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An enriched finite element method is presented to solve various wave propagation problems. The
proposed method is an extension of the procedure introduced by Kohno, Bathe, and Wright for one-
dimensional problems [1]. Specifically, the novelties are: two-dimensional problems are solved (and
three-dimensional problems would be tackled similarly), a scheme is given to overcome ill-conditioning,
the method is presented for time-dependent problems, and focus is on the solution of problems in solids
and structures using real arithmetic only. The method combines advantages of finite element and spectral
techniques, but an important point is that it preserves the fundamental properties of the finite element
method. The general formulation of the procedure is given and various examples are solved to illustrate
the capabilities of the proposed scheme.
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1. Introduction

The finite element method is known to be an effective numeri-
cal tool for the solution of boundary value problems on complex
domains [2]. However, the standard finite element method is not
very effective for the solution of wave propagation problems [2-
4]. The errors introduced in wave propagation analyses using the
piecewise polynomial approximations of standard techniques have
been identified and analyzed, see e.g. [5-6]. In the case of time har-
monic wave solutions, it is well-known that the accuracy of the
numerical solution becomes rapidly worse with increasing wave
number [2,7-10]. Therefore, for problems with short waves, very
fine meshes are required to obtain reasonable solutions, so fine,
that the numerical solution effort may be prohibitive. In the case
of transient wave propagations, the solution may exhibit spurious
oscillations, related to the Gibb’s phenomenon, and the numerical
wave propagation velocity may be significantly different from the
physical velocity, due to the numerical period elongation and
amplitude decay [2,11] resulting in the dispersion and dissipation
errors [11-23]. When a wave travels long distances, the errors be-
come large and the numerical solution is very inaccurate. There-
fore, whenever high-frequency components are present in the
loading, significant errors are present in the numerical solution un-
less the mesh is fine enough to model the rapid spatial variations.
In addition, due to the mesh used, the computed wave velocities
may also artificially depend on the propagation directions causing
distortions in the waveforms. Hence, the discrete model behaves
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anisotropically even though the mathematical model pertains to
an isotropic medium. Indeed, just one badly distorted element
may cause large solution errors.

A considerable amount of research has been focused on the
development of the finite element method for wave propagation
problems. For time harmonic wave problems, the partition of unity
finite element method has been proposed for the solution of Helm-
holtz problems at high frequencies [24-27]. An important point is
that in this method specific wave propagation solutions are incor-
porated into the solution space. However, when solving practical
wave propagation problems, we frequently do not know a priori
what waves and travels need to be predicted. In fact, the solution
is a sum of unknown waves and propagations, and may also in-
clude wave conversions. Therefore, embedding general multiple
wave patterns, like we propose below, into the solution space
seems to be a more natural way of capturing the unknown wave
solutions.

The spectral method, see Ref. [28], the spectral element method,
see Refs. [29-36] and the spectral finite element method, see Refs.
[37-40] and each time the references therein, have also been
developed to solve wave propagation problems. Considering the
literature, it is sometimes difficult to see whether a method be-
longs to one or another of these categories. However, in all cases
higher-order polynomials or harmonic functions are used in the
solution space.

The spectral method can be used to obtain numerical solutions
very close to exact solutions because harmonic functions are used
as basis functions and the solutions of wave equations are basically
harmonic functions. However, the spectral method is difficult to
use for geometrically complicated domains, as encountered in
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practice, since the method uses global basis functions. Hence in the
analysis of solids and structures, the method has found limited
practical use. A natural extension is therefore the spectral element
method. Here, in essence, high-order Lagrangian-based finite ele-
ments are used with special nodal positions and integration
schemes that lead to diagonal mass matrices. The method shows
low numerical dispersion with respect to standard finite element
methods and can be very effective in explicit time integration
but does not lend itself to modeling complex structures and to
the hierarchical increase in the displacement interpolations that
we pursue in this paper.

In addition, the spectral finite element method has been devel-
oped and is used effectively to solve certain wave propagation
problems in that it approximates the solutions with trigonometric
polynomials [37-40]. However, this method uses a transformation
of the governing wave equations to the frequency domain, the
solution in the frequency domain, and the back transformation to
the time domain. The method is overall an expensive procedure
and also difficult to extend to general nonlinear analysis.

A considerable attention has been given to the development of
discontinuous finite element formulations [41-43]. These methods
provide much generality for the solution of problems and can in par-
ticular be used for wave solutions. However, the methods are, in
practice, not sufficiently effective because of the discontinuities be-
tween the elements that need to be dealt with, for example, using
penalty factors. An extension of these techniques is the discontinu-
ous enrichment method in which free-space solutions of the govern-
ing problem are used for each element in addition to the polynomial
approximations [44,45]. Hence these methods too do not lend them-
selves to solve in a uniform and effective manner general linear and
nonlinear problems in solid and structural mechanics.

