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A new explicit time integration scheme is presented for the solution of wave propagation problems. The
method is designed to have small solution errors in the frequency range that can spatially be represented
and to cut out high spurious frequencies. The proposed explicit scheme is second-order accurate for sys-
tems with and without damping, even when used with a non-diagonal damping matrix. The stability,
accuracy and numerical dispersion are analyzed, and solutions to problems are given that illustrate
the performance of the scheme.
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1. Introduction

Direct time integration is widely used in finite element solu-
tions of structural dynamics and transient wave propagation prob-
lems, and schemes can be categorized into two groups: explicit and
implicit methods. A time integration method is implicit if the solu-
tion procedure requires the factorization of an ‘effective stiffness’
matrix and is explicit otherwise [1–3].

In general, each type of integration has its own advantages and
disadvantages. Implicit methods require a much larger computa-
tional effort per time step when compared with explicit methods.
However, implicit methods can be designed to have unconditional
stability, in linear analysis, so that the time step size can be se-
lected solely based on the characteristics of the problem to be
solved. On the other hand, explicit methods when using a diagonal
mass matrix may require only vector calculations. Hence, the com-
putational cost per time step is much lower. However, an explicit
method can only be conditionally stable. Therefore, explicit meth-
ods may be effective when the time step size required by the sta-
bility limit is about the same as the time step size needed to
describe the physical problem, and this is frequently the case in
wave propagation analyses [1–6].

Accurate finite element solutions of wave propagations are dif-
ficult to obtain. Numerical errors due to the spatial and time dis-
cretizations resulting in artificial period elongations and
amplitude decays, seen as numerical dispersions and dissipations,
often render finite element solutions of wave propagation prob-
lems to be quite inaccurate [1,6–10]. In particular, large errors in
just the few highest frequency modes contained in the mesh
shown as spurious oscillations can severely impair the accuracy
of the solution. These spurious oscillations may increase in time
since the dispersion and dissipation errors accumulate as the
waves propagate.

Much research effort, following different approaches, has been
focused on reducing the dispersion and dissipation errors. Of
course, to reduce the errors from the spatial discretization, high-
er-order spatial discretizations can be employed [11–16]. How-
ever, the use of high-order elements can be computationally
expensive and may not have the generality as does the use of the
traditional finite element procedures employing low-order ele-
ments. Linear combinations of consistent and lumped mass matri-
ces [17–21] or modified spatial integration rules for evaluations of
mass and stiffness matrices [22–24] may also be used to obtain
better solution accuracy. However, these schemes are different
from those commonly used in structural dynamics and do not lead
to a general solution procedure. Errors due to the spurious oscilla-
tions can also be reduced by the use of filtering [24–26] for specific
points in space and time. These schemes can be valuable to obtain
improved solutions for a number of spatial and time points but in
engineering practice, accurate solutions are generally sought over
the complete problem geometry and all time considered.

Many direct time integration schemes introduce numerical dis-
sipation to improve the solution by suppressing the high frequency
spurious modes [1,2,27,28]. However, it is difficult to obtain an
effective scheme, since the numerical dissipation should be large
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enough to suppress the high frequency spurious modes, while at
the same time keeping good accuracy in the low frequency modes.
The search for an effective such scheme is very important since, in
engineering practice, such method could be used for structural
dynamics and wave propagation problems in a uniform manner.

Among implicit methods, the Bathe method [29–31] has been
shown to result in remarkably accurate solutions by suppressing
the high frequency spurious modes [6]. The property of this
scheme to ‘cut out’ high frequency modes that cannot be spatially
resolved and to integrate those modes accurately that can be spa-
tially resolved results into relatively small dispersion error [6,32].
Fig. 1. Proposed scheme fo
Considering explicit methods, the central difference method is
still a widely used scheme. It has the largest time step stability lim-
it of any second-order accurate explicit method [33,34]. However,
the central difference method requires a matrix factorization for
systems with a non-diagonal damping matrix, a shortcoming that
has been addressed, see e.g. Refs. [35,36], and in particular, since
the method is a non-dissipative scheme, the solution accuracy
can be severely ruined by the dispersion errors in the high fre-
quency modes.

The development of dissipative explicit methods has been much
pursued [37]. Schemes have been presented by Newmark [38],
r various values of p.



Fig. 2. Spectral radii of approximation operators, case n = 0, for various methods;
for the proposed explicit scheme, p = 0.54 is used.
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Chung and Lee [3], Zhai [39], Hulbert and Chung [4] and Tchamwa
et al. [40]. The Newmark explicit method and the Zhai explicit
scheme with high-frequency dissipation are only first order
accurate and decrease the solution accuracy in the low frequency
domain. The Tchamwa–Wielgosz method is also only first order
accurate. Comparative studies [41,42] have shown that the
remaining dissipative explicit methods are second-order accurate
but often provide less accurate solutions than the Tchamwa–
Wielgosz scheme.

