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Abstract

Based on fundamental considerations for the ®nite element analysis of shells, we evaluate in the present paper the

performance of the MITC general shell elements. We give the results obtained in the analysis of judiciously selected
test problems and conclude that the elements are e�ective for general engineering applications. # 2000 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

Shell structures are encountered in many engineering

designs, and the accurate stress analysis of these struc-

tures is frequently required. A major di�culty in such

analyses is that di�erent shell structures can behave

very di�erently depending on the shell geometry and

boundary conditions used [1]. Finite elements for the

analysis of shells must therefore be able to e�ectively

capture di�erent shell behaviors with varied and com-

plex stress conditions. Because of these challenges in

shell analyses, numerous ®nite elements have been pro-

posed as improved analysis procedures. However, only

very few elements can be recommended for general use

in engineering practice.

In an attempt to provide a basis for a deeper study

of the currently available shell ®nite elements, and the

development of improved discretization procedures, we

presented some fundamental considerations for the

®nite element analysis of shell structures in Ref. [1].

We summarized the di�erent characteristic behaviors
of shell structures, discussed the di�culties encoun-

tered in ®nite element analysis of such structures, and
®nally presented an evaluation strategy of ®nite el-
ement procedures. Our objective in this paper is to

apply this evaluation strategy to the MITC shell el-
ements [2±4], and discuss the results obtained.
In the following sections of the paper, we ®rst brie¯y

review the di�culties encountered in the analysis of
shell structures and in the development of general shell
®nite elements. We then evaluate the MITC shell el-

ements in the light of the general shell analysis require-
ments by solving the test problems proposed in Ref.
[1]. The results of these analyses show that the MITC
elements provide e�ective discretization schemes for

the general analysis of shell structures.

2. The basic shell analysis problem

When studying the shell analysis problem, it is expe-
dient to consider ®rst the underlying mathematical

model and then the ®nite element solution of that
model [1,2].
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2.1. On the mathematical model

The general ®nite element analysis approach for

shell structures is to use shell elements that are formu-

lated based on general three-dimensional continuum

theory and kinematic and stress assumptions [2]. The

shell assumptions are those of Naghdi shell theory,

that the normal stress through the thickness of the

shell vanishes and that straight ®bers originally normal

to the midsurface remain straight during the defor-

mations of the shell [5]. The ``underlying shell math-

ematical model'' of the general continuum-mechanics

based ®nite element discretizations is derived in Ref.

[6], where the di�erences to the Naghdi shell model are

also enumerated.

In practice, the di�culties in shell analysis are most

pronounced when the shell is thin. For this reason, in

theoretical discussions, the case of the shell thickness t
being small is considered (including the limit case

t40), and in the numerical evaluation of shell el-
ements, thin shell analysis is considered. Since the
underlying shell mathematical model of the general

shell ®nite element analysis approach is equivalent to
the Naghdi shell theory when t is small (and indeed
the same limit problems are obtained when t40, see

Ref. [6]), we can use the Naghdi shell theory to ident-
ify the analysis di�culties and develop an appropriate
evaluation strategy for shell elements.

Using the Naghdi shell theory, the general shell
analysis problem is:

Find Ut 2 U such that

t3A�Ut, V � � tD�Ut, V � � G�V � 8V 2 U �1�

Fig. 1. Cylindrical shell.

K.-J. Bathe et al. / Computers and Structures 75 (2000) 1±302



where

U �
n

V � �v, ZZZ�, v 2
�
H 1�O�

�3
, ZZZ 2

�
H 1�O�

�2o \BC

�2�
and v is the displacement vector of the shell midsur-
face, ZZZ lists rotations of the sections (originally normal

to the midsurface), and BC symbolically denotes the
essential boundary conditions. The bilinear forms
A��, �� and D��, �� capture, respectively, the bending and
membrane/shear strain energies.

As we have discussed in Ref. [1], in the asymptotic
analysis (i.e., when t40), the following subspace, U0

takes on a crucial role:

U0�def�
V 2 U j D�V, V � � 0

	
: �3�

This subspace contains all those displacement patterns
for which the membrane and shear strains are zero,

hence, it is the subspace of pure bending displacements
(also referred to as the subspace of inextensional dis-
placements).
An essential speci®city of shells is that U0 may be

trivial, i.e., U0 � f0g: Such a situation is designated to
be the case of ``inhibited pure bending''. The asympto-
tic behavior of a shell structure is highly dependent on

whether or not pure bending is inhibited. Hence, to
evaluate shell ®nite elements, test problems for which
pure bending is inhibited �U0 � 0� and is not inhibited

�U0 6� f0g� should be considered. In each case, the
behavior of the ®nite element discretization should be
measured as the thickness of the shell is decreased.

