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because interpolation functions of the field variables are

not explicitly employed. The lack of these functions also

means that required derivatives cannot be evaluated

directly for the evaluation of the viscous terms and to set

up Jacobians for the Newton–Raphson iterations. Fur-

thermore, it is unsatisfactory that––as in the finite ele-

ment method––artificial parameters to reach stability are

used.

Hendriana and Bathe presented some thoughts in

Ref. [4] as to what might be an ‘‘ideal’’ solution proce-

dure for fluid flows. This ideal solution scheme would

always give a reasonable solution to a well-posed fluid

flow problem provided a reasonable mesh is used. The

scheme would always converge fast in the Newton–

Raphson iterations. For a coarse mesh, the solution

would of course not be able to show some flow details

that cannot be represented, but with refinements of the

mesh, more of these details would be displayed with

optimal convergence. This quality of prediction of fluid

flow would hold even for flows of Reynolds numbers

that would imply turbulence. Hendriana and Bathe

tested various widely published finite element solution

schemes and found that all of them were quite deficient

when measured on this ideal solution scheme.

The objective of this paper is to present a finite ele-

ment solution procedure that we developed in order to

reach a scheme that is closer to this ideal solution

scheme. In Ref. [4], we considered 9-node elements. We

now focus on the development of a new 9-node element

for two-dimensional fluid flows, but the same approach

can also directly be employed for three-dimensional

solutions. We regard the proposed procedure to be still a

finite element discretization scheme although features of

finite volume methods are employed. In the procedure,

the velocities are interpolated using trial functions eval-

uated to incorporate the flow conditions, in the spirit of

Ref. [5], which provides the ‘‘upwinding effect’’ in a very

natural way [6,7]. Hence no artificial upwind parameters

are used. The pressure is interpolated with the aim to

satisfy the inf–sup condition for incompressible analysis,

and hence here too no artificial stability constants are

introduced [6,7]. For the formulation of the finite ele-

ment equations, the Petrov–Galerkin method is used

with step functions for the weight (test) functions over

control volumes, and this results in satisfying locally the

conditions of mass and momentum conservation (as in

finite volume methods).

In Section 2, we first present the finite element tech-

nique, which we refer to as ‘‘a flow-condition-based in-

terpolation’’, or in brief FCBI, finite element procedure.

We then illustrate the performance of the procedure in

the solution of some test cases with the objective to

evaluate the scheme measured on the desirable charac-

teristics of the ideal procedure mentioned above. While

no detailed mathematical analysis is as yet available,

based on the studies given, we can conclude already that

the formulation approach is very valuable and that there

is much potential in the procedure.

2. The finite element procedure

In this section we present the FCBI finite element

procedure for the solution of the Navier–Stokes equa-

tions. We first give the mathematical model considered

and then present the interpolations used. Some emphasis

is given to the fact that no artificial stability constants

are employed and that the conservation of mass and

momentum is satisfied locally in the traditional fluid

flow sense.

Throughout the paper the usual notation for Sobolev

spaces is used, see e.g. [8].

2.1. Problem formulation and discretization

We consider a two-dimensional domain of an in-

compressible Navier–Stokes fluid subjected to essential

and natural boundary conditions (see Fig. 1). We as-

sume that the fluid flow problem is well-posed in the

Hilbert spaces V and P.

The differential formulation of the problem we con-

sider is:

Find the velocity vðx; tÞ 2 V and pressure pðx; tÞ 2 P
such that

r � ðqvÞ ¼ 0 ðx; tÞ 2 X � ½0; T 	 ð1Þ

oqv
ot

þr � ðqvv� sÞ ¼ 0 ðx; tÞ 2 X � ½0; T 	 ð2Þ

subject to the (sufficiently smooth) initial and boundary

conditions

vðx; 0Þ ¼ 0vðxÞ; pðx; 0Þ ¼ 0pðxÞ x 2 X ð3Þ

v ¼ vs ðx; tÞ 2 �SSv � ð0; T 	 ð4Þ

s � n ¼ fs ðx; tÞ 2 Sf � ð0; T 	 ð5Þ

Ω

Fig. 1. Schematic of fluid flow problems considered.
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where