Our approach presented in this paper is related to these meth-
ods but has some attributes that the above-mentioned methods do
not offer. In Ref. [1], Kohno, Bathe, and Wright presented a valuable
finite element scheme that combines advantages of the finite ele-
ment and spectral methods. The essence of this scheme is that
low-order finite elements enriched with harmonic functions are
used. The amount of enrichment is chosen by the analyst, and re-
sults in additional element degrees of freedom. Hence, with no
enrichment the traditional finite element method is used, but the
method is attractive for wave propagation problems because addi-
tional harmonic functions are embedded when so desired. The
application of boundary conditions is performed as in the standard
finite element method and, indeed, all computations are as in the
usual finite element procedure [2]. In Ref. [1], the method was ap-
plied to solve one-dimensional time-harmonic multiscale wave
problems with waves of dramatically different lengths in different
regions and with wave conversions. It was shown that, for the solu-
tion of one-dimensional problems, using the method gives consid-
erably more accurate results than using the conventional finite
element method for the same computational cost.

Of course, the general approach to enrich the traditional
Lagrangian finite element basis functions with functions that can
more accurately represent desired solutions, has been pursued
for some decades [2]. This approach can be effective for the solu-
tion of specific problems. For example, for pipe analyses special
functions were embedded that are known to represent more accu-
rately pipe ovalization effects [46,47]. These elements result in
much more accurate solutions in linear and nonlinear analyses.
The same approach has been used, for example, in the develop-
ment of beam elements to include warping effects [48], in fluid
flow analyses to better capture the flow conditions [49,50], and
in solid mechanics to predict locally nonsmooth features like
needed for cracks, voids and failure [51,52]. In each of these cases,
in essence, the ‘character’ of the solution sought is embedded in
the solution space. Clearly, whenever specific problems are tackled,

an appropriate enrichment of the traditional finite element func-
tions is of interest (as exposed in general in Ref. [24]). The method
that we focus upon in this paper uses that approach and in that
sense is, of course, related to formulations given earlier for wave
propagations and other analyses.

The objective of this paper is to extend the specific procedure of
Ref. [1] to solve multi-dimensional wave propagation problems.
We provide a generally applicable enriched finite element scheme.
The solution field is discretized with the usual Lagrangian func-
tions plus harmonic functions within the elements that provide
for additional element behavior and degrees of freedom.

In the following, in Section 2, we present the governing equa-
tions of the elastic wave propagation problems that we consider
in this paper and the new finite element interpolation functions.
A practical point is that these functions are formulated to avoid
computations in complex arithmetic. We also discuss how to im-
pose the boundary conditions, the use of the interpolations with
distorted elements, and the problem of ill-conditioning of the gov-
erning algebraic equations. To overcome ill-conditioning, we intro-
duce a simple computational scheme.

Then, in Section 3, we present the results of a range of numer-
ical tests that illustrate the capabilities of the method. We consider
the cases of time harmonic and transient scalar wave equations;
the impact of an elastic bar against a rigid wall; a two-dimensional
elastic transient wave propagation problem and the solution of a
Helmholtz equation around a cylinder, both in infinite domains.
For the transient analyses we use an implicit time integration
and focus on the capabilities of the spatial discretization. It is seen
that the finite element formulation can be used to control the
numerical dispersion and dissipation by increasing the element de-
grees of freedom, and that accurate results can be obtained.

While we consider only two-dimensional linear problems in
this paper, an important point is that the method can, in principle,
also directly be extended to three-dimensional, beam, plate, shell
and general nonlinear and multi-physics solutions - since the
method is in fact just the standard finite element method enriched
with specific functions and all fundamental properties of the stan-
dard method are applicable. However, significant further research
is required to develop important features of the procedure in order
to obtain computationally effective solutions, as we mention in the
concluding remarks.

2. Formulation of the method

In this section we first present the governing equations of the
physical problems considered, then the finite element procedure,
and thereafter some important attributes of the solution technique.

2.1. Governing continuum mechanics equations

We consider an elastic, isotropic, homogeneous medium, V,
occupying a domain in R®. The boundary of V is denoted by S. In or-
der to model an unbounded domain, a “model boundary condition”
is used on S,y The displacement is denoted by u(x,t) where x € V.

