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SUMMARY

The solution to a benchmark problem of a di�erentially heated cavity �ow with Ra=3:4× 105 and
Pr=0:71 was solicited for presentation at a special session entitled ‘Computational Predictability of
Natural Convection Flows in Enclosures’ which was held at the First MIT Conference on Computational
Fluid and Solid Mechanics. The objective of this paper is to present the results obtained using the
ADINA System.
The 9-node quadrilateral element in ADINA was used with various meshes. Periodic solutions with

a period of 3.42–3.43 were obtained. Compared with the average values of the solution variables and
the periods, the calculated amplitudes of the periodic solutions were found to be more sensitive to the
spatial and temporal discretizations used. The �ow patterns, such as boundary layers, vortices, etc. were
also studied using a �ne 40× 120 element mesh. Vortices and their evolutions were revealed inside the
periodic �ow �eld. Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The solution of a di�erentially heated cavity �ow at near-critical Rayleigh number was
solicited (see Reference [1]) for presentation at a special session entitled ‘Computational
Predictability of Natural Convection Flows in Enclosures’ which was held at the First MIT
Conference on Computational Fluid and Solid Mechanics [2]. Studies of such �ows have been
of interest for a long time [3, 4], but solving this benchmark problem accurately still provides
a challenge.
The ADINA System is a �nite element program system which has been widely used

to perform comprehensive analyses of structures, �uid �ows, and �uid–structure inter-
actions. Incompressible �ows, slightly compressible �ows and fully compressible �ows at
high Mach number can be solved. The objective of this paper is to present the results
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1046 Y. GUO AND K. J. BATHE

obtained in the analysis of the benchmark problem using the incompressible �ow assumptions
in ADINA.

2. STATEMENT OF THE PROBLEM AND NUMERICAL PROCEDURES

A brief description of the problem is given in Figure 1. More details can be found in Reference
[1]. The governing Navier–Stokes equations to be solved for this problem are
Continuity:

�0∇ · v=0 (1)

Momentum:

�0
@v
@t
+ �0(v · ∇)v= −∇p+∇ · (2�e) + �0g[1− �(�− �0)] (2)

Energy:

�0Cv
@�
@t
+ �0Cv(v · ∇)�=∇ · (k∇�) (3)

where v; p; �; e; �; k; Cv; �0; �0; �; g are the velocity vector, pressure, temperature, velocity strain
tensor, viscosity coe�cient, heat conductivity, speci�c heat at constant volume, reference
density, reference temperature, thermal coe�cient of expansion and gravitational acceleration
vector. Of course, t denotes time.
The boundary conditions for the variables are

at x=0: v=0; �=0:5 (4a)

at x=W : v=0; �= − 0:5 (4b)
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Figure 1. Schematic of the benchmark problem.
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at y=0: v=0;
@�
@y
=0 (4c)

at y=H : v=0;
@�
@y
=0 (4d)

at x=0: y=0; p=0 (4e)

where W and H denote the width and the height of the enclosure, respectively. We shall later
use ��=�|x=0 − �|x=W .
The initial conditions are,

at t=0: v=0; �=0; p=0 (5)

The numerical methods used in the ADINA System to solve these equations are presented
in References [5, 6]: The �nite element solution for incompressible �ows is based on a weak
form of the Navier–Stokes equations using the Galerkin procedure. The continuity equation,
the momentum equations and the energy equation are weighted with the virtual quantities
of pressure, velocities, and temperature, respectively. Of course, it is critical to use e�ective
�nite element discretization schemes, time integration methods, and solution schemes for the
set of algebraic equations. We discuss the techniques used in the problem solution considered
here in the next section.

3. MODEL SET-UP

The ADINA System o�ers solution capabilities for various forms of governing �uid �ow
equations and in very complex geometries [6]. In this study, a two-dimensional incompressible
�ow with heat transfer is assumed to take place. A constant material model is used and the
material parameters are chosen (see Table I) to make the Rayleigh number equal to 3:4× 105
and the Prandtl number equal to 0.71, as requested. The wall boundary condition is applied
to all four walls for the velocity and pressure. The temperature is prescribed at the two side

Table I. Material and geometry parameters.