In this paper, we present a new explicit time integration scheme
for the analysis of wave propagations. We first focus on the formu-
lation of the method and its stability and accuracy characteristics.
Then we study the dispersion properties of the method using 4-
node elements in two-dimensional solutions. Finally, for an evalu-
ation, we provide the calculated response in the solution of various
problems using the proposed scheme and the central difference
and Tchamwa–Wielgosz methods.

2. An explicit time integration scheme

Considering linear analysis, the governing finite element equa-
tions to be solved are

M€Uþ C _Uþ KU ¼ R ð1Þ

with given initial conditions, where M, C, K are the mass, damping
and stiffness matrices and the vectors U and R list, respectively, the
nodal displacements and externally applied nodal forces. An over-
dot denotes a time derivative. If the time step size Dt is set and
all primary solution variables are known up to time t, then the time
integration scheme is to calculate the solution at time t + Dt.

The approach used in the proposed explicit scheme is to calcu-
late the unknown displacements, velocities and accelerations by
considering the time step Dt to consist of two sub-steps, as in-
spired by the Bathe implicit method. The time step sizes are pDt
and (1 � p)Dt for the first and the second sub-step, respectively,
where p 2 (0,1).

We consider, in the first sub-step,

M tþpDt €Uþ C tþpDt e_U þ K tþpDtU ¼ tþpDt bR ð2Þ
tþpDtU ¼ tUþ ½pDt�t _Uþ 1

2
½pDt�2t €U ð3Þ

tþpDt b_U ¼ t _Uþ 1
2
½pDt�t €U ð4Þ

tþpDt _U ¼ tþpDt b_U þ 1
2
½pDt�tþpDt €U ð5Þ

and in the second sub-step,

M tþDt €Uþ C tþDt e_U þ K tþDtU ¼ tþDtR ð6Þ
tþDtU ¼ tþpDtUþ ½ð1� pÞDt�tþpDt _Uþ 1

2
½ð1� pÞDt�2tþpDt €U ð7Þ

tþDt b_U ¼ tþpDt _Uþ 1
2
½ð1� pÞDt�tþpDt €U ð8Þ

tþDt _U ¼ tþDt b_U þ ½ð1� pÞDt� q0
t €Uþ q1

tþpDt €Uþ q2
tþDt €U

� �
ð9Þ

where in the following equations we use Eqs. (4) and (8)

tþpDt e_U ¼ ð1� sÞtþpDt b_U þ s t _U ð10Þ
tþDt e_U ¼ ð1� sÞtþDt b_U þ s tþpDt _U ð11Þ

and p, q0, q1, q2 and s are parameters to be determined. These
parameters, of course, affect the stability and accuracy characteris-
tics of the method. Which load best to use at the sub-step, tþpDt bR, is
addressed in Section 2.3. We may interpret the first sub-step as
using a finite difference Euler forward step followed by using the
trapezoidal rule for the final velocities (like in the central difference
method, involving only the velocities at the beginning of the sub-
step and the accelerations at the beginning and at the end of the
sub-step). The second sub-step can be seen as the same predic-
tor–corrector but with an equation for the final velocities using
the three accelerations involved in the step. The proposed form is
inherently explicit with a lumped mass matrix and any damping
matrix. Of course, the K t+pDtU and K t+DtU terms could be evaluated
without calculating stiffness matrices but summing over element
force vectors [1], and the same holds for the damping matrix terms.

2.1. Stability and accuracy characteristics

To have second order accuracy, we use, with and without phys-
ical damping included,

q0 þ q1 þ q2 ¼
1
2

; q2 ¼
1
2
� pq1; s ¼ �1 ð12Þ

Here, actually, s = �1 is not required when C is not included, which
is clear from Eqs. (2) and (6).

In the decoupled modal equations, the method may be ex-
pressed as [1]

tþDt€x
tþDt _x
tþDtx

264
375 ¼ A

t€x
t _x
tx

264
375þ La

tþpDtr þ Lb
tþDtr ð13Þ

where A, La and Lb are the integration approximation and load oper-
ators, respectively. The stability and some accuracy characteristics
of the method may be studied using this form of the scheme.

Using the relations in Eq. (12) and considering the case of no
physical damping, the characteristic polynomial of A becomes

~pðkÞ ¼ k3 � 2A1k
2 þ A2k� A3 ð14Þ

where

A1 ¼ 1� 1
2
x2

0Dt2 þ 1
4

pð1� pÞ p2q1 � pq1 þ
1
2

� �
x4

0Dt4;

A2 ¼ 1þ 1
2

pq1ð1� pÞ3x4
0Dt4;

A3 ¼ 0

ð15Þ

and x0 is the modal natural frequency. Using the Routh–Hurwitz
stability criteria on Eq. (14), and X0 = x0Dt we obtain the expres-
sion for the maximum stability limit



Fig. 3. Tchamwa–Wielgosz scheme for various values of u.
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X2
s ¼

1
cpð1� pÞ ð16Þ

with the conditions

� 1
4ð1� pÞ 6 q1 6

4pð1� pÞ � 1

8ð1� pÞ2p
; c ¼ 1

4
� 1

2
ð1� pÞq1 ð17Þ

where Xs = x0Dtcr and Dtcr is the critical time step. Hence if p = 0.5
and q1 = 0, the stability limit Xs = 4 and the method has the stability
limit twice that of the central difference method but uses the sub-
step; see Section 2.3 for a remark regarding the computational ex-
pense in using the method.