Considering the case of non-inhibited pure bending,
we recognize that for the solution of Eq. (1) to remain
both bounded and non-vanishing, we must assume the
right-hand side to be of the form

G�V � � t3Fb�V �, �4�

so that for each value of t the problem to be solved is:

Find Ut 2 U such that

A�Ut, V � � 1

t2
D�Ut, V � � Fb�V � 8V 2 U: �5�

When t is very small, the membrane/shear term
appears in this problem as a penalty term and for t40
the solution of the following problem is approached:

Find Ub
0 2 U0 such that

A
�

Ub
0, V

�
� Fb�V � 8V 2 U0: �6�

Furthermore, we have [1]

lim
t4 0

1

t2
D�Ut, Ut � � 0: �7�

The above considerations mean in practice, and in the

evaluation of shell elements, that considering a pure
bending non-inhibited problem, as the thickness
approaches zero, the problem remains well-posed and

the shear and membrane strains become negligible.
Shell structures that carry loads primarily in bending
are also referred to as bending-dominated shells.

The situation is quite di�erent when a pure bending
inhibited shell structure is analyzed. In this case the
proper scaling of the loading is

G�V � � tFm�V �, �8�

because the sti�ness of the shell is proportional to the
thickness as t becomes small. The problem sequence to

solve is:

Find Ut 2 U such that

t2A�Ut, V � �D�Ut, V � � Fm�V � 8V 2 U, �9�

and the corresponding limit problem is:

Find Um
0 2W such that

D
ÿ
Um

0 , V
� � Fm�V � 8V 2W, �10�

where W is a space larger than U because strictly we

no longer need continuity in the transverse displace-
ments and section rotations. However, we require that

jFm�V �j2RcD�V, V � 8V 2W, �11�

where c is a constant. This relation ensures that the
applied loading can be resisted by membrane stresses

Fig. 2. Distribution of strain energy as a function of t=L for

the clamped cylindrical shell.
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Fig. 3. Axial pro®le of radial displacement w calculated along line CD for the clamped cylinder problem using L � R � 1 m;

t=L � 1=10,000; E � 2� 105 MPa; n � 1=3; p0 � 1 MPa. (A) MITC4 element; (B) QUAD9; (C) MITC9; (D) QUAD16; (E)

MITC16.
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only. Shell structures that carry loads primarily in
membrane action are also referred to as membrane-

dominated shells.

2.2. The ®nite element formulation

For the ®nite element solution, a natural way to
proceed is to use displacement/rotation interpolations.
Using conforming interpolations, we select Uh � U,

where Uh signi®es the ®nite element space (h denoting
the characteristic element size), and the ®nite element
problem corresponding to Eq. (1) is:

Find Uh 2 Uh such that

t3A
ÿ
Uh, V

�
� tD

ÿ
Uh, V

�
� G�V � 8V 2 Uh: �12�

To measure the e�ectiveness of the solution scheme,
we distinguish whether an inhibited or non-inhibited
problem is solved. When inhibited problems are con-
sidered, the solution using the above approach is e�ec-

tive as proven in [1]. However, when a non-inhibited
problem is solved, the numerical phenomenon of
``locking'' occurs which severely reduces the rate of

convergence. Namely, in this case the discrete vari-
ational problem considered is

Find Uh
t 2 Uh such that

A
�

Uh
t , V

�
� 1

t2
D
�

Uh
t , V

�
� Fb�V � 8V 2 Uh, �13�

and the convergence is highly in¯uenced by how rich

Uh is in U0: In the worst case Uh \U0 � f0g leading to
total loss of convergence

lim
t4 0

Uh
t � 0 6� lim

t4 0
Ut � Ub

0: �14�

In practice, extremely ®ne meshes are needed for an

accurate solution when t is small, and the displace-
ment-based ®nite element procedure becomes unpracti-
cal. The remedy is to use an appropriate mixed

formulation. The aim with this approach is to interp-
olate displacements and strains (or stresses) in such a
manner as to have no locking of the discretization in
the non-inhibited case for any value of thickness t, and

to have, as well, a uniformly good behavior for the
membrane-dominated case. Ideally, the rate of conver-
gence would be optimal, independent of whether a

bending-dominated or membrane-dominated problem
is considered and independent of the shell thickness.
The key to reaching this optimal behavior is to use

an appropriate mixed method with the appropriate
``well-balanced'' interpolations. The general mixed
method that provides the basis of the MITC shell el-

ements is

Find Uh �
ÿ
uh, bbbh

�
2 Uh �

ÿ
Vh, Bh

�
and

Eh �
n
ehij
o
2 Eh such that

8><>:
t3 ~A

ÿ
Eh, eee�V �

�
� t ~D

ÿ
Eh, eee�V �

�
� G�V �

~A
ÿ
Eh ÿ eee�Uh �, CCC

�
� 0

~D
ÿ
Eh ÿ eee�Uh �, CCC

�
� 0 8V 2 Uh, CCC � �cij

	 2 Eh,

�15�
where

Eh �
n
CCC � �cij

	
, cij 2 Eh

ij

o
, �16�

and

~A
ÿ
eee�U�, eee�V �

�
� A�U, V �

~D
ÿ
eee�U�, eee�V �

�
� D�U, V �: �17�

Here Eh is the subspace of assumed strains and includes

assumed bending, membrane and shear strains. The dis-
placement and strain interpolations of the elements are
summarized in Appendix A. The formulation can be de-