Variable Value

�0 1.0
� 0.71
k 1.0
Cv 1.0
� 2:414× 105
‖g‖ 1.0
�0 0.0
�� 1.0
W 1.0
H 8.0

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:1045–1057
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walls to model the di�erential heating. The adiabatic condition for the temperature is a natural
boundary condition and is applied to the horizontal top and bottom walls. The pressure at the
bottom-left corner is �xed to be zero. The initial conditions are zero velocity, zero pressure
and zero temperature, see Equation (5).

3.1. Spatial discretization of the computational domain

Three di�erent elements are available for two-dimensional �uid �ow simulations in the
ADINA System; namely, a 3-node triangular, a 6-node triangular and a 9-node quadrilat-
eral element (9/4-c or Q2–Q1 element [5]). The last two elements are based on parabolic
velocity interpolations while the �rst one is based on a linear interpolation (plus a bubble).
All elements satisfy the inf–sup condition for incompressible analysis which means that they
are stable and optimal, i.e. the order of error in the spatial discretization is the smallest pos-
sible [5, 7]. Since this benchmark problem is very sensitive to numerical errors and because
the computational domain is rectangular, the 9-node quadrilateral element was used for all
simulations. Note that the 9-node element requires more memory and CPU time than does
the 3-node triangular element.
Four di�erent meshes have been used to solve the benchmark problem with the element

grading for the meshes as follows: mesh 1, 20× 100 elements which was suggested in
Reference [1]; mesh 2, 24× 100 elements; mesh 3, 30× 100 elements, and mesh 4, 40× 120
elements. We note that a more natural way to establish a �ner mesh is to double the number
of elements in both directions. However, this approach would lead to rather long solution
times. Instead, we �rst increased the number of elements into the x-direction and then also
used one mesh with an increased number of elements in both directions.
The non-uniform meshes were constructed on 16 surfaces (see Figure 2). These surfaces

ensured that the �ve hard points (see Figure 2, de�ned in Reference [1]) at which the compul-
sory time–history data is to be computed are always node points in the di�erent grid discretiza-
tions. The minimum element size of each mesh was: mesh 1, �x=0:01725; �y=0:02987;
mesh 2, �x=0:01483; �y=0:02987; mesh 3, �x=0:0125; �y=0:02987; mesh 4, �x=0:005
and �y=0:01. Note that the minimum element size in the �nest mesh was about 13 rd that of
the coarsest mesh although the number of element layers was only doubled in the x-direction
and only increased by 20 per cent in the y-direction.

3.2. Time integration scheme and time step size

The � time integration method [5] is employed in the ADINA System for transient �uid �ow
simulations. With the value 0.5 for the time integration parameter �, the trapezoidal rule is
used with an accuracy of second order in time. In this study, we employed �=0:505 from
time zero to the time at which a periodic solution is measured. Then the value of � was
changed to 0.5. The reason for using �rst a value di�erent from 0.5 was that then better
convergence in the Newton–Raphson iterations was achieved.
To choose the time step size, we considered the time constant used for this problem

W=
√
g�W��, g=‖g‖, (see Reference [1]), which in our model set-up gives a value of

0.00203531 (to six digits). As a �rst guess for the time step size, we employed the value
0.0002, which is about 1

10 th of the time constant. Based on the simulation using the coarsest
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Figure 2. Geometry and a typical mesh (the 20× 100 element mesh).

mesh, we found that there were about 34 time steps per time period of oscillations. Hence,
we kept this time step size for all simulations.

3.3. Convergence criterion for iterations

The time-stepping solution requires that a set of non-linear equations be solved at each
time considered. To solve these equations ADINA provides two options, the
Newton–Raphson method and the successive substitution method. The Newton–Raphson method
was used for all simulations in this study. The linear equations, which are established in the
Newton–Raphson method, were solved using a sparse direct solver. Of course, a convergence
criterion needs to be used to stop the iterations. In all simulations of this study, the stopping
criterion used was that the (Euclidean) norm of the incremental solution variables divided by
the norm of the current values of these variables was smaller than 10−9. The convergence
histories showed that generally only three iterations were needed in each time step.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:1045–1057
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Table II. Characteristic values used for non-dimensionalization.