To represent oscillatory solutions, the eigenvalues of A should
remain in the complex plane. Since A3 = 0, we have a zero eigen-
value and
k1;2 ¼ A1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

1 � A2

q
ð18Þ

The bifurcation points where the eigenvalues become real, are given
by

X2
b1 ¼

2
að1� pÞ ; X2

b2;3 ¼
2� p�

ffiffiffi
b
p

að1� pÞp ð19Þ

with

a ¼ 1
2
� ð1� pÞpq1; b ¼ 8pðp� 1Þ2q1 þ p2 ð20Þ

From Eq. (17), a > 0; hence we always have a positive real bifurca-
tion point given by Xb1. To maximize the available frequency do-
main, we require Xb1 to be smaller so that the effective



Fig. 4. Relative wave speed errors of the proposed method for various CFL numbers;
using p = 0.54; results for discarded wave modes are given by dotted lines.

Fig. 5. Relative wave speed errors of the central difference method for various CFL
numbers.

Fig. 7. Relative wave speed errors of the central difference method for various
propagating angles, using CFL = 1.

Fig. 6. Relative wave speed errors of the proposed method for various propagating
angles, using CFL = 1.85 and p = 0.54; results for discarded wave modes are shown
by dotted lines.
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bifurcation point becomes the larger value of Xb2,3 with the condi-
tion b > 0. This constraint results in

q1 ¼
1� 2p

2pð1� pÞ ð21Þ

With Eq. (21), the bifurcation point and the stability limit are max-
imized as

Xb ¼
2
p

; Xs ¼
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� pÞð3p� 1Þ
p ð22Þ

where 1/2 6 p < 2/3 is the required condition, so that always
Xb 6Xs. With Eqs. (12) and (21), the operators A, La and Lb are
given as a function of p in Appendix A and an analysis shows that
the scheme is second-order accurate. This is not surprising since
the scheme is, in essence, the central difference method slightly
perturbed to introduce numerical damping (we recommend below
to use p = 0.54, that is, a value slightly larger than 0.5).

Using the spectral radius q(A) at the bifurcation point, which is
denoted as qb, we have
p ¼ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 2qb

p
1� qb

; p ¼ 0:5 if qb ¼ 1 ð23Þ

Hence we may determine the value of p based on qb which repre-
sents the amount of numerical dissipation in the high frequencies.
The proposed method can be treated as a one parameter (p or qb)
method at this point. From Eq. (23), the range of p for 0 6 qb 6 1
is obtained as 0:5 6 p 6 2�

ffiffiffi
2
p

. Here p = 0.5 gives qb = 1, resulting
in no numerical dissipation, and p ¼ 2�

ffiffiffi
2
p

results in the maxi-
mum numerical dissipation and the minimum (negative) period
elongation. It is interesting to note that in the Bathe implicit inte-
gration method, the splitting ratio c which provides the maximum
dissipation and minimum period elongation is also 2�

ffiffiffi
2
p

, and at
this value also the effective stiffness matrices at the sub-step and
full step are identical.

Fig. 1 shows the spectral radii of the proposed method as a func-
tion of X0 for various values of p. We see that for all p, q(A) ffi 1 un-
til X0 ffi 1.25 (Dt/T0 ffi 0.20). This property is desirable since it will
provide high accuracy for the low frequency modes. The period
elongations and amplitude decays for various values of p are also
given in Fig. 1 [43–45]. The results show the good accuracy charac-
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teristics of the proposed scheme, which has a very small amplitude
decay and (negative) period elongation for all p.

For an explicit method, it is crucial to maintain accuracy in the
integration of the lower frequencies while imposing numerical dis-
sipation in the higher frequencies just below the stability limit.
Fig. 1(a) shows that the bifurcation limit of the scheme also de-
creases as qb decreases, since using Eq. (23) p then increases, as
in other dissipative explicit methods. This may also be observed
in Eqs. (22) and (23). However, the relative amount of the decrease
in the proposed explicit method is quite small when compared to
those of other methods. Specifically, when qb changes from 1 to
0 (that is, from minimum dissipation to maximum dissipation)
the bifurcation limit Xb of the proposed method changes from 4
to 3.414, while Xb of the Tchamwa–Wielgosz scheme [40] changes
from 2 to 1, and Xb for the scheme of Hulbert and Chung [4]
changes from 2 to 1.414.

While the parameter p could be used to adjust, for a specific
solution, the amount of numerical damping in the high frequencies,
in practice, such approach would require numerical experimenta-
tion. Instead, it is desirable to have a good value of this parameter
for general use, and we suggest to set p = 0.54. With p = 0.54, the
scheme shows good accuracy in the low frequency response, as
seen in Fig. 1(b): the period elongation is about 1% and the ampli-
tude decay is about 2.5% when Dt/T0 = 0.2 or smaller. Also, it has
been shown that the Bathe implicit method used with CFL = 1.0
suppresses the frequencies for which Dt/T0 > 0.3, maintaining high
accuracy in the low frequencies so that surprisingly accurate solu-
tions are obtained [6,31]. The proposed explicit method, with
Table 1
Step-by-step solution using the proposed method for linear analysis with general
loading.