rived from the Hellinger±Reissner variational principle
(and therefore, also from the Hu±Washizu variational
principle), see Appendix B. However, a stability and
convergence analysis is necessary to assess whether the

actual discretization is e�ective. This analysis is di�cult
to perform analytically for a general setting, therefore
we resort to numerical assessments. For the non-inhib-

ited case, we would like that the inf-sup condition be sat-
is®ed for the selected interpolations. The results of our
inf-sup condition study are presented in Ref. [7] and

show that a numerical inf-sup test is satis®ed. Our objec-
tive in the following section is to give the results
obtained in convergence studies.

3. Numerical convergence studies

The test problems we use for the convergence studies
are described in Ref. [1], where the reasons for select-
ing these problems are also given. Using these pro-

blems (summarized below), we proceed in each case as
follows.
For each of the test problems, we run a sequence of

meshes and depict the convergence of the relative error
in strain energy of the approximation Er versus a mesh
density indicator N, where

K.-J. Bathe et al. / Computers and Structures 75 (2000) 1±30 5



Fig. 4. Convergence in strain energy for the clamped cylinder problem. Uniform meshes. (A) MITC4 element; (B) QUAD9; (C)

MITC9; (D) QUAD16; (E) MITC16; (F) TRI6; (G) MITC6.
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Er � Eÿ Eh

E
, �18�

with Eh being the strain energy of the ®nite element

approximation and E being the strain energy calcu-
lated using either the exact solution of the mathemat-
ical model, or, when no analytical solution is available,

other ®nite element schemes or very ®ne meshes of
high-order shell elements.
In addition, we plot the Er values versus the element

size h in the logarithmic scale to estimate the conver-
gence constant c and order of convergence k̂ of the
convergence equation:

jErj � ch2k̂: �19�

The numerical simulations are repeated for a number

of thickness parameter values, and changes in the con-
vergence properties of the element are re¯ected in
changes of the convergence constant c and order of

convergence k̂:
Ideally, we would like to have an element with k̂

independent of the nature of the problem (i.e., bend-
ing- or membrane-dominated) and the thickness t. In

addition, the convergence constant c should exhibit no
dependence on t for each problem under consideration.
Moreover, the order of convergence k̂ should be opti-

mal. In general, the optimal order of convergence k is
prescribed by the order of the discretization scheme
under consideration (and the physics of the problem,

smoothness of the solution, presence of stress concen-
trations due to loading, boundary layers, etc.) [2].

3.1. Membrane-dominated tests

3.1.1. Clamped cylindrical shell
We consider a cylindrical shell of uniform thickness

t, length 2L and radius R loaded by an axially-con-
stant pressure distribution p�j� acting on the outer sur-
face of the shell,

p�j� � P0 cos�2j�: �20�

At a point P on the cylinder's midsurface, we select
the axial displacement u, tangential displacement v,
radial displacement w, rotation of the normal about

the X-axis b1, and rotation of the normal about the
tangent vector b2 as the displacement variables (see
Fig. 1).

By symmetry, we can limit calculations to the
shaded region ABCD with the following symmetry and
boundary conditions imposed:

u � w � 0 along AB;

u � b2 � 0 along BC; v � b1 � 0 along CD;

u � v � w � b1 � b2 � 0 along AD: �21�
The analytical solution for the problem using the
Naghdi shell theory has been published for any given

value of t (see [8]1). The problem is membrane-domi-
nated with the combined bending and shear energy
being less than 2% even for a moderately thick case of

Fig. 4 (continued)

1 The values for displacements and deformation energy in

Ref. [8] should be multiplied by �1ÿ n2� and �1ÿ n2�2, re-

spectively.
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Fig. 5. Convergence in strain energy for the clamped cylinder problem. Uniform meshes. (A) MITC4 element; (B) QUAD9;

(C) MITC9; (D) QUAD16; (E) MITC16; (F) TRI6; (G) MITC6.
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t=L � 1=100 (see Fig. 2) and hence we scale the applied

loading with thickness t as

P0 � p0t, �22�
where p0 is a constant independent of t.
First we consider uniform N�N meshes with el-

ement sides aligned with the principal directions of
curvature, where N is the number of subdivisions per

side of the discretized domain (in our tests N � 4, 8,

16 and 32). This sequence of meshes is repeated for

each tested element for values of dimensionless thick-
ness parameter t=L ranging from 1/100 to 1/10,000.
Fig. 3 gives a comparison of the ®nite element

results with the analytical solution for the radial dis-
placement pro®le calculated using the elements of the
MITC family and the 9- and 16-node displacement-

based general shell elements (QUAD9 and QUAD16)
for the case of t=L � 1=10,000:

Fig. 7. Convergence in strain energy for the clamped cylinder

problem using the nine-node displacement-based element

QUAD9 in uniform and graded meshes for the case

t=L � 1=1000:
Fig. 6. A mesh grading scheme for the cylindrical shell pro-

blem, mesh density N � 4:

Fig. 5 (continued)
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All the elements perform quite well. However, some
numerical instabilities especially pronounced for the
displacement-based elements can be observed at the

clamped end. These instabilities are due to the presence

of boundary layers and can be eliminated using graded
meshes (as derived in Ref. [8], boundary layers play a

dominant role in a 02
��
t
p

region at the ®xed end).
Figs. 4 and 5 give the convergence in relative error

Er for the problem under consideration for a sequence

of t=L values. The six-node displacement-based el-
ement is referred to as the TRI6 element.
The convergence curves of the MITC4 element stay

virtually una�ected by changes in thickness t, and the
element's order of convergence k̂ is very close to its
theoretical value of k � 1:
The convergence curves for the other MITC el-

ements have noticeably lower convergence constants
c than their displacement-based counterparts and
reach the accuracy of 1.0% with the coarsest mesh.

Note that for the case of t=L � 1=100 the elements
do not converge further after reaching the accuracy
level of 00:01%, which is explained by di�erences

Fig. 8. A sequence of distorted meshes used for cylindrical shell. (A) The 4� 4 mesh; (B) 8� 8; (C) 16� 16; (D) 32� 32:

Table 1

Benchmark values for the strain energy E and vertical displa-

cement w at point x � 0, y � 0 for the hemispherical cap

under axisymmetric pressure. We use R � 1 m; E � 2� 105

MPa; n � 0:3; p0 � 1 MPa

t=R 1024 1D axisymmetric three-node shell elements

Strain energy E (N�mm) w�0, 0� (mm)

1/100 6:79244� 10ÿ5 ÿ7:73688� 10ÿ3

1/1000 7:62474� 10ÿ6 ÿ8:08931� 10ÿ3

1/10,000 7:88885� 10ÿ7 ÿ8:19934� 10ÿ3

K.-J. Bathe et al. / Computers and Structures 75 (2000) 1±3010



Fig. 9. Convergence in strain energy for the clamped cylinder problem. Distorted meshes. (A) MITC4 element; (B) QUAD9; (C)

MITC9; (D) QUAD16; (E) MITC16.
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Fig. 10. Convergence in strain energy for the clamped cylinder problem. Distorted meshes. (A) MITC4 element; (B) QUAD9; (C)

MITC9; (D) QUAD16; (E) MITC16.
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between the reference (Naghdi theory) solution and

the solution to our underlying shell model [6].

As pointed out in [8], the fact that the observed con-

vergence rates are lower than the respective ``optimal''

rates (equal to the order of the polynomial interpola-

tions in the elements) may be due to the presence of

stress concentration in the boundary layer region and

can be improved using mesh grading. To identify the

e�ect of mesh grading, we consider the following mesh

grading scheme: the discretized domain is separated

into two regions Ð the boundary layer region of width

2
��
t
p

in the X-direction, and the smooth solution region

of width equal to 1ÿ 2
��
t
p
: Both regions are then

meshed with the equal mesh density N as shown in

Fig. 6.

Fig. 12. A sequence of Nj �NW meshes of quadrilateral elements for the hemispherical cap problem. (A) The 2� 8 mesh; (B)

4� 16; (C) 8� 32; (D) 16� 64:

Fig. 11. Clamped hemispherical cap.
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Fig. 13. Convergence in strain energy for the clamped hemispherical cap problem. (A) MITC4 element; (B) QUAD9; (C) MITC9;

(D) QUAD16; (E) MITC16; (F) TRI6; (G) MITC6.
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Fig. 7 illustrates the change in the convergence rate
for the nine-node displacement-based element QUAD9
when a sequence of graded meshes is considered for
the case of t=L � 1=1000: The order of convergence

drastically increases and virtually reaches the optimal
rate k, and a pronounceable reduction in the conver-
gence constant c further underlines the importance of

mesh grading.
We also test the elements using distorted meshes in

which element sides are not aligned with the principal

directions of curvature. Such sequence is shown in Fig.
8.
Figs. 9 and 10 display convergence results calculated

using the distorted meshes of Fig. 8. Overall, no dra-
matic changes in convergence can be observed, how-
ever, the characteristics have worsened for all elements.
This e�ect can be partly attributed to poorer geometry

approximation using distorted meshes.