Characteristic value

Variable Formulation Quantity

Heat conductivity k 1.0
Length W 1.0
Time W=

√
g�W�� 0.00203531

Density �0 1.0
Temperature �� 1.0
Velocity

√
g�W�� 491.325

Pressure �0g�W�� 2:414× 105

Stream function W
√
g�W�� 491.325

Vorticity
√
g�W��=W 491.325

4. RESULTS AND EVALUATION

The solution results comprise the required data and additional results that we choose to also
report upon. Note that all the results presented hereafter are non-dimensionalized as described
in Reference [1] except where it is emphasized. For completeness, the characteristic values
of all the variables used, and for which results are given, are listed in Table II.

4.1. Compulsory results

The time histories of the temperature at point 1 are shown in Figure 3 for the four meshes.
Figure 4 shows the same time histories on an expanded scale. The time histories show that
periodic solutions are obtained for all simulations using the di�erent mesh densities.
The compulsory point, wall and global solution results are tabulated in Table III. In the

table the following notation is used:

Ave. the average of a variable over a period of oscillation within the sample used
Amp. the di�erence between the maximum and the minimum of a variable over a

period of oscillation within the sample used
Period the time duration for a period of oscillation of a variable within the sample

used
u1 the x-direction velocity component at point 1
v1 the y-direction velocity component at point 1
�1 the temperature at point 1
�12 skewness (see Reference [1]), the summation of the temperature at points 1

and 2
�1 the stream function at point 1; u=@�=@y; v= − @�=@x; �=0 at the walls
!1 the vorticity at point 1; !=@v=@x − @u=@y
�Pij the pressure di�erence between point i and point j; �Pij=pi − pj
Nu|x=0;W the wall Nusselt number at x=0 or W ; ((1=H)(W=��)

∫ H
0 |@�=@x|x=0;W dy)
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Figure 3. Time history of temperature at point 1.

û the ‘average’ velocity metric over the whole enclosure requested in Reference [1]

(=
√
(1=2HW )

∫ H
0

∫ W
0 v · v dx dy)

!̂ the ‘average’ vorticity over the whole enclosure requested in Reference [1]

(=
√
(1=2HW )

∫ H
0

∫ W
0 !2 dx dy)

As for the samples used for all simulations, the average, the amplitude (one-half the peak-
to-valley amplitude), and the period in Table III, were measured during the last 1000 time
steps (corresponding to a duration of approximately 98 time units).
Note that both the average and the amplitude of the skewness �12 were found to be around

10−9 which is as small as the stopping criterion in the Newton–Raphson iterations. This
implies that the temperature �eld is skew-symmetric.

4.2. Computational resource used

All simulations were performed on a serial computer using ADINA 7.4 with the following
capacity:

• Machine: IBM RS=6000 44P Model 170.
• Total memory: 512 MB.
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1052 Y. GUO AND K. J. BATHE

24.

25.

26.

27.

28.

29.
*1

0-2

1450. 1455. 1460. 1465. 1470. 1475.

Mesh 20X100

TIME

TE
M

P
E

R
A

TU
R

E

24.

25.

26.

27.

28.

29.

*1
0-2

1450. 1455. 1460. 1465. 1470. 1475.

Mesh 24X100

TIME

TE
M

P
E

R
A

TU
R

E

24.

25.

26.

27.

28.

29.

*1
0-2

1450. 1455. 1460. 1465. 1470. 1475.

Mesh 30X100

TIME

TE
M

P
E

R
A

TU
R

E

24.

25.

26.

27.

28.

29.

*1
0-2

1450. 1455. 1460. 1465. 1470. 1475.

Mesh 40x120

TIME

TE
M

P
E

R
A

TU
R

E

Figure 4. Time history of temperature at point 1 on expanded scale.

• Number of the processors: 1.
• Memory used for four grids [MB]: 63.1, 77.8, 102.9, 174.7.
• CPU time used for four grids [ms=node=time step]: 1.21, 1.13, 1.30, 1.58.