s ¼ sðv; pÞ ¼ �pIþ l rv
h

þ ðrvÞT
i

ð6Þ

q is the density, l is the viscosity, X 2 R2 is a domain

with the boundary S ¼ �SSv [ Sf ðSv \ Sf ¼ ;Þ, T is the

time span considered, vs are the prescribed velocities on

the boundary �SSv, f
s are the prescribed tractions on the

boundary Sf and n is the unit normal to the boundary.

We note that we set out to solve the ‘‘conservative

form’’ of the Navier–Stokes equations [7]. The reason is

that we want to satisfy the local conservation of mass

and momentum in the classical sense.

Our objective is to develop a solution procedure for

the Navier–Stokes equations that is close to the ideal

scheme mentioned in Section 1, see also Ref. [4]. As is

well known, the Navier–Stokes equations are self-con-

sistent up to very high Reynolds numbers and weak

solutions exist, provided of course transient analysis

conditions are considered and the boundary and initial

conditions are sufficiently smooth [9,10]. Hence, it is

reasonable to require that a numerical solution scheme

should be able to solve flow conditions at very high

Reynolds numbers.

For the finite element solution, we use a Petrov–

Galerkin variational formulation with subspaces Vh, Uh

and Wh of V, and Ph and Qh of P of the problem in Eqs.

(1)–(6). The formulation used is:

Find v 2 Vh, u 2 Uh, p 2 Ph such that for all w 2 Wh

and q 2 QhZ
X
w

oqu
ot

�
þr � ðquv� sðu; pÞÞ

�
dX ¼ 0 ð7Þ

Z
X
qr � ðquÞdX ¼ 0 ð8Þ

To define the spaces used in the formulation, consider

Fig. 2, where we show a mesh of elements in their natural

coordinate systems. To obtain the matrices correspond-

ing to a general two-dimensional geometry, the usual

isoparametric transformations are used [7]. The figure

shows a patch of typical 9-node elements, see Fig. 2(a),

and a ‘‘sub-element’’, see Fig. 2(b). This sub-element is

defined by four nodes of the 9-node element and is used

for the interpolation of velocities. Each 9-node element is

thought of to consist of four 4-node sub-elements.

For the definition of the space Uh, we refer to the sub-

element. The trial functions in Uh are defined as

hu1 hu4
hu2 hu3

� �
¼ hðnÞhTðgÞ ð9Þ

where hTðyÞ ¼ ½1� y; y	 (y ¼ n; g with 06 n; g6 1).

Similarly, an element in the space Ph is given by (refer to

Fig. 2(a))

hp1 hp4
hp2 hp3

� �
¼ hðrÞhTðsÞ ð10Þ

with 06 r; s6 1.

The trial functions in Vh are defined using the flow

conditions along each side of the sub-element. The

functions are, for the flux through ab,

hv1 hv4
hv2 hv3

� �
¼ hðx1Þ; hðx2Þ

� �
hðgÞhTðgÞ ð11Þ

with

xk ¼ eq
kn � 1

eqk � 1
; qk ¼ q�uuk � Dxk

l
ð12Þ

where �uuk 2 Uh and is the velocity at the center of the

sides considered (n ¼ 1=2 and g ¼ 0, 1 for k ¼ 1, 2 re-

spectively). Analogously, the functions are constructed

for the flux through bc, and so on.

Note that these functions satisfy the requirementP
hi ¼ 1, although different flow conditions may be

present at the element edges [7].

The elements in the space Qh are step functions.