For isotropic elastic wave propagations, the equations of motion
are

pit =V -z(u) + f° (1)

where p is the mass density, f® is the body force vector, and z(u) is
the stress tensor [2].

The equations of motion are completed with appropriate
boundary conditions. As is usual, we split the boundary S into
two parts S, and Sy with the boundary conditions

u=u% onS, (Dirichlet boundary) 2)
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T(u)-n=f* onS (Neumann boundary) (3)

Here u* is the prescribed displacement, nn is an outward unit normal
vector on Sy, and f¥ is the imposed boundary traction vector.

Included in Sfi_s the boundary, Sy, used to model an unbounded
domain, on which we use

¥ =—aplv-nn—crpvr (4)

Here vr = v — [v - njn is the velocity tangent to the surface and ¢; and
cr are the P and S wave velocities, respectively.

2.2. Variational form of the governing continuum mechanics equations

Multiplying Eq. (1) by a virtual displacement u and integrating
by parts over V we obtain in the standard way the principle of vir-
tual displacements [2]

[[&xav s [ puiav — [ aprds+ [ uprav (5)
JV JV v Sf - JV -

where u is the virtual displacement and ¢ is the corresponding vir-
tual strain. The important point is that for the method we propose,
the usual standard procedures of finite element analysis are used.
Hence, regarding the finite element formulation the only - but
important - novelty is the use of the specific interpolation functions
given next.

2.3. Element interpolation functions

While we next consider the two-dimensional analysis of solids,
the basic equations can directly be generalized to plate, shell and
three-dimensional solutions. The element interpolation functions
for Eq. (5) are for two-dimensional analyses given by — considering
only one typical solution variable u

In Eq. (6), the A, and A, are fundamental wavelengths, and ky
and k, are integers in the range of 1 <k, <n, 1 <k, < m, respec-
tively, where n and m are the cutoff numbers for each term. The
analyst needs to choose these data, as part of the finite element
model definition, for the problem solution. In our current work,
and in all solutions given in Section 3, we have so far used A, = 2Ax
and A, =2Ay, where Ax and Ay are typical element sizes. This
choice is physically appropriate and has also some mathematical
basis, see Ref. [1].

Considering the integers n and m, values between 1 and 3 are
most appropriate as exemplified in Section 3. Here we should note
that it is not necessary to use n=m but if done, the functions not
needed will simply not add additional solution accuracy as it is al-
ways the case in finite element analysis.

Of course, the elements used with the interpolation functions in
Eq. (6) satisfy the rigid-body mode criteria and the patch tests [2].

2.4. Imposing boundary conditions

The way we impose boundary conditions is explained in detail
in Ref. [1]. Here it is important to note that in this finite element
scheme the nodal values U, «,) contain the effect of the harmonic
functions. Hence to exactly satlsfy the displacement boundary con-
ditions, we choose the following values

Ugioky) = U™ forky=0 and k,=0 (8)

Uihoy) =0 for ky #0 ork, #0 )

where v’ is the prescribed displacement. Therefore we impose the
boundary displacements not using the harmonic functions. For the
Neumann boundary conditions, the boundary term in the discret-
ized equations is calculated in the same way as in the standard fi-
nite element method.

n m
Uxoo) + kzl {cos (“"X")U ko) T SIN (“"*")U 0 } + kzl {cos (2"kyy)U 20y T SIN (2“"”) U, O_ky)}
X = y:

$)= Z h“(r’ S) n m cos <2nl<xx + 2nkyy) UG (oK ky + sin (2nk,(x + 27/[\kyyy> f;rkx ky) ©
m K,
+ X
1 ks 2mkyx  27kyy 27kyx  2Tkyy\ 15—
k=1 k=1 | + COS ( x A )U k) T sin ( x Ayy ) (hocky)

where the Uy, «,) With superscripts are the nodal degrees of free-
dom; here the S, C and + and — are used in the superscripts to cor-
respond to the harmonic expressions. In one-dimensional
solutions, Eq. (6) is simply [1]

;hy(r){ (@0) +kle{cos( >Ufmkx)+sin( kxx> W)}}
(7

In Eq. (6), x and y are the coordinates at any point of the element
and h, is the conventional finite element interpolation function
with o the local node number of the element. Hence for a 4-node
element we have «=1,...,4, and for a 9-node element we have
a=1,...,9. These conventional interpolation functions are enriched
by harmonic functions to obtain the actual interpolations used for
the displacements. Of course, these interpolation functions can be
written using exponentials on the complex plane, but since we con-
sider the solution of solids we mostly use real arithmetic (see Sec-
tion 3.5 for an exception) which can be much more effective.