4.3. The e�ect of the mesh density

Referring to Table III, we can make the following observations:

(1) Considering �12, both the average value and the amplitude decrease as the mesh density
increases.

(2) Considering all other compulsory data, we note that:
• The calculated average values and periods do not change any more signi�cantly as
the �nest mesh is reached.

• The calculated amplitudes, however, still change by about 5 per cent between the
30× 100 element mesh results and the 40× 120 element mesh results.

This observation tells that the averages and periods have probably been predicted quite
accurately. But if the objective is to predict the amplitudes more accurately, a �ner mesh
may still be needed.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:1045–1057
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Table III. Compulsory point, wall and global solution results.

Mesh of 20× 100 elements Mesh of 24× 100 elements
Quantity Ave. Amp. Period Ave. Amp. Period

u1 0.5439e-1 0.4406e-1 3.425 0.5558e-1 0.4908e-1 3.422
v1 0.4618 0.6450e-1 3.425 0.4622 0.7052e-1 3.425
�1 0.2653 0.3506e-1 3.425 0.2655 0.3858e-1 3.425

�12 0.1322e-8 0.5232e-7 3.425 0.1288e-8 0.4734e-7 3.425
�1 −7:427e-2 0.5674e-2 3.428 −7:406e-2 0.6270e-2 3.425
!1 −2:556 0.8816 3.425 −2:4908 0.9814 3.425

�P14 −2:116e-3 1.7196e-2 3.425 −2:068e-3 1.8794e-2 3.425
�P51 −0:5348 1.9112e-2 3.428 −0:5349 0.2080e-1 3.422
�P35 0.5369 0.8652e-2 3.428 0.5369 0.9438e-2 3.425

Nu|x=0 4.5782 0.5918e-2 3.425 4.5788 0.6462e-2 3.425
Nu|x=w 4.5783 0.5920e-2 3.425 4.5788 0.6462e-2 3.425

û 0.2393 0.2852e-4 3.425 0.2394 0.3112e-4 3.422
!̂ 3.0175 0.2704e-2 3.425 3.0174 0.2944e-2 3.425

Mesh of 30× 100 elements Mesh of 40× 120 elements
Quantity Ave. Amp. Period Ave. Amp. Period

u1 0.5572e-1 0.5052e-1 3.425 0.5610e-1 0.5294e-1 3.422
v1 0.4619 0.7204e-1 3.422 0.4620 0.7512e-1 3.422
�1 0.2656 0.3950e-1 3.422 0.2654 0.4134e-1 3.425

�12 0.818e-9 0.4166e-7 3.425 0.285e-9 0.2250e-8 3.417
�1 −7:391e-2 0.6470e-2 3.422 −7:385e-2 0.6768e-2 3.421
!1 −2:4425 1.0036 3.422 −2:4334 1.057 3.425

�P14 −1:883e-3 1.9158e-2 3.425 −2:003e-3 0.2004e-1 3.421
�P51 −0:5351 0.2122e-1 3.425 −0:5349 0.2208e-1 3.422
�P35 0.5370 0.9644e-2 3.425 0.5369 0.9976e-2 3.422

Nu|x=0 4.5791 0.6598e-2 3.422 4.5795 0.6892e-2 3.422
Nu|x=w 4.5791 0.6600e-2 3.422 4.5795 0.6890e-2 3.422

û 0.2394 0.3198e-4 3.422 0.2395 0.3278e-4 3.425
!̂ 3.0174 0.3004e-2 3.422 3.0172 0.3116e-2 3.425

4.4. The e�ect of changing �
As mentioned above, when � equals to 0.5, the time integration method is second-order accu-
rate. Figure 5 shows the e�ect of changing � from the value 0.505 to 0.5 on the temperature
history at point 1 using the mesh of 40× 120 elements. The change in � is imposed to occur
at time equal to 1080.91. It can be seen that the amplitude of the temperature oscillation
increases after the change of �.

4.5. Additional results

In this section additional computed data are given, but only the results using the �nest mesh
of 40× 120 elements are considered.
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Figure 5. The e�ect of � (� changes from 0.505 to 0.5 at time=1080:91).