Referring to Fig. 2(a), we have, at node 2, for example,

Fig. 2. 9-Node elements and a sub-element in isoparametric coordinates. Domains over which the (constant) weight functions are

defined.
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hq2 ¼
1 ðr; sÞ 2 1

2
; 1

� �
� 0; 1

2

� �
0 else

	
ð13Þ

Similarly, the weight functions in the space Wh are also

step functions. Considering the sub-element we have at

node 1, for example,

hw1 ¼ 1 ðn; gÞ 2 0; 1
2

� �
� 0; 1

2

� �
0 else

	
ð14Þ

Remark 1. The fact that two spaces for the trial func-

tions are used needs a comment. We could use only the

space Vh (and hence substitute u by v in Eq. (7)), but then

clearly the discrete finite element equations would be-

come even more nonlinear, because the trial functions in

Vh contain the exponential expressions. Therefore, we

use both spaces Uh and Vh, but of course the functions in
these spaces are ‘‘attached’’ to the same nodal velocity

variables. For example, the velocities v and u in Fig. 2

are attached to the trial functions in Uh and Vh by

v ¼ hvi vi ð15Þ

u ¼ hui vi ð16Þ

where vi are the nodal velocity variables.

The rational for proceeding in this way lies in that it

is v in Eq. (7) which introduces the instability in the

numerical solution and which therefore needs to be inter-

polated exponentially. Another reason is that we want

the scheme to be applicable to any transport equation,

for example, the advection–diffusion equation where, in

the convective term, the temperature would be interpo-

lated in Vh and the velocity in Uh.

Remark 2. We should note that the evaluation of Eqs.

(7) and (8) with the given functions reduces to an eval-

uation of the integrals around the control volumes

shown in Fig. 2(a). Considering Eq. (7), we have one

control volume for each finite element node in the ele-

ment assemblage (see control volumes M1, M2 and M3),

and considering Eq. (8) we have one control volume for

each pressure node in the element assemblage (see con-

trol volume C). The use of these control volumes en-

forces the local conservation of momentum and mass,

respectively.

Remark 3. The finite element procedure given here is

related to finite volume methods [1,11], discontinuous

finite element methods [12,13] and the use of bubbles

[14]. Our objective in constructing the FCBI procedure is

to synthesize ideas in order to obtain a solution proce-

dure closer to the ideal scheme described in Ref. [4], and

a scheme that mathematically can be analyzed such that

further ideas of improvements will come forth.

2.2. On the conservation of mass and momentum

In this section we endeavor to discuss the important

properties of conservation of mass and momentum and

in which way these conservation conditions are satisfied.

We consider first the traditional finite element methods

and then our procedure. We refer to ‘‘flux conservation’’

because the essence of the conditions is to conserve the

‘‘flux’’ as imposed through the divergence operator in

Eqs. (1) and (2) (the mass flux in the first equation and

the momentum flux in the second equation).

The finite element methods for fluid flows were de-

veloped because a great success of finite element proce-

dures was seen in structural analysis. For the analysis of

structures, Lagrangian formulations and the principle of

virtual work are used to obtain the well-known finite

element equations

F ¼ R ð17Þ

where R is a vector of all externally applied nodal forces

and F is a vector equivalent (in the virtual work sense) to

the element internal stresses. The details of derivation of

these equations are widely available, but we should note

that the nodal force vector R contains the contributions

of all externally applied forces, including the contribu-

tions from surface tractions, body forces, concentrated

loads, initial stresses, and in transient analysis inertia

forces. Of course, Eq. (17) is applicable in linear and

nonlinear analyses. The vector R is assembled by sum-

ming over all element contributions, and similarly, the

vector F is obtained as

F ¼
X
m

FðmÞ ð18Þ

where FðmÞ lists the nodal forces equivalent to the ele-

ment stresses of element m. Using the notation of Ref.

[7], we have

FðmÞ ¼
Z
V ðmÞ

BðmÞTsðmÞ dV ðmÞ ð19Þ

where BðmÞ is the strain displacement matrix of element

m, sðmÞ is the stress in element m, and we are integrating

over the element volume. While the above relations are

written for the commonly used displacement-based finite

element methods, in order to focus on the essence of the

discussion, the same equations are also fundamental

when considering mixed methods [7].