A. Initial calculation
1. Form stiffness matrix K, lumped mass matrix M, and damping matrix C

2. Initialize 0U, 0 _U and 0 €U.
3. Select time step Dt and p (=0.54) and calculate integration constants:

q1 ¼
1� 2p

2pð1� pÞ ; q2 ¼
1
2
� pq1; q0 ¼ �q1 � q2 þ

1
2

; a0 ¼ pDt;

a1 ¼
1
2
ðpDtÞ2; a2 ¼

a0

2
; a3 ¼ ð1� pÞDt; a4 ¼

1
2
ðð1� pÞDtÞ2;

a5 ¼ q0a3; a6 ¼
1
2
þ q1

� �
a3; a7 ¼ q2a3;

B. For each time step:
hFirst sub-step i

1. Calculate displacements and effective loads at time t + pDt:

tþpDtU ¼ tUþ a0
t _Uþ a1

t €U
tþpDt bR ¼ ð1� pÞtR þ p tþDtR

tþpDt R
_

¼ tþpDt bR � K tþpDtU� Cðt _Uþ a0
t €UÞ

2. Solve for accelerations at time t + pDt:

M tþpDt €U ¼ tþpDt R
_

3. Calculate velocities at time t + pDt:

tþpDt _U ¼ t _Uþ a2ðt €Uþ tþpDt €UÞ

hSecond sub-step i
1. Calculate displacements and effective loads at time t + Dt:

tþDtU ¼ tþpDtUþ a3
tþpDt _Uþ a4

tþpDt €U

tþDt R
_

¼ tþDtR � K tþDtU� CðtþpDt _Uþ a3
tþpDt €UÞ

2. Solve for accelerations at time t + Dt:

M tþDt €U ¼ tþDt R
_

3. Calculate velocities at time t + Dt:

tþDt _U ¼ tþpDt _Uþ a5
t €Uþ a6

tþpDt €Uþ a7
tþDt €U
p = 0.54 (and the CFL number = 1/p ffi 1.85) has almost the same
spectral radius as the Bathe method until Dt/T0 ffi 0.3 and thereafter
a smaller spectral radius until it bifurcates, see Fig. 2. Hence, with
p = 0.54 and CFL = 1.85 we might obtain a similar accuracy in solu-
tion results as when using the Bathe implicit method.

To compare the proposed scheme with another explicit method
also designed to eliminate spurious modes, we give in Fig. 3 the
spectral radii, period elongations and amplitude decays of the
Tchamwa–Wielgosz scheme, recently further proposed and stud-
ied in Ref. [37]. Here the parameter u is used to obtain different
values. Comparing the spectral radii, clearly, the data of the pro-
posed scheme indicate a more effective behaviour, and this is in
fact seen when comparing the period elongations and amplitude
decays, see Figs. 1 and 3. As desired, the errors are somewhat smal-
ler for small time steps using p = 0.54 in the proposed scheme than
when using u = 1.033 in the Tchamwa–Wielgosz scheme (consider
the use of Dt/T0 = 0.2 for the proposed scheme and Dt/T0 = 0.1 for
the Tchamwa–Wielgosz method). However, an important point is
that the curves for the amplitude decays show for the proposed
scheme the desired curvature, namely small values for small time
steps and rapidly increasing values for larger time steps, but not for
the Tchamwa–Wielgosz method.

2.2. A dispersion error analysis

Here we study the dispersion errors using the proposed explicit
method and the central difference method when solving a two-
dimensional wave propagation problem. For the spatial discretiza-
tion, we consider a uniform mesh of 4-node elements.

Consider the solution of the scalar wave propagation governed
by

@2u
@t2 � c2

0r2u ¼ 0 ð24Þ

where u is the field variable and c0 is the exact wave velocity. The
corresponding finite element equations are [1]

M€Uþ c2
0KU ¼ 0 ð25Þ

where

MðmÞ ¼ 1
4

Z
V ðmÞ

dV ðmÞ �

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

26664
37775 ð26Þ

KðmÞ ¼
Z

V ðmÞ
ðrHðmÞÞTðrHðmÞÞdV ðmÞ ð27Þ
Fig. 8. Pre-stressed membrane problem, c0 = 1, initial displacement and velocity are
zero, computational domain is shaded.



Fig. 9. Snapshots of displacements at t = 9.25, Central Difference method, CFL = 1.
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and H(m) and U are the element displacement interpolation matrix
and the nodal displacement values of the solution, respectively,
and K(m) and M(m) are the stiffness and lumped mass matrices for
element (m) with volume V(m). In the actual evaluation, we use a
unit thickness in accordance with Eq. (24).