3.1.2. Clamped hemispherical cap

We consider a hemisphere of radius R, fully clamped
at j � p=2 (see Fig. 11), and uniform thickness t
loaded with an axisymmetric pressure distribution

p�j� � P0 cos�2j�: �23�

The problem is membrane-dominated, hence we scale
the applied load p with t.
Since no analytical solution is available for this pro-

blem, we use a 1D axisymmetric shell ®nite element
model to obtain benchmark values for the strain
energy, see Table 1.

We use a sequence of Nj �NW meshes to study the
convergence of the elements for t=R ratios from 1/100
to 1/10,000, where Nj is the number of divisions in the

j-direction, and NW is the number of divisions in the
W-direction at j � p=2 (see Fig. 12).
Figs. 13 and 14 report the results of the ®nite el-

ement simulations.

Overall, all the elements have a relatively high value
of the convergence constant c and low convergence
rates because of severe mesh distortions (the element

sides are far from being aligned with the lines of prin-
cipal curvature) and poor geometry approximation, es-
pecially for coarser meshes.

Like for the clamped cylinder problem, the MITC4
element exhibits virtually no dependence on t. The bet-
ter performance of the other MITC elements (com-

pared to the displacement-based elements) is re¯ected
in lower values of convergence constants.

3.2. Bending-dominated tests

3.2.1. Free cylindrical shell
The geometry and loading are the same as in the

Fig. 13 (continued)

Table 2

Reference values for the strain energy E and vertical displace-

ment w at point X � L=2, Y � 0 for the hyperbolic parabo-

loid, calculated using a 48� 24 mesh of MITC16 elements.

We use L � 1 m; E � 2� 105 MPa; n � 0:3; density r � 8000

kg/m3

t=L Strain energy E (N�m) Displacement w�L=2, 0� (m)

1/100 1:6790� 10ÿ3 ÿ9:3355� 10ÿ5

1/1000 1:1013� 10ÿ2 ÿ6:3941� 10ÿ3

1/10,000 8:9867� 10ÿ2 ÿ5:2988� 10ÿ1

K.-J. Bathe et al. / Computers and Structures 75 (2000) 1±30 15



Fig. 14. Convergence in strain energy for the clamped hemispherical cap problem. (A) MITC4 element; (B) QUAD9; (C) MITC9;

(D) QUAD16; (E) MITC16; (F) TRI6; (G) MITC6.
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clamped cylinder problem considered above. The same
boundary and symmetry conditions are applicable but

we release all the ®xities along the arc AD.
The bending energy prevails even for moderately

large t=L ratios Ð Fig. 15 shows that relative contri-

butions of the shear and membrane terms are essen-
tially negligible.
In the convergence study we use the Naghdi shell

theory solution given in Ref. [8], where a general meth-

odology of obtaining the exact solution for any given
(positive) value of t is demonstrated. Because bending
is dominant in this problem, the load is rescaled as

P0 � p0t
3: �24�

Fig. 16 presents a comparison of the analytical sol-
ution for the axial pro®le of the radial displacement w
with the ®nite element simulation results for the t=L �
1=10,000 case. The nine-node displacement-based el-
ement locks and results in zero displacements for coar-
ser meshes. The QUAD16 element starts o� quite far

from the analytical solution but reaches decent accu-
racy for ®ner meshes. The MITC4 element displays
robust convergence, and the higher-order MITC el-

ements produce accurate results even for relatively
coarse meshes.
The convergence in strain energy using uniform

meshes is displayed in Figs. 17 and 182. As in the

clamped cylinder case, the MITC4 element conver-
gence curves are ``perfect'' Ð they stay parallel to the

optimal convergence line, and neither the convergence
constant c nor the order k̂ are a�ected by variations in
thickness.

The locking of the nine-node displacement-based
element can be directly observed Ð its convergence
curves ¯atten out as t is decreased, and the relative
error stays above the 70% level even for very ®ne

meshes when t=L � 1=10,000:
The behavior of the QUAD16 element is slightly

a�ected by changes in thickness Ð the convergence

constant of the element gets larger, indicating poten-
tial di�culties as t is decreased.
The higher-order MITC elements converge to the ac-

curacy of 0.1% in strain energy with the coarsest

Fig. 14 (continued)

Fig. 15. Distribution of strain energy as a function of t=L for

the free cylindrical shell.

2 Symbols ``�'' on convergence graphs hereafter indicate

that the numerical value of the associated point on the graph

might be a�ected by computational (round-o�) errors due to

ill-conditioning of the sti�ness matrix of the system.

K.-J. Bathe et al. / Computers and Structures 75 (2000) 1±30 17



Fig. 16. Axial pro®le of radial displacement w calculated along line CD for the free cylinder problem using L � R � 1 m;

t=L � 1=10,000; E � 2� 105 MPa; n � 1=3; p0 � 1 MPa. (A) MITC4 element; (B) QUAD9; (C) MITC9; (D) QUAD16; (E)

MITC16.