For the geometry interpolation of the elements, we use the ori-
ginal functions h, in the natural (r,s) space.

2.5. Geometrically distorted elements

To evaluate the coefficient matrices, analytical integration (as
used in Ref.[1]) can directly be used as long as the elements are rect-
angular. If the elements are slightly distorted, a semi-analytical
integration may still be possible. However, when the element
distortions are significant, numerical integration is probably
necessary. In this research we simply used the conventional
Gauss-Legendre integration scheme [2]. While we use this scheme
it is clear that more efficient techniques are very desirable (see
Section 4).

To test the performance of the elements when these are dis-
torted, we solve a simple problem in the domain [0,1] x [0,1] for
which the exact solution is u(x,y)=sin(4nx), see Fig. 1(a).
Fig. 1(b) shows a distorted 10 x 10 mesh using 4-node elements.
Here, the distortion ratio is defined as the ratio of the longest side
length of any of the elements over the shortest side length of any of
the elements in the domain [2].

In the study we use the 10 x 10 mesh of 4-node elements and a
5 x 5 mesh of 9-node elements (simply geometrically combining
four 4-node elements to one 9-node element) which leads to the
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(b) &

Longest length

Fig. 1. (a) Analytical solution of problem considered; (b) 10 x 10 mesh of 4-node elements with distortion ratio = 4.

same number of total degrees of freedom, and (n,m) = (2,2) for the
cutoff numbers. Fig. 2 shows the results obtained using the 4-node
and 9-node element meshes. Note that the numerical result using
the 9-node enriched element is very similar to the analytical solu-
tion even for the largest distortion ratio.

Fig. 3 shows the relative error in the L% norm, in percent, defined
as

—u2dv
(el wfdv) 0

(J lupav)’

While the 4-node enriched element is quite sensitive to distortion,
the 9-node enriched element is not that sensitive and hence per-
forms much better.

This result can be explained by the loss of predictive capability
of the elements due to element geometric distortions, which is dis-
cussed in Refs. [2,53].

[N

2.6. A scheme to overcome the (possible) ill-conditioning of the
algebraic equations

In earlier research on the partition of unity finite element and
generalized finite element methods, it was reported that the
resulting interpolation functions can lead to singular matrices or
to ill-conditioning of the system of linear equations. The singular-
ity occurs because some interpolation functions are linearly depen-
dent, and the ill-conditioning occurs because the interpolation
functions used are “close” to each other. With Eq. (6), the functions
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Fig. 3. Relative error in L? norm using enriched elements.

are linearly independent but do become close to each other as the
cutoff numbers become large.

Strouboulis et. al. [51] proposed to change the stiffness matrix
slightly, and then iterate in order to annihilate the resulting error.
However, our aim is to not iterate and, also, to have a scheme that
lends itself to nonlinear analysis, in which exact tangent stiffness
matrices change and may become singular (for physical reasons).
Hence we change the mass matrix, rather than the stiffness matrix,

(b)

02
00

Fig. 2. Numerical solutions using (a) the 4-node enriched element and (b) the 9-node enriched element; the distortion ratio = 10.
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and use in the time integration on the left-hand side of the alge-
braic equations

M = (1 - a)Mconsistent + OcMlumped (1 1)
and on the right-hand side of the equations
M = Mconsistent (12)

where o is a parameter of very small magnitude, and we calculate
the lumped mass matrix Mympeq Using the total mass and allocating
the lumped masses in the ratio of the diagonal elements of the con-
sistent mass matrix. Specific results using this scheme are given in
Section 3.2. Note that the mass matrix in Eq. (11) is only used to
overcome a possible ill-conditioning of the coefficient matrix and
not to reduce artificial dispersion or dissipation.

3. Numerical examples

In this section, we illustrate the performance of the enriched fi-
nite element method by solving several wave propagation prob-
lems. First, we solve time harmonic and transient scalar wave
equations and focus on the numerical dispersion. Then, we use
the method to solve for the stress wave in the impact of an elastic
bar and focus on the sharpness of the wave front. Third, an elastic
wave propagation problem is solved which contains P, S and Ray-
leigh waves. Finally, we use the method to predict the propagation

of an acoustic pressure wave, originating from a circular cylinder,
in an infinite domain.

For all transient analyses we use implicit time integration —
which is not mostly employed in practical wave analyses. How-
ever, using implicit time integration provides a stringent test on
the spatial discretization scheme and when employed in practice
can be more reliable [2].