Using Eqs. (13)–(15), we obtain a linear multistep form of the
explicit scheme in the modal basis

tþDtxþ ð�2þ Dt2x2 þ a1Dt4x4Þtxþ ð1þ b1Dt4x4Þt�Dt
x ¼ 0 ð28Þ

or for all n equations [1]

tþDtXþ ð�2Iþ Dt2Kþ a1Dt4K2ÞtXþ ðIþ b1Dt4K2Þt�Dt
X ¼ 0 ð29Þ

where

a1 ¼
1
2

p2ðp� 1Þ; b1 ¼ �
1
2

p3 þ 5
4

p2 � pþ 1
4

ð30Þ

Here, x is a modal degree of freedom and X is the vector of all modal
degrees of freedom, x is the natural frequency of a generic mode of
the finite element model and K is the corresponding diagonal ma-
trix listing all x2

i .
Now using the eigenvectors U of the problem

c2
oKU ¼MUK ð31Þ

and the definition CFL ¼ c0Dt
h , where h = Dx = Dy, Eq. (29) can be

written using the finite element degrees of freedom

tþDtUþ ð�2Iþ CFL2Kþ a1CFL4K2ÞtUþ ðIþ b1CFL4K2Þt�Dt
U ¼ 0

ð32Þ

For the central difference method [1], the governing equation is in
the modal basis

tþDtxþ ð�2þ Dt2x2Þtxþ t�Dtx ¼ 0 ð33Þ

and using the finite element degrees of freedom

tþDtUþ ð�2Iþ CFL2KÞtUþ t�DtU ¼ 0 ð34Þ

Comparing Eqs. (32) and (34), the proposed explicit scheme con-
tains additional terms proportional to (CFL2K)2 that are multiplied
by known displacement vectors (as required in an explicit scheme).



Fig. 10. Snapshots of displacements at t = 9.25, Proposed method, CFL = 1.85, p = 0.54.

G. Noh, K.J. Bathe / Computers and Structures 129 (2013) 178–193 185
In two-dimensional analyses, the general solution of Eq. (24) for
a plane wave has the form u ¼ Aeiðk0x cosðhÞþk0y sinðhÞ�x0tÞ, where x0 is
the exact frequency of the wave mode and k0 = x0/c0 is the corre-
sponding exact wave number. The numerical solution takes the
general form

t
x;yu ¼ Akeiðkx cosðhÞþky sinðhÞ�xtÞ ð35Þ

where x, k = x/c and h are, respectively, the numerical frequency,
the corresponding wave number and the propagating angle mea-
sured from the x-axis. Numerical dispersion arises because the
numerical wave speed c is different from the exact wave speed c0

and a function of the wave number. In addition, the amplitude de-
cay due to the time integration causes the decrease of the amplitude
of the calculated wave.

For the uniform mesh, the solution of the finite element system
at time ntDt and location nxh, nyh is

ntDt
nxh;nyhu ¼ Akeiðknxh cosðhÞþknyh sinðhÞ�xntDtÞ

¼ Akeikhðnx cosðhÞþny sinðhÞ�ntðCFLÞðc=c0ÞÞ ð36Þ
Substituting the above expression into Eqs. (32) and (34), the equa-
tion corresponding to the middle node of a patch of elements (16
finite elements for Eq. (32) and 4 finite elements for Eq. (34)) gives
a relation between CFL = c0Dt/h, c/c0, the wave number k, and the
element size h for the proposed method and the central difference
method.

Note that the corresponding KtU term for the middle node at
ðx; yÞ is

1
3
½8 t

x;yu� ð t
x�h;yu þ t

x;y�hu þ t
x�h;y�huÞ� ð37Þ

and the corresponding term from K2tU is

1
9

72 t
x;yu� 12 t

x�h;yu þ t
x;y�hu

� �
� 14 t

x�h;y�hu þ 3 t
x�2h;yu þ t

x;y�2hu
� �h

þ 2 t
x�2h;y�hu þ t

x�h;y�2hu
� �

þ t
x�2h;y�2hu

i
ð38Þ

To analyze the effect of the CFL number on the numerical disper-
sion, we first consider the case of zero propagating angle, h = 0.
Figs. 4 and 5 show that as the CFL number increases, the dispersion



Fig. 11. Displacement variations along the various propagating angles, at time
t = 9.25, 88 � 88 element mesh.

Fig. 12. Velocity variations along the various propagating angles, at time t = 9.25,
88 � 88 element mesh.

Fig. 13. Displacement variations along the various propagating angles, at time
t = 9.25, 132 � 132 element mesh.
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error gets smaller for both the proposed method and the central dif-
ference method. As well known, for CFL = 1, the central difference
method provides no dispersion error.

For the proposed method, when using CFL = 1.85, the modes up
to kDx ffi 1 are accurately integrated with a small dispersion error
(the maximum error is about 2%) and, what is important, the high-
er frequencies are cut out of the solution.

However, in actual practical analyses, waves will travel in all
directions across elements, and it is important to have a small dis-
persion error for all propagating angles. Figs. 6 and 7 show the dis-
persion error curves for various propagating angles of the proposed
method using CFL = 1.85 and the central difference method with
CFL = 1. The dispersion errors in both methods increase as h
increases.