K.-J. Bathe et al. / Computers and Structures 75 (2000) 1±3018



Fig. 17. Convergence in strain energy for the free cylinder problem. Uniform meshes. (A) MITC4 element; (B) QUAD9; (C)

MITC9; (D) QUAD16; (E) MITC16; (F) TRI6; (G) MITC6.
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meshes for all the thickness values. More accurate
results could not be obtained for the case t=L �
1=10,000 because of round-o� errors as a result of ill-
conditioning. This solution di�culty is more likely to
arise in bending-dominated problems. In these ana-

lyses, pure bending and membrane modes are associ-
ated with large di�erences in sti�ness values. Note that
this di�culty is less likely to arise when using displace-

ment-based elements because these elements do not
accurately represent the pure bending modes.
As in the clamped cylinder analysis, for the t=L �

1=100 case the convergence curves ¯atten out at the

level of 0.01% because of the discrepancies between
the Naghdi theory solution and our three-dimensional
shell model.

Figs. 19 and 20 report the performance of the el-
ements when used with the distorted meshes of Fig. 8.
Overall, all the discretizations produce worse results

compared to uniform meshes. This e�ect is especially
pronounced for coarse meshes with highest distortions.
However, as the meshes are re®ned, the elements reach

the accuracy levels obtained with uniform meshes.

3.2.2. Partly clamped hyperbolic paraboloid
The problem was suggested in [1] as a good test

for locking behavior. The surface is de®ned as

Z � X 2 ÿ Y 2; �X, Y� 2 �� ÿ L=2; L=2��2, �25�

clamped along the side X � ÿL=2 and loaded by

self-weight.
By symmetry, only one half of the surface needs

to be considered in the analysis (shaded region

ABCD in Fig. 21), with clamped boundary con-

ditions along AD and symmetry conditions along

AB.

For the ®nite element analysis we use sequences

of N�N=2 meshes, where N is the number of sub-

divisions along the X-axis. A typical 16� 8 mesh of

four-node elements is shown in Fig. 21. These

meshes are aligned with the sides of the discretized

domain, and not with the asymptotic directions [1].

The analytical solution for this problem is not

available, and we have to study the convergence to

reference strain energy values obtained with a very

®ne mesh of shell ®nite elements. Table 2 reports

such results for the strain energy and vertical dis-

placement at point X � L=2, Y � 0, calculated using

a 48� 24 mesh of MITC16 elements. Note that

since the self-weight loading is proportional to

thickness, the strain energy scales as 1=t, while dis-

placements scale as 1=t2:
Figs. 22 and 23 report the convergence in strain

energy to the values of Table 2. As in the previous

case, the nine-node displacement-based element dis-

plays severe locking Ð for t=L � 1=10,000 the error

in strain energy stays above 90% even for the ®nest

mesh of 32� 16 elements, and its convergence con-

stant c noticeably shifts with variations in thickness.

A milder form of locking can be also observed

for the QUAD16 element Ð its convergence con-

stant increases by an order of magnitude for every

decrease in t.

The MITC4 element produces good results on the

absolute scale, however, the graphs in the logarithmic

scale (Fig. 23(A)) show slow convergence. These di�-

Fig. 17 (continued)
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Fig. 18. Convergence in strain energy for the free cylinder problem. Uniform meshes. (A) MITC4 element; (B) QUAD9; (C)

MITC9; (D) QUAD16; (E) MITC16; (F) TRI6; (G) MITC6.
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culties can be explained by poor geometric approxi-
mation properties achieved with low-order elements for
complex surface geometries.

The higher-order MITC elements show good conver-
gence with little dependence on changes in the thick-
ness of the shell structure.

4. Concluding remarks

In this paper we have presented a study of the con-
vergence behavior of the MITC shell elements. The
problems used in the convergence study were discussed
in detail in Ref. [1].

The evaluation of the MITC shell elements shows
that the elements are e�ective in membrane- and bend-
ing-dominated shell problems and can thus be

employed in general shell analysis situations.
For the membrane-dominated problems, the MITC el-

ements produce results no worse and often signi®cantly

better than the displacement-based elements, and show
robust convergence properties with low dependence on
the thickness parameter t.
For the bending-dominated problems, displacement-

based elements, of course, exhibit severe locking, while
the MITC elements show good performance and
robustness.

The optimal convergence rate has not necessarily
been observed, but this is probably largely due to
boundary layers (as shown in the case of the mem-

brane-dominated cylinder problem).
Regarding the test problems, we have made the fol-

lowing general observations:

. The clamped cylinder problem has proved to be

an e�ective test for membrane-dominated beha-

vior. However, the presence of boundary layers at

the ®xed edges might induce (localized) instabil-

ities in numerical solutions and makes interpret-

ation of numerical results somewhat di�cult.

To avoid this complication, graded meshes

re®ned in the boundary layer regions can be

employed.

. The clamped hemispherical cap problem can be used

to test the performance of quadrilateral elements but

the elements will be quite distorted if the complete

shell is discretized. Of course, only a section of a

few degrees could be used. The advantage of the

problem is that a doubly-curved shell is considered

and in practice, of course, distorted elements are

commonly used.