3.1. Solution of time harmonic scalar wave

For the problem considered, the solution for u is governed by

u  Pu

2
WJra—szrku:O, 0<x<2 and0<y<?2 (13)
with the boundary conditions
B ou(x,2) ou(x,0)
u(07y) - 07 8y - 07 8y - 07
w =4n (and = 87 for case 2) (14)

where k=87 (327)in0 <x <1and k=47n(87)in 1 < x < 2 for the
case 1 (case 2). In Fig. 4, we present the exact solutions of u for both
cases. This is, of course, really only a one-dimensional problem but
it is a useful problem to study the errors occurring in numerical
schemes.

Fig. 4. Analytical solutions for problems considered (a) case 1; (b) case 2.
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Fig. 5. Solution errors using uniform meshes: (a) case 1, using 80 linear elements of the conventional finite element method; 8 linear enriched elements with cutoff number
2; 4 quadratic enriched elements with cutoff number 3; (b) case 2, using 320 linear elements of the conventional finite element method; 20 linear enriched elements with

cutoff number 3; 16 quadratic enriched elements with cutoff number 3.
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In Fig. 5, we study the error ey, = u(x,0) — uy(x,0) using equal-
sized elements in each solution. The error in the finite element
solution is due to the numerical period elongation and amplitude
decay, also referred to as numerical dispersion and dissipation.
Analyses of these errors are given, for example, in Refs. [2,7-11].

We see that in these cases the 4-node and 9-node enriched ele-
ments perform very well.

3.2. Solution of transient scalar wave

The scalar wave equation with a Ricker wavelet source at the
center of a two-dimensional domain, as considered in Ref. [21], is
given by
ou  du
— +—-——+F(0,0,t) =

2
F(0,0,t) = 10(1 —2mfA(t - 0.25)2) exp (77t2f2(t - 0.25)2)

(16)
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where u is the displacement solution sought, c is the wave velocity, f
is the central frequency and in this example c=1 and f= 6 Hz. Only
the domain [0,1] x [0,1] shown in Fig. 6 is used for the finite ele-
ment solution because of symmetry. While, in general, absorbing
boundary conditions should be prescribed at the outer boundary,
in this solution no “absorbing” boundary conditions are used be-
cause for the time considered 0.95s, the wave does not reach this
boundary. With the conventional finite element method, an
80 x 80 4-node element mesh is employed, leading to 6,561 de-
grees of freedom. For the enriched method, an 8 x 8 4-node ele-
ment mesh with cutoff numbers (n,m)=(1,1),(2,2),(3,3) is used,
leading to 729, 2,025, and 3,969 degrees of freedom, respectively.
In all solutions, we used the trapezoidal rule of time integration,
with a very small time step At=0.00625 s, which corresponds to
a CFL number = 0.5 for the 80 x 80 mesh. To assess the accuracy
of the solution, we also solved the problem with the 8 x 8 mesh
of 4-node elements and (n,m) = (4,4) and obtained negligible differ-
ences to the response calculated with (n,m) = (3,3), see Fig. 7.
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(b) 8x8 mesh with cutoff number (n,m)=(2,2)
v
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08k
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0 I L s ) | I | L
1] 01 02 03 04 0s 06 07 08 08

{d) 80x80 mesh

Fig. 6. Snapshots of displacements at t = 0.95 s with various cutoff numbers.
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Enriched method (nm)=(3.3)
* Enriched method (n,m)=(4.4)

—&— Conventional method

0 0.1 02 03 0.4 05 06

X
{(a) Displacement variations at t=0.55s

Enriched method (n,m)=(3.3)

+ Enriched method (n.m)=(4.4)
1 —&— Conventional method i ;
134 05 06 07 08 09 1

{b) Displacement variations at t=0.95s

Fig. 7. Displacement variations along the x-axis at two times.

Fig. 6 gives snapshots of the displacements at time t = 0.95s as
calculated using the conventional and enriched methods. As ex-
pected, the numerical results of the enriched method exhibit better
accuracy as the cutoff number increases. Also, for the meshes used,
the conventional method gives results that are not as good as ob-
tained with the enriched method with the cutoff number
(n,m)=(3,3). Considering the displacement variations along the
x-axis [21], as shown in Fig. 7, the error in the response prediction
increases, using the traditional method, with the distance of wave
travel in the computational domain. As well known, even an appar-
ently small error in wave propagation velocity may result into

Table 1

Condition number of coefficient matrix (largest eigenvalue/ smallest eigenvalue [2])
for various cutoff numbers and values of & using the 8 x 8 mesh of 4-node enriched
elements.