The important point is that the characteristics of the proposed
method also hold for the multidimensional case. Due to cutting
out higher frequencies, the overall dispersion error in the proposed
scheme is quite small, while the errors in the central difference
method can be large. Hence, solutions using the central difference
method will generally show a significant dispersion error in 2D and
3D analyses.

It is interesting to note that the effect of increasing the propaga-
tion angle on the dispersion error curves in Figs. 6 and 7 is similar
to those of decreasing the CFL number in Figs. 4 and 5. Hence, lar-
ger angles of propagation result in errors like using smaller CFL
numbers. This is opposite to what is seen using an implicit method
with the consistent mass matrix. The difference can be explained
by the observation that we have period elongations in implicit
methods and period shortenings in explicit methods. An important
point is that, in the use of explicit time integration methods with
the lumped mass matrix, larger angles of propagation have the
same effect as using a smaller time step size for the time integra-
tion method. Therefore, if we set the time step size based on
h = 0, then we satisfy the stability condition for all angles of wave
propagations.

2.3. Selection of load magnitude at sub-step

Here, we study how the proposed time integration scheme
interprets external forces defined at discrete time points. A typical
modal equation of Eq. (25) is

€xþx2x ¼ r ð39Þ
Considering the time domain from t1 to t2 we obtainZ t2

t1

ðr �x2xÞdt ¼
Z t2

t1

€xdt ð40Þ

orZ t2

t1

ðr �x2xÞdt ¼
Z t2

t1

d _x ð41Þ

In the first sub-step, from t to t + pDt, we useZ tþpDt

t
ðr �x2xÞdt ¼ 1

2
pDtðt€xþ tþpDt€xÞ ð42Þ

where we applied Eqs. (4) and (5). Note that here the integral sign
indicates the numerically approximated integration by the time
integration scheme. Using the equilibrium equation, Eq. (39), at
time points t and t + pDt, and the fact that Eq. (40) holds for a gen-
eral loading and trajectory, we obtain that the approximation used
isZ tþpDt

t
rdt ¼ 1

2
pDtðtr þ tþpDt r̂Þ ð43Þ



Fig. 14. Velocity variations along the various propagating angles, at time t = 9.25,
132 � 132 element mesh.

Fig. 15. Snapshots of displacements at t = 9.225, Tc
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where tþpDt r̂ is the modal load at time t + pDt corresponding to the
load vector tþpDt bR in Eq. (2).

Similarly, we obtain for the second sub-stepZ tþDt

tþpDt
rdt ¼ ð1� pÞDt q0

tr þ q1 þ
1
2

� �
tþpDt r̂ þ q2

tþDtr
� �

ð44Þ

Hence, from Eqs. (43) and (44) and using the relations in Eqs. (12)
and (21), the proposed scheme usesZ tþDt

t
rdt ¼ Dt

2
�p2 þ 3p� 1

p
tr þ 1� p

p
tþpDt r̂ þ ptþDtr

� �
ð45Þ

In general, external loads are defined and sampled at discrete time
points only, and these values are used for the external forces at the
beginning and the end of each time step in direct time integration
methods. If external loads are given at times t and t + Dt as tr and
t + Dtr, then the best value in the sub-step to be used is

tþpDt r̂ ¼ ð1� pÞtr þ p tþDtr ð46Þ

which corresponds to the ‘‘mean’’ value and integrates the load by
the trapezoidal rule over the time step. Of course, for smooth loads
hamwa–Wielgosz scheme, u = 1.007, CFL = 0.9.



Fig. 16. Snapshots of displacements at t = 9.225, Tchamwa–Wielgosz scheme, u = 1.033, CFL = 0.9.

Fig. 17. Displacement variations along various propagating angles, at time
t = 9.225, Tchamwa–Wielgosz scheme, 132 � 132 element mesh.
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also the actual value of the load at time t + pDt can be used. Note
that a similar analysis for the Bathe implicit method shows that
for rapidly varying loads also the ‘‘mean’’ value of the loads at times
t and t + Dt is best used.

The resulting procedure of the proposed explicit method for
linear systems is summarized in Table 1. Comparing the num-
ber of operations needed per step when damping is neglected,
we note that in using the proposed scheme, as for the central
difference method, by far most computational expense is in
evaluating the elastic nodal forces corresponding to given
displacements. Hence, using the CFL number = 1.85 for the
proposed scheme, the computational effort is near that of
using the central difference method and the Tchamwa–Wielgosz
scheme.

3. Wave propagation solutions

In this section, we present the solutions of some wave propaga-
tion problems using the proposed scheme. We first solve a 2D



Fig. 18. A Lamb problem. VP = 3200, VS = 1848, VRayleigh = 1671; two receivers are
placed at x = 640 and x = 1280; using symmetry only the right side of the domain is
modeled.
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transient scalar wave propagation and then a Lamb problem with
two types of external loadings.
Fig. 19. Time history of displacement variations in x-direction and y-dir
3.1. 2D scalar wave propagation

We consider a pre-stressed membrane, see Fig. 8, for which the
governing equation is

@2u
@x2 þ

@2u
@y2 þ Fð0;0; tÞ ¼ 1

c2
0

@2u
@t2 ð47Þ

where u is the transverse displacement and c0 is the wave velocity,
here set to 1.0. The load is given as

Fð0;0; tÞ ¼ 4ð1� ð2t � 1Þ2ÞHð1� tÞ; t > 0 ð48Þ

where H is the unit step function. Due to symmetry, only the do-
main [0,11] � [0,11] is discretized and since the wave does not
propagate to the boundary for the solution time considered, no
absorbing boundary conditions are employed.