Considering Eqs. (17)–(19), we can directly infer

(prove) that in finite element analysis the following two

fundamental Properties I and II are satisfied:

Property I (Nodal point equilibrium). At each node in
the element assemblage, the sum of the element forces FðmÞ

is equal to the externally applied forces listed in R. This
property of course directly follows from Eq. (17), but we

1270 K.J. Bathe, H. Zhang / Computers and Structures 80 (2002) 1267–1277



must recall that at those nodes where displacements are
prescribed, the reactions are calculated from the summa-
tion of the element internal forces.

Property II (Element equilibrium). Each element m is in
equilibrium under its forces FðmÞ. This property follows
directly from Eq. (19) and holds for any properly formu-
lated finite element. The proof is simple and based on
subjecting the element m to rigid body translations and
rotations.

These properties are illustrated in Fig. 3 and hold of

course for any coarse or fine mesh. For details on these

properties and a demonstrative example, see Ref. [7, pp.

177–182].

The above equilibrium properties express funda-

mental requirements that structural engineers are used

to work with. If only nodal point concentrated loads are

applied to a truss or beam model, the exact solutions to

the mathematical models are directly obtained (if ap-

plied distributed loads are present, special techniques

can be used that then also lead to exact solutions).

However, in the general finite element analysis of solids,

plates or shells, of course, only approximate solutions

are obtained. Specifically, consider the widely used dis-

placement-based finite element discretization. Although

the conditions of compatibility and stress–strain rela-

tionships are fulfilled, and the equilibrium Properties I

and II are satisfied, differential equilibrium (within the

elements and on the boundary) is in general not satisfied.

This results into stress jumps between elements and the

fact that the externally applied body forces and surface

tractions are not balanced by the finite element internal

stresses. Of course, as is well-known, these errors di-

minish sufficiently as the mesh is refined [7].

Consider next the generic fluid flow problem, sche-

matically shown in Fig. 1, and governed by the Navier–

Stokes equations (1)–(6). If the standard finite element

discretization is carried out, algebraic equations of the

forms of Eqs. (17)–(19) are also obtained but of course

for the nodal fluxes. Properties I and II are also appli-

cable––but naturally for the nodal fluxes [7]. Hence,

‘‘nodal flux equilibrium’’ as schematically shown in Fig.

3 on the assemblage nodal level and element level is

satisfied.

The conditions fulfilled in traditional finite element

fluid flow analyses are therefore very similar to those

in structural analysis. However, whereas in structural

analysis, the conditions of ‘‘force equilibrium’’ expressed

in Properties I and II are sufficient to satisfy structural

engineers, the ‘‘flux equilibrium’’ alone, expressed also in

Properties I and II, is generally not sufficient to satisfy

an analyst of fluid flow problems. Here recall that using

the Lagrangian formulation for structural analysis, mass

conservation is automatically satisfied. However, in

Eulerian formulations of fluid flows, flux conservation

for any sub-domain (of finite elements or finite volumes)

in the traditional sense (integrating around the sub-

domain boundary) needs to be fulfilled, and this prop-

erty is of course what finite volume methods are based

on and hence always directly satisfy. Of course, standard

finite element schemes can be extended with special

techniques such as post-processing methods in order to

more closely satisfy flux equilibrium (in the control vol-

ume sense) but such methods add to the complexity and

cost of solution. Also, finite element methods with dis-

continuous weight functions (w in Eq. (7)) can be used

and this is what we have selected to pursue in our de-

velopments.

Considering the FCBI finite element procedure pre-

sented above, since the weight functions are chosen as the

given step functions, flux conservation is satisfied in the

control volume sense over the sub-domains shown in Fig.

2(a). Hence the Property I can be restated as follows:

Property I for FCBI scheme (Control volume ‘‘flux

equilibrium’’––that is, mass and momentum conserva-

tion). The FCBI finite element solution procedure satisfies
local mass and momentum conservation for the control
volumes used to construct the algebraic finite element
equations.