. The free cylinder problem should be considered as

the ®rst and basic test for locking in bending-domi-

nated situations. Indeed, the space of pure bending

displacements U0 has a simple functional (poly-

nomial) form, and thus only elements with relatively

poor approximation properties would exhibit lock-

ing.

. From our experience, the partly clamped hyperbolic

paraboloid problem is an excellent test for locking in

bending-dominated situations. The geometry of the

shell is more general than a surface of zero Gaussian

curvature and the problem is more realistic than an

elliptic surface with free boundary. In addition, the

symmetry in the problem allows to use relatively ®ne

meshes, and thus, obtain sound convergence curves.

Fig. 18 (continued)
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Fig. 19. Convergence in strain energy for the free cylinder problem. Distorted meshes. (A) MITC4 element; (B) QUAD9; (C)

MITC9; (D) QUAD16; (E) MITC16.
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Fig. 20. Convergence in strain energy for the free cylinder problem. Distorted meshes. (A) MITC4 element; (B) QUAD9; (C)

MITC9; (D) QUAD16; (E) MITC16.
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Based on the results given in Ref. [1] and this paper,
we conclude that the test problems used herein are
very valuable to evaluate the performance of general

shell elements.

Appendix A. Summary of MITC shell element

interpolations

Let K̂ denote the area of a reference element. Using

the notation already de®ned, the spaces used for the el-
ements are then as follows.

A.1. The MITC4 element

The following functional spaces are used for the
four-node element:

Vh �
�

v 2
�
H 1�O�

�3
, vjK̂ 2

h
Q1

ÿ
K̂
�i3�

,

Bh �
�
ZZZ 2

�
H 1�O�

�2
, ZZZjK̂ 2

h
Q1

ÿ
K̂
�i2�

,

~Eh

13 �
n
c 2 L2�O�, cjK̂ 2 span

n
1, x̂2

oo
,

~Eh

23 �
n
c 2 L2�O�, cjK̂ 2 span

n
1,x̂1

oo
:

The tying procedure for the transverse shear strains e13
and e23 is shown in Fig. A1(A).

A.2. The MITC9 element

The following functional spaces are used to con-

struct the nine-node element:

Vh �
�

v 2
�
H 1�O�

�3
, vjK̂ 2

h
Q2

ÿ
K̂
�i3�

,

Bh �
�
ZZZ 2

�
H 1�O�

�2
, ZZZjK̂ 2

h
Q2

ÿ
K̂
�i2�

,

~Eh

11 � ~Eh

13 �
n
c 2 L2�O�, cjK̂

2 span

n
1, x̂1, x̂2, x̂1x̂2, x̂

2

2, x̂1x̂
2

2

oo
,

~Eh

22 � ~Eh

23 �
n
c 2 L2�O�, cjK̂

2 span

n
1, x̂1, x̂2, x̂1x̂2, x̂

2

1, x̂
2

1x̂2

oo
:

~Eh

12 �
n
c 2 L2�O�, cjK̂ 2 Q1

ÿ
K̂
�o
:

The tying procedure for the element is given in Fig.

A1(B).

A.3. The MITC16 element

The 16-node cubic element is constructed using:

Vh �
�

v 2
�
H 1�O�

�3
, vjK̂ 2

h
Q3

ÿ
K̂
�i3�

,

Bh �
�
ZZZ 2

�
H 1�O�

�2
, ZZZjK̂ 2

h
Q3

ÿ
K̂
�i2�

,

~Eh

11 � ~Eh

13 �
n
c 2 L2�O�, cjK̂

2 span

n
1, x̂1, x̂2, x̂

2

1, x̂1x̂2, x̂
2

2, x̂
2

1x̂2, x̂1x̂
2

2, x̂
3

2, x̂
2

1x̂
2

2

, x̂1x̂
3

2, x̂
2

1x̂
3

2

oo
,

~Eh

22 � ~Eh

23 �
n
c 2 L2�O�, cjK̂

2 span

n
1, x̂1, x̂2, x̂

2

1, x̂1x̂2, x̂
2

2, x̂
3

1, x̂
2

1x̂2, x̂1x̂
2

2

, x̂
3

1x̂2,x̂
2

1x̂
2

2, x̂
3

1x̂
2

2

oo
:

~Eh

12 �
n
c 2 L2�O�, cjK̂ 2 Q2

ÿ
K̂
�o
:

Fig. 21. Partly clamped hyperbolic paraboloid. A 16� 8 mesh

of four-node elements is shown.
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Fig. 22. Convergence in strain energy for the hyperbolic paraboloid problem. (A) MITC4 element; (B) QUAD9; (C) MITC9; (D)

QUAD16; (E) MITC16; (F) TRI6; (G) MITC6.
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The tying procedure for the strain tensor components

is presented in Fig. A1(C).