8 x 8 Mesh of 4-node enriched elements
Condition number

Cutoff number

(¢=0)  (2=0.000001) (o=0.00001) (o=0.0001)
(n,m)=(1,1) 5.8E+07  3.6E+07 1.1E+07 1.7E+06
(n,m)=(2,2) 3.4E+10  1.2E+09 1.5E+08 1.7E+07
(n,m)=(3,3) 9.7E+12  4.0E+09 4.0E+08 4.2E+07
(n,m) = (4,4) 2.8E+16  8.1E+09 8.3E+08 7.8E+07
?40
=
[
=30
[}
25 1
q>’ == (nm)=(4.4)
= 201
«© == (n,m)=(3,3)
@ 15
14 {nm}=(2,2}
10 -
5 -
0 .\I—_I
a=0.0001 a=0.00001 a=0.000001 a=0
o

(a) Relative error in L2 norm at t=0.95s

unacceptable displacement and hence stress errors as time
increases.

We obtained the results given above without regard to ill-con-
ditioning of the coefficient matrix. However, as pointed out in Sec-
tion 2.6, using the displacement interpolation functions of Eq. (6)
can lead to ill-conditioning and indeed in this problem solution,
ill-conditioning can be seen when calculating the condition num-
ber (although the solution is obtained in this case without numer-
ical difficulties even when (n,m) = (4,4)). Table 1 lists the condition
number of the coefficient matrix using various cutoff numbers and
values of « in Eq. (11). Fig. 8 shows the relative solution errors cal-
culated over the domain in the L? norm when using different
parameters, and also the displacements along the x-axis obtained
with (n,m) = (4,4). As seen, when using o = 0.00001 the condition
number is much improved while the error due to using this value
of o can be neglected.

3.3. One-dimensional impact of an elastic bar

A good benchmark problem for testing a finite element method
for wave propagation solutions is the one-dimensional impact
problem shown in Fig. 9 [23].

The problem can, of course, be solved very accurately using
explicit time integration, lumped mass matrices, and meshes of

u alpha=0 (n,m)= 4 4)
2 e @ aipha=0.00001 (uamp=(4 4)

15 i L i i H
04 05 0.6 07 08 09 1

X
(b) Displacement variations at t=0.95s

Fig. 8. Study of solution accuracy at time t = 0.95 s; (a) Relative errors in L2 norm for various cutoff numbers and values of o, the solution using « = 0.0 and (n,m) = (4,4) is
used as the solution to compare with; (b) comparison of the numerical solutions obtained using o = 0.0 and « = 0.00001.
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Fig. 9. Solution of impact of a bar at time 0.00005 s using uniform meshes; (a)
elements; (c) solution using 700 traditional linear elements (d) solutions using 50 li
5 with 10, 50, 100 linear enriched elements.

2-node linear elements [2]. To test the proposed formulation, we
solve the problem using uniform meshes of linear elements, con-
sistent mass matrices, and in each case, we use the trapezoidal rule
of time integration with the very small time step At=2.5 x 10 8.

Fig. 9 gives the results obtained. As well known, using the tradi-
tional finite element discretizations, spurious oscillations in the
stress and velocity predictions are obtained. These oscillations
are somewhat reduced using the time integration method pro-
posed by Bathe [54] but are still present. As seen in the figure,
when we use the enriched finite element method, we can control
the spurious high-frequency oscillations and make them accept-
ably small. As mentioned already, we used the consistent mass ma-
trix, although in certain analyses, using a lumped mass matrix or a
combination of lumped and consistent mass matrices might reduce
the errors [55].

elastic bar considered; (b) velocity distribution calculated using 100 traditional linear
near enriched elements with cutoff numbers 0, 1, 5; (e) solutions using the cutoff number

3.4. Solution of two-dimensional P, S and Rayleigh waves

In this section, we solve the Lamb problem of elastic waves
propagating inside a semi-infinite domain due to an imposed sur-
face vertical force [56], as considered in refs. [30,31].

From Eq. (5), the finite element formulation gives for an ele-

ment [2]
p 0 m), pc O (m)y
Hm™T H™av™y + / HmT H™ds™y
yim 0 pl— T s 0 pcr]— -
+ [ BmTCmMBmay™y = / HMTfSm gs™ (17)
ym T - sm =
f

where H'™ is the displacement interpolation matrix obtained from
Eq. (6), B™ is the corresponding strain-displacement matrix, and
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™ is the constitutive matrix for the plane strain condition used.
Note that the boundary condition to model the infinite domain,
Eq. (4) for Sy, results into the velocity dependent term in Eq. (17).