This property is an important characteristic of the

solution scheme because of the theoretical and practical

need to satisfy locally conservation of mass and mo-

mentum. The property is probably also, in part, the

reason why reasonable solutions of fluid flow problems

with very high Reynolds numbers could be obtained

with relatively coarse meshes (see Section 3).
Fig. 3. Nodal point and element equilibrium in a finite element

analysis (taken from Ref. [7]).
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3. Example solutions

The objective in this section is to give the results

obtained in the solution of some fluid flow problems

when using the FCBI procedure. Of course, for the

simple one-dimensional advection–diffusion equation,

frequently solved when evaluating a procedure [7], the

exact solution is obtained for any mesh used (see e.g.

Fig. 4). We next consider additional problems and focus

on the aim that we would like to obtain reasonable so-

lutions for well-posed problems even when a flow of

high Reynolds number is considered and only a coarse

mesh is used.

3.1. Solution of driven cavity flow

The cavity flow problem shown in Fig. 5 has been

used extensively to test computational fluid dynamics

schemes. We used two meshes to solve this problem for

various Reynolds numbers: an 8 by 8 mesh, the ‘‘coarse

mesh’’, and a 24 by 24 mesh, called the ‘‘fine mesh’’

(although this is really not yet a fine mesh for the

problem).

Fig. 6 gives the velocity solution results for Reynolds

numbers 1, 100, 10,000 and 1,000,000 using the coarse

and fine meshes. We see that reasonable results have

been obtained with all meshes, with the fine mesh

showing more details in the flows. Of course, as the

Reynolds number increases, the predicted flow solution

hardly changes from a certain high Reynolds number

onwards (which depends on the mesh used).

For further evaluation we also solved the case of

Re ¼ 1000 using the coarse, fine and in addition a very

fine mesh (of 100 by 100 elements). The results are

compared with the solution of Ghia et al. [15] in Fig. 7,

which is considered to be an accurate solution. We see

that the results obtained with the coarse and fine meshes

are reasonable but of course not accurate, and that the

results given by the very fine mesh are accurate. This

convergence is of course also a required quality of a

solution scheme.

3.2. Solution of S-channel flow

We consider next the solution of the S-channel flow

shown in Fig. 8. This problem was already used to test

solution schemes in Ref. [4], and is a difficult problem to

solve when higher Reynolds number flows are consid-

ered. The difficulties arise because the corners in the

geometry force changes in flow directions and a circu-

lation exists for higher Reynolds numbers in the hori-

zontal exit section. In this case we use the ‘‘coarse mesh’’

and the ‘‘fine mesh’’ shown in Fig. 8.

Figs. 9 and 10 show the velocity and pressure solu-

tions obtained for Reynolds numbers 1, 100, 10,000 and

1,000,000 using the coarse and fine meshes. As in the

cavity flow problem, we see that reasonable results have

been obtained in all cases, and of course using the fine

mesh more details in the flows are calculated. In par-

ticular, the flow circulation near the outlet is predicted

using the fine mesh. Also, from a certain Reynolds

number onwards (which depends on the mesh) the pre-

dicted flow solution hardly changes.

Fig. 11 compares the pressure solutions for the case

of Re ¼ 100 obtained using the FCBI scheme (with the

coarse and fine meshes) and the standard Galerkin 9/4-c

Fig. 4. Numerical solutions of one-dimensional advection–dif-

fusion equation compared with exact solutions at various P�eeclet

numbers. Five elements are used. (For problem definition, see

[7, p. 683].)

Fig. 5. Driven cavity flow problem and meshes used: (a)

problem definition; (b) coarse mesh and (c) fine mesh.

1272 K.J. Bathe, H. Zhang / Computers and Structures 80 (2002) 1267–1277



element (with only the fine mesh and no upwinding) [7].

We notice that the solutions using the FCBI scheme

compare well with the solution obtained using the 9/4-c

element.