The proposed explicit method and the central difference meth-
od are used with the CFL numbers 1.85 and 1, respectively. For the
CFL numbers, the length of the sides of the elements is used as the
fundamental length; hence, the stability criteria are satisfied in
each case.
ection at the two receivers on the surface; Ricker wavelet line load.



Fig. 20. Snapshots of von Mises stress at t = 0.9828 s; Ricker wavelet line load. (a) Central difference method. (b) Proposed explicit method.

190 G. Noh, K.J. Bathe / Computers and Structures 129 (2013) 178–193
Figs. 9 and 10 show snapshots of the solution variable u, calcu-
lated using the central difference method and the proposed
scheme at t = 9.25 for various meshes. The results show that using
a coarse mesh both methods give spurious oscillations. However,
the proposed method provides a reasonably accurate solution
using the 88 � 88 element mesh while the solution accuracy of
the central difference method is still not good when using the
176 � 176 element mesh.

In Figs. 11–14, the numerical results at angles 0 and p/4 at
time t = 9.25 using the 88 � 88 and 132 � 132 meshes are com-
pared with the corresponding analytical solution. The central dif-
ference method gives noticeable spurious oscillations. The
solution for u using the proposed method is reasonably accurate
using either mesh, but considering the predicted velocity a signif-
icant solution error is seen in the peak value of _u when using the
88 � 88 mesh. Also, larger solution errors for the response at the
angle p/4 are observed, and these are well explained given Figs. 6
and 7.

To compare the predictive capabilities of the proposed method
with those of the Tchamwa–Wielgosz scheme, we give in Figs. 15
and 16 snapshots of solutions using two values of u and the CFL
number = 0.9 as proposed in Ref. [37]. When u = 1.007 is em-
ployed, spurious oscillations are still seen when using the mesh
of 132 � 132 elements (and even still for the mesh of 176 � 176
elements). These oscillations are not present when u = 1.033, but
then the damping is rather large and the peak displacement is
underestimated, see Fig. 17. Hence, it is crucial to use an appropri-
ate value for u in analyses, which may involve some numerical
experimentation.

We observe that while the proposed method significantly im-
proves the solution, the numerical solution of this example prob-
lem indicates that a high accuracy in the prediction of the
velocity requires Dx/(k/2) 6 0.2. In fact, the proposed explicit
method behaves quite similar to the Bathe implicit method, while
the central difference method behaves similar to the trapezoidal
rule [6].

3.2. Wave propagations in a semi-infinite elastic domain

We now consider a Lamb problem, in which waves are propa-
gating in a semi-infinite elastic domain in plane strain conditions
as described in Fig. 18. Here, the P-wave velocity = 3200 m/s, S-
wave velocity = 1848 m/s, and the Rayleigh wave veloc-
ity = 1671 m/s. The time duration for computing the waves is
0.999 s, so that the P-wave does not reach the outer boundaries;
hence no absorbing boundary conditions are employed.

For the time step size, we use the CFL numbers 1.85 and 1 for
the proposed explicit method and the central difference method,
respectively. For the CFL numbers, the length of the sides of the
elements is used as the fundamental length, and the fastest wave,
the P-wave, is used.

We consider first a Ricker wavelet line force defined as



Fig. 21. Time history of displacement variations in x-direction and y-direction at the two receivers on the surface; line load of step functions.
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Fð0;0; tÞ ¼ �106 � ð1� 2p2 f̂ 2ðt � t0Þ2Þ expð�p2 f̂ 2ðt � t0Þ2Þ; t > 0

ð49Þ

with the frequency f̂ ¼ 12:5 Hz and t0 = 0.1 s. Using symmetry, only
the right side of the domain in Fig. 18 is meshed using 640 � 640
4-node elements of side lengths Dx = Dy = 5 m. The calculated
displacements are measured at x = 640 m and x = 1280 m from the
source and the results are shown in Fig. 19. The analytical solution
and the numerical solutions using, both, the proposed method and
the central difference method are in good agreement.

The applied external load can be well approximated with only a
few harmonic functions; therefore, a limited number of wave
modes are excited. Hence, if a fine mesh is employed so that all ex-
cited wave modes are within Dx/(k/2) 6 0.2, as done here, both, the
proposed explicit method and the central difference method pro-
vide very accurate solutions. The calculated von Mises stress at
time t = 0.9828 using both methods is shown in Fig. 20.