A.4. The MITC6 element

The six-node triangular element is constructed using

Vh �
�

v 2
�
H 1�O�

�3
, vjK̂ 2

h
P2

ÿ
K̂
�i3�

,

Bh �
�
ZZZ 2

�
H 1�O�

�2
, ZZZjK̂ 2

h
P2

ÿ
K̂
�i2�

,

~Eh

11 � ~Eh

12 � ~Eh

22 �
n
c 2 L2�O�, cjK̂ 2 P1�O�

o
,

~Eh

13 �
n
c 2 L2�O�, cjK̂ 2 span

n
1, x̂1, x̂1x̂2, x̂2, x̂

2

2

oo
,

~Eh

23 �
n
c 2 L2�O�, cjK̂ 2 span

n
1, x̂1, x̂1x̂2, x̂2, x̂

2

1

oo
:

The choice of interpolation spaces for the transverse

shear components proved to be optimal for the mixed-
interpolated seven-node plate bending element MITC7
[2]. The tying procedure for the strain tensor com-
ponents is depicted in Fig. A2.

Appendix B. Mixed formulation for the MITC general

shell elements

In this Appendix we demonstrate how the abstract
variational problem of type (15) can be derived from

the mixed interpolation employed in construction of

the general MITC shell elements using the Hellinger±
Reissner variational principle.
Using the engineering notation [2], we rewrite the

strain tensor in vector form:

eee � �e11, e22, e33, 2e12, 2e23, 2e13 �T, �B1�

and assume

eee � eeeDB � eeeAS: �B2�

The vector eeeDB contains the components of the strain
vector eee that are directly calculated from displace-
ments, while vector eeeAS contains the components

which are obtained using some assumed strain interp-
olation. Let the complete vector of strains obtained
from the displacements be Åeee, that is:

Åeee � �e11�U�,e22�U�,e33�U�,2e12�U�,2e23�U�,2e13�U��T
�B3�

then

Åeee � eeeDB � eeeTI, �B4�

where eeeTI contains the displacement-based strain com-
ponents to be tied to the assumed strain components

eeeAS:
The Hellinger±Reissner variational indicator can be

then written as [2] (neglecting the loading terms):

Fig. 22 (continued)
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Fig. 23. Convergence in strain energy for the hyperbolic paraboloid problem. (A) MITC4 element; (B) QUAD9; (C) MITC9; (D)

QUAD16; (E) MITC16; (F) TRI6; (G) MITC6.
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Fig. 23 (continued)

Fig. A1. Tying points for the MITC shell elements. (A) MITC4 element; (B) MITC9 element; (C) MITC16 element.
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PHR�U, eee� � ÿ 1

2

�
V

eeeTCeee dV�
�
V

eeeTCÅeee dV

� 1

2

�
V

�eeeDB �TCeeeDB dV

ÿ 1

2

�
V

�eeeAS �TCeeeAS dV

�
�
V

�eeeDB �TCeeeTI dV

�
�
V

�eeeAS �TCeeeTI dV, �B5�

where C is the matrix of constitutive relations.
Invoking the stationarity conditions for PHR with

respect to U and eeeAS,

dPHR

ÿ
U, eeeAS

�
� 0 �B6�

we obtain:�
V

�deeeDB �TCÅeee dV�
�
V

�deeeTI �TCeee dV � 0,

�
V

�deeeAS �TC�eeeTI ÿ eeeAS � dV � 0: �B7�

Note that when all the components of the strain tensor

are tied, i.e., eeeDB � deeeDB � 0, the formulation becomes:�
V

�deeeTI �TCeeeAS dV � 0,

�
V

�deeeAS �TC�eeeTI ÿ eeeAS � dV � 0: �B8�

This mixed formulation pertaining to the underlying

mathematical model (discussed in Ref. [6]) is the for-
mulation in Eq. (15) for the Naghdi shell model.
The second line of Eq. (B7) de®nes the ``tying'' pro-

cedure by which eeeAS is obtained from eeeTI: For the

MITC elements we directly use eeeAS � J�eeeTI�, where
J�eeeTI� denotes the assumed interpolation of eeeTI in the
strain space. Hence, the integral form of Eq. (B8) is

equivalent to the MITC formulation if�
V

�deeeAS �TCeeeTI dV �
�
V

�deeeAS �TCJ�eeeTI � dV: �B9�

This relation holds true if the integral on the left-hand

side can be exactly evaluated by using the values of
deeeAS and eeeTI at the tying points only. Considering plane
elements, this clearly holds for rectangular MITC9 and

MITC16 elements for which the tying points corre-
spond to Gauss integration points that can be used to
integrate the quantity �deeeAS�TCeeeTI exactly. Eq. (B9) can

be shown to hold for the MITC4 and MITC6 elements
as well by computing both sides analytically (using
symbolic calculus software, for example).
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