The isotropic semi-infinite elastic medium has a P-wave veloc-
ity 3200m/s, an S-wave velocity 1847.5m/s a mass density
2200 kg/m?3, and is modeled as a domain of size 4000 x 2000 m?
in plane strain conditions, see Fig. 10. The force, a Ricker wavelet
with a central frequency of 14.5 Hz, is applied on the free surface
at (xa,Ya) = (2000 m, 2000 m). Two receivers are located at 640 m
and 1280 m from the applied force. For the numerical solution,
we use a mesh of 50 x 25 4-node enriched elements, with

y[m] =

: A R640 R1280

o0 bHHHHH NaEERmEEaEsEmammsmsas.

........ N o

. WA 2

1000 .iL‘-.‘ —'.x

P e EEns.nEmEEREmamEmmEE inE

n0 $00 1000 1500 2000 m 000 3500 4000

Fig. 10. Wave profiles at time 0.72 s showing the Rayleigh, P and S waves in Lamb’s
problem. Point A indicates the applied force position, and R640 and R1280 indicate
the positions of the receivers.

(n,m)=(2,2) leading to a total of 66,300 degrees of freedom, a con-
sistent mass matrix, and the trapezoidal rule of time integration
with a time step 0.0008 s. The total time of response to be calcu-
lated is 1 s; hence the P wave will reach the outer boundary during
the solution time.

Fig. 10 shows the wave profiles at time 0.72 s, a strong Rayleigh
wave along the surface and the P and S waves inside the domain.
Fig. 11 gives the numerical prediction at the two receivers, which
is in good agreement with the analytical solution. Note that in
the finite element solution presented here, we did not incorporate
any knowledge of the two waves a priori - this response was nat-
urally solved for by use of our displacement interpolation func-
tions, see Eq. (6). These displacement functions can naturally
represent many different waveforms and will automatically solve
for the actual wave response.

3.5. Solution of time harmonic acoustic pressure wave

Consider an inviscid fluid for which we define the velocity po-
tential ¢ with

X: v¢7

p=-p¢ (18)

where v is the velocity and p is the pressure [2]. The equation gov-
erning the pressure behavior is
1 8%
2 —_———
Vp = 2 o2 (19)

with the wave speed ¢ = \/f/p where f is the bulk modulus and
p is the density of the fluid. Focusing on the propagation of a

r T T
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— — — Numerical Solution
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Fig. 11. Time history of displacement variations in x-direction and y-direction at the two receivers, numerical versus analytical results.
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two-dimensional acoustic pressure wave at a single frequency, the bounded domain V (see Fig. 12). Our goal is to solve the Helmholtz

time dependent pressure p can be written as [57-59] problem like in Ref. [60]:

p(x,y,t) = Re[P(x,y)e " (20) VZP+k*P=0 inV,

Substituting from Eq. (20) into Eq. (19) we obtain the Helmholtz % _g(x,y) ons, (21)
equation for the time harmonic pressure P. For the numerical test, lim \/F(o_P _ ikP) —0

we consider a circular cylinder with boundary Sy placed in the un- roos VAT
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Fig. 12. Solution of pressure wave (a) the analytical pressure, A is at (xo,Yo) = (0.5,0); (b) mesh of 9-node elements used including the perfectly matched layer.
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Fig. 13. Numerical solutions including the perfectly matched layer, and relative error in L2 norm not including the perfectly matched layer as a function of the cutoff number.
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where k = w/c and r is the distance from the origin in the Cartesian
coordinates (Fig. 12).

Considering this problem, the Hankel function of the first kind
satisfies the first and third equations

Pixy) = g (k/ix =30 + - 307 22

Hence using this function to prescribe g = 0P/on on the boundary S,
Eq. (22) is the exact solution for the Helmholtz problem in Eq. (21).
Using xg = 0.5, yo = 0, the radius of the circular cylinder = 1, like in
Ref. [60], and k = 22.06, Fig. 12(a) shows the analytical solution of
the pressure.

In the finite element solution we prescribe the boundary condi-
tion g = 0P/dn on the cylindrical boundary Syand calculate the pres-
sure response in the computational domain.

To model the infinity of the physical domain, we use the
perfectly matched layer of Ref. [60] with the recommended param-
eters. This layer truncates the unbounded domain in the numerical
calculation by the following equations

3o ) 3 () 470 @)
where
1 for x| < 2
Vl:{nm for 2< <3
n{ P fr b2 (24)
1+m for 2<|y|<3

Fig. 12(b) shows the complete finite element domain meshed with
9-node elements, giving a total of 576 degrees of freedom when
(n,m)=(0,0).