We next consider the line force defined as

Fð0;0; tÞ ¼ 106 � ½Hð0:15� tÞ � 3Hð0:1� tÞ þ 3Hð0:05� tÞ�; t > 0

ð50Þ
Since the applied line load consists of three step functions, many
wave modes are excited which renders the problem more difficult
to solve. The computational domain is now meshed with
1600 � 1600 4-node elements of side lengths Dx = Dy = 2 m.
Fig. 21 shows the displacements at the two receivers. While the
solutions using both time integration methods show spurious oscil-
lations, the predicted response using the proposed method is signif-
icantly more accurate.

We can see the difference in the solution accuracy more clearly
when considering the predicted stress wave fields, as shown in
Fig. 22. The predicted stress waves using the proposed method
are quite sharp but the solution using the central difference meth-
od shows in various areas undesirable spurious oscillations.

4. Concluding remarks

We proposed a new explicit time integration method for the
analysis of wave propagation problems. The scheme has been for-
mulated using a sub-step within a time step to achieve desired
numerical damping to suppress undesirable spurious oscillations
of high frequencies but, in its final form, does not use an adjustable



Fig. 22. Snapshots of von Mises stress at t = 0.9828 s; line load of step functions. (a) Central difference method. (b) Proposed explicit method.
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parameter. The load at the sub-step is chosen for good accuracy.
With the optimal CFL number = 1/p ffi 1.85 when p = 0.54, the
method uses about 10% more solution effort as the standard cen-
tral difference scheme but significantly improves the solution
accuracy and a non-diagonal damping matrix can directly be
included.

We discussed the stability and accuracy of the proposed scheme
and presented the performance in the solution of some wave prop-
agation problems. As in the Bathe implicit method, we observed
that the wave modes that cannot be spatially represented are cut
out of the calculated response [6]. Of course, the scheme can also
be used for structural dynamics solutions although then frequently
an implicit time integration method is more effective.

As mentioned in Section 1, there are a number of other explicit
schemes available that also provide numerical damping in the
solution. While we have given some comparisons regarding the
properties of the proposed scheme and the Tchamwa–Wielgosz
method, a further comparison and evaluation including also other
techniques by, for example, solving a suite of benchmark problems
would be valuable.

To solve a wave propagation problem, a good spatial discretiza-
tion is also important. In this paper we only considered the linear
element in uniform meshes to focus on the basic characteristics of
the time integration scheme. Theoretical and numerical studies of
the behaviour of the proposed method when using higher-order
element discretizations, distorted meshes and enriched finite ele-
ment schemes, like given in Ref. [15], would valuable.

Appendix A. The integration operator A and load operators La

and Lb

Using the relations in Eqs. (12) and (21), we obtain the expres-
sions for the integration operator A and load operators La and Lb:

A ¼
a11 a12 a13

a21 a22 a23

a31 a32 a33

264
375 ð51Þ

La ¼

1
2 ðp� 1ÞX2

0 þ nð�2þ pÞX0
Dt
2p ðð1þX0ðð1=2ÞX0 þ nÞp3 � 2X0ðð1=4ÞX0 þ nÞp2 � pÞÞ

� Dt2

2 ðp� 1Þ

2664
3775
ð52Þ

Lb ¼
1

pDt
2

0

264
375 ð53Þ

where
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a11 ¼ �
pX0

2
ðð�ð1=2Þpþ ð1=2Þp2ÞX3

0 þ nðp2 � 2ÞX2
0

þ ð1þ ð�8þ 4pÞn2ÞX0 þ 2nÞ ð54Þ

a12 ¼ �
X0

Dt
ð�ð1=2Þpþ ð1=2Þp2ÞX3

0 þ nð�1þ p2 � pÞX2
0

�
þð1þ ð�4þ 2pÞn2ÞX0 þ 2n

�
ð55Þ

a13 ¼ �
X2

0

Dt2 1þ ðð1=2Þp� ð1=2ÞÞX2
0 þ nð�2þ pÞX0

� �
ð56Þ

a21 ¼ �
Dt
8p

p5X4
0 þ 2p5nX3

0 � p4X4
0 þ 8p4n2X2

0 � 4nX3
0p3

þ4p3nX0 � 16p3n2X2
0 � 8nX0p2 þ 4p2 þ 2X2

0p2

þ8nX0p� 12pþ 4

0B@
1CA ð57Þ
a22 ¼
1

4p
ð�p4 þ p3ÞX4

0 � 2np2ð�1þ p2 � pÞX3
0

þð8n2p2 � 4p3n2 � 2pÞX2
0 � 4nð�pþ p2 þ 1ÞX0 þ 4p

 !
ð58Þ

a23 ¼ �
X2

0

2pDt
1þX0ðð1=2ÞX0 þ nÞp3 þ 1� ð1=2ÞX2

0 � 2nX0

� �
p2 � p

� �
ð59Þ

a31 ¼
1
4

2þ ðp2 � pÞX2
0 þ 4nðp� 1ÞX0

� �
Dt2p ð60Þ

a32 ¼
Dt
2

2þ ðp2 � pÞX2
0 þ 2nðp� 1ÞX0

� �
ð61Þ

a33 ¼ 1þ 1
2
ðp� 1ÞX2

0 ð62Þ
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