4.5.1. Time histories at other hard points. Figure 6 shows the time histories of temperature,
pressure and the two velocity components in one time period at di�erent hard points. The
results reveal that the variations of temperature, and the two velocity components are nearly
anti-symmetric between points 1 and 2 and between points 3 and 4. The pressure di�erence
(assuming the pressure at point 5 to be equal to zero) also shows anti-symmetry between
points 1 and 3.

4.5.2. Spatial distributions and vortex evolutions. The spatial distributions of temperature
and velocity components at four time points along the horizontal and the vertical center lines
of the cavity are shown in Figures 7 and 8, separately. These time points correspond to the
times 0; T=4; T=2 and 3T=4, where T is the period of oscillation. The v-component of velocity
is shown along the horizontal center line in Figure 7 while the u-component of velocity is
shown along the vertical center line in Figure 8. The boundary layers for the velocities and
temperature can be observed clearly. As expected, the thermal boundary layer is thicker than
the velocity boundary layer. Also note that the di�erences in the temperature and velocity
components for the di�erent time points considered are very small along the centre lines.
To obtain a view of the whole �ow �eld, the contours of temperature, pressure, total velocity

and the stream function at the non-dimensional time equal to 1476.9 are shown in Plate 1.
Note that the time shown in the contour legend is a dimensional time (the time constant is
0.00203531, see Table II). The �ow patterns including the boundary layers and vortices can
be seen clearly.
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Figure 6. Time histories at other hard points (the actual time is obtained
by adding 1473 to the time shown).
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Figure 7. Temperature and velocity distributions along the horizontal centre line.

To show the vortex evolution inside the cavity, the streamlines at 10 equally spaced time
points corresponding to one time period are shown in Plate 2. It can be seen that two major
vortices are located near the top and bottom walls. Both vortices rotate clockwise. Between
these two major vortices, there is one large vortex. Inside this vortex, there is a more complex
vortex pattern. The decrease and increase of the strengths of the two smaller vortices, which
are located inside the large vortex, with time, can be seen in the �gure.

5. CONCLUDING REMARKS

The solutions of a benchmark problem of cavity �ow near the critical Rayleigh number
have been obtained using the ADINA System. The results presented in the paper include the
compulsory results and some additional results. The compulsory results including the point
data, wall data and global data have been computed for four meshes. The �ow patterns
including the boundary layers and vortices were also studied based on the results obtained
with the �nest mesh of 40× 120 9-node elements.
Periodic solutions with a period of 3.42–3.43 were obtained in all simulations. Compared

with the averages of the various solution variables and the periods, the amplitudes of the
periodic solutions are more sensitive to the spatial and temporal discretizations used. Based on
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Figure 8. Temperature and velocity distributions along the vertical centre line.

the study performed and the solution schemes used, we believe that quite accurate predictions
for certain solution quantities (such as average values and periods) have been obtained.
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TEMPERATURE

TIME 3.006

0.4667
0.3333
0.2000
0.0667

-0.0667
-0.2000
-0.3333
-0.4667

MAXIMUM
0.5000

MINIMUM
-0.5000

PRESSURE

TIME 3.006

0.0600
-0.0600
-0.1800
-0.3000
-0.4200
-0.5400
-0.6600
-0.7800

MAXIMUM
0.06712

MINIMUM
-0.7945

VELOCITY

TIME 3.006

0.7500
0.6500
0.5500
0.4500
0.3500
0.2500
0.1500
0.0500

MAXIMUM
0.7612

MINIMUM
0.000

STREAM-FUNCTION

TIME 3.006

0.0000
-0.0180
-0.0360
-0.0540
-0.0720
-0.0900
-0.1080
-0.1260

MAXIMUM
0.0003499

MINIMUM
-0.1312

Plate 1. Contours of calculated variables at time 1476.9 for the 40× 120 element mesh:
(a) temperature; (b) pressure; (c) total velocity and (d) stream function.

Plate 2. Streamlines at ten time points within a period. The 10 time points
correspond to 10 equal intervals in time.
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