Fig. 13 gives contour plots of the pressure numerical solutions
using the cutoff numbers from 0 to 2, where the result obtained
using the cutoff numbers (n,m)=(2,2) is in good agreement with
the analytical solution.

As expected, the relative error in the L2 norm decreases as the
cutoff number increases, see Fig. 13, and only a few harmonic func-
tions need to be included to obtain sufficiently accurate results. If
the numerical solution for a higher wave number k is to be ob-
tained, it would be necessary to either increase the number of ele-
ments or the cutoff number in order to have the same level of
solution accuracy.

We note that while in all previous solutions, we only used real
arithmetic, in this example solution, we employed complex arith-
metic for the perfectly matched layer in the discretized domain.

4. Concluding Remarks

A finite element method for solving wave propagation problems
in solids has been presented. The method is used as the traditional
finite element procedures, but simply additional degrees of free-
dom (corresponding to the harmonic terms) are added to the nodes
of lower- or higher-order standard elements. In many cases, only
real arithmetic is employed. We have illustrated the use of the
method in two-dimensional solutions, but the concept directly ap-
plies to three-dimensional solutions as well.

The method does not embed ‘a priori’ specific wave solutions,
instead the procedure is a general scheme that directly and auto-
matically gives the ‘best’ solution possible in the assumed solution
space - just like the standard displacement-based finite element
method by its minimization properties [2]. Therefore, like in the

standard finite element method, the assumed solution space must
be rich enough to obtain an accurate approximation to the exact
solution, and this means that the mesh must be fine enough and
the number of harmonics used must be large enough. In this
way, based on our numerical experiences thus far, accurate solu-
tions can be obtained with reasonable meshes and solution data.

The method can be used with no enrichment functions (thus
being the traditional finite element method) and thereafter har-
monics to enrich the solution space can be selectively added, in
an hierarchical manner [61]. This makes the method flexible and
attractive for practical usage.

There are a number of items that should be tackled in further
research on the method. In this paper we focused on the capability
of the method to spatially resolve the desired solution and did not
focus on the effectiveness with respect to computational cost.
Hence further research should primarily focus on reaching cost
effectiveness when using the method.

For transient analyses, we have employed the method with a
consistent mass matrix and implicit time integration schemes,
and obtained accurate solutions. However, the use of lumped mass
approximations and explicit time integration, typically used for
wave propagation solutions, should be explored.

The numerical integration of the stiffness and mass matrices
should be studied in detail with the aim to find optimal schemes.
We used the standard Gauss integration rules with many integra-
tion stations on the elements as the cutoff number increases. The
element matrices have a specific structure that perhaps can be
exploited for effective partial-analytical and numerical evaluations.

The number of degrees of freedom of the elements increases
rapidly as the cutoff number increases. For example, considering
a two-dimensional wave solution such as in Section 3.4, the num-
bers of degrees of freedom per node are 18, 50, 98 when using
n=m=1, n=m=2, and n=m =3, respectively. Hence, the order
of an element stiffness matrix becomes rapidly large as the cutoff
number is increased, and the bandwidth of an assembled stiffness
matrix can be very large, in particular in three-dimensional analy-
ses. In explicit time integration, a large bandwith does not result in
computational difficulties, but in implicit integration, an iterative
solution of the equations may need to be pursued.

In practice, the method may be most effective when used with
only n=m =1, 2 or 3. The problem of ill-conditioning is then not as
severe. We proposed a simple scheme to remedy ill-conditioning,
but further research may lead to more effective schemes.

Theoretical convergence analyses should be pursued that in-
clude the effect of element sizes, fundamental wavelengths, and
the number of harmonics used. Such analyses would give guide-
lines as to how best solve a given problem and may also lead to er-
ror estimates on the solution obtained (using the hierarchical
features of the method) [62].

While we have presented the method for the displacement-
based method of finite elements - with all the important proper-
ties directly applicable [2] - it would be valuable to extend the
method for the u/p formulation (for incompressible analysis) and
the MITC formulations for beams, plates and shells [2,63-65] Then
the influence of the enrichment functions on the satisfaction of the
inf-sup condition needs to be investigated [66]. The method prob-
ably has good potential for the analysis of general shell structures,
and also for the solution of multi-physics problems including fluid-
structure interactions and electromagnetic effects [67].

Finally, since the method does not use specific analytical solu-
tions — but “works like” the standard finite element method -
the method can be extended to the solution of nonlinear problems,
in particular problems with material nonlinearities [2]. However,
the solution of large deformation problems, like encountered in
crash analyses [68], would provide a particular challenge.
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