3.3. Fluid flow interacting with cantilever

An important objective in the development of the

new finite element procedure is to be able to solve

problems of fluid flows fully interacting with flexible

structures. In such solutions, the structure may undergo

very large displacements. The structure and fully cou-

pled fluid flow then correspond to a highly nonlinear

system, and it is important that a stable and accurate

solution procedure for the fluid flow be used [16].

Fig. 12 shows a rather simple problem, taken from the

ADINA verification manual, which we use to illustrate

the FCBI solution capability. The problem was solved

using coarse and fine meshes for the fluid, whereas just a

coarse mesh was employed for the cantilever. The arbi-

trary Lagrangian–Eulerian (ALE) formulation available

in ADINA was used [17]. Figs. 13 and 14 give the cal-

culated velocity and pressure distributions, together with

the deformations, drawn to scale, of the cantilever. We

note that the solution results using the coarse mesh are of

course different from the results obtained using the fine

mesh, but the difference is reasonable.

Fig. 7. Horizontal velocity along the vertical centerline of the

cavity (Re ¼ 1000).

Fig. 8. S-channel flow problem and meshes used: (a) problem

definition; (b) coarse mesh and (c) fine mesh.

Fig. 6. Velocity solutions at Reynolds numbers 1 (a), 102 (b),

104 (c) and 106 (d) in driven cavity flow problem.
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4. Concluding remarks

The objective of this paper was to present a finite

element solution scheme for incompressible fluid flows,

which we have developed in our aim to obtain a solution

procedure closer to the ideal scheme discussed in Ref.

[4]. The solution procedure is based on a Petrov–Galer-

kin formulation for a 9-node element, in which an FCBI

Fig. 9. Velocity solutions at Reynolds numbers 1 (a), 102 (b), 104 (c) and 106 (d) in S-channel flow problem.
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procedure of the velocities is used to provide the effect of

upwinding. Also, step weight functions, in essence, result

in using control volumes for mass and momentum con-

servation. The pressure is bi-linearly interpolated as for

the 9/4-c (Q2–Q1) element [7]. No artificial stabilization

parameters are used in the formulation.

The element has been employed to solve some low

and high Reynolds number test problems. Coarse and

(reasonably) fine meshes were used in the solutions.

With these meshes, accurate solutions have been ob-

tained for flows of moderate Reynolds numbers. The

important quality of the solution scheme displayed in

Fig. 10. Pressure solutions at Reynolds numbers 1 (a), 102 (b), 104 (c) and 106 (d) in S-channel flow problem.
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the results, however, is that reasonable flow solutions

could be obtained up to the Reynolds number of one

million. Of course, no details of the actual and very

complex flows can be resolved with the meshes used when

the Reynolds number is very high.

The solution approach using the FCBI scheme shows

much promise, but significant further developments are

necessary. The fact that a reasonable flow solution is

obtained is encouraging but of course an accurate so-

lution is needed; an ideal solution procedure would be

stable and optimal in terms of an appropriate error

measure.

The element presented in this paper is not a high-

order accurate element due to the interpolations used.

Achieving a higher order of convergence, while keeping

the desirable property of the ideal scheme to be able to

solve high Reynolds number flows, is a challenge for

further development of the procedure.

Clearly, deeper analyses and more numerical testing

of the scheme will guide us in improving the method, but

it appears that considerable potential exists in arriving at

an effective solution procedure that is close to the ideal

Fig. 12. Fluid flow interacting with cantilever and meshes used:

(a) problem definition; (b) coarse fluid and solid mesh and (c)

fine fluid mesh and the same coarse solid mesh.

Fig. 11. Comparison of predicted pressures in solutions of S-channel flow problem (Re ¼ 100).

Fig. 13. Velocity solutions using coarse mesh (a) and fine mesh

(b) in the problem of fluid flow interacting with cantilever.
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solution scheme of Ref. [4]. Also, the approach used

should be very valuable for developing effective solution

schemes for compressible flows.
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