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The spectral elements of the Lobatto family provide desirable characteristics of convergence and accuracy
using a diagonal mass matrix in dynamic analysis. These characteristics might be expected to render the
spectral element method with the use of an explicit time integration scheme effective for the transient
analysis of wave propagations. In this paper we study the use of the central difference method and the
recently proposed Noh-Bathe method for explicit time integration in the use of the spectral finite element
method. The Noh-Bathe scheme is a second-order accurate procedure with small solution errors in the
required frequency range while suppressing spurious high frequencies. We calculate appropriate CFL
numbers for the time integrations and give an analysis of the dispersion errors for different orders of
spectral elements. Finally, we demonstrate the capabilities of the Noh-Bathe scheme compared to the
central difference method through the solution of several numerical examples of wave propagations.
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1. Introduction

The spectral element method, also known as the spectral finite
element method, is based on two numerical techniques, namely
spectral methods and finite element methods, and offers some of
the flexibility of the finite element method with the accuracy of
spectral methods. A popular family of spectral elements is based
on using Lagrange polynomials expressed in terms of Lobatto col-
location points and Gauss-Lobatto-Legendre numerical integration.
This approach results into a diagonal mass matrix for dynamic
analysis [1,2].

In contrast to the finite element method, the spectral element
method uses unequally spaced nodes whose locations are the zeros
of the interpolation polynomials. This feature can diminish large
oscillations of the approximating polynomials close to edges. The
exponential form of convergence using the diagonal mass matrix
is a reason why the method is extensively used in the analyses of
wave propagations in computational seismology [3–10]. As in the
traditional finite element method, the discretized equations of
motion are solved using a direct time integration method. Usually,
the accuracy of a time integration scheme when used with a spatial
discretization is measured by the numerical dispersion and dissi-
pation of the solution technique, see, for example, considering
finite element analyses Refs. [11–17] and considering the spectral
element method Refs. [18–23]. However, in finite element wave
propagation analyses usually low-order elements are used [12]
and it is important to assess in how far spectral elements, which
are of higher-order, are effective. Then an appropriate Courant,
Friedrichs, Lewy (CFL) number needs to be used [12], but there
seems to be no simple relationship to establish an effective CFL
for higher-order spectral elements.

There are two approaches for direct time integration, that is,
explicit and implicit schemes are used. A time integration method
is implicit when it requires the factorization of an effective stiff-
ness (or mass) matrix and is otherwise explicit. Both approaches
can be used for transient wave propagation solutions. An uncondi-
tionally stable implicit method uses less time steps but requires a
much larger computational effort per step. This solution effort is
particularly large when the bandwidth of the effective stiffness
matrix is large [12,24]. An explicit method uses a much larger
number of steps, but since no effective stiffness matrix is
employed, the computational effort is much smaller per time step.
Depending on the problem solved, an explicit or implicit time inte-
gration may be computationally more effective.

Using the spectral element method, explicit time integration
methods are commonly employed in the analysis of wave propaga-
tions [3,9,10,25–28]. This is a natural approach to use, since the
mass matrix used is diagonal and the bandwidth of the effective
stiffness matrix would be large, in fact so large that frequently a
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solution using an implicit time integration scheme is computation-
ally out of reach. In contrast, as in traditional finite element solu-
tions, in the explicit time integration, element-by-element
assemblage of the solution vectors and parallel computing are
employed [12]. However, since explicit methods are not uncondi-
tionally stable, the time step must be chosen to satisfy the applica-
ble stability limit, which depends on the integration scheme, the
element type, the element ‘‘size”, the mesh and the physical
aspects of the wave propagation problem.

In order to reduce the solution errors, higher-order spatial dis-
cretizations appear to be attractive, as found using enriched over-
lapping finite elements [17,29]. With the dispersion error due to
the spatial discretization reduced, the errors induced by the time
integration should also be small and need to be evaluated [29].
An effective time integration scheme imposes numerical dissipa-
tion to suppress high frequency spurious modes while giving good
accuracy in the integration of the modes of the finite element
model that accurately represent the ‘‘exact” modes of the contin-
uum [12,15,30].

An explicit method widely used for wave propagation solutions,
also in seismology, is the central difference method
[1,3,6,9,10,26,28,31]. It has the largest time step stability limit
compared to other second-order accurate explicit methods. How-
ever, the central difference method has two main shortcomings:
firstly, being a non-dissipative technique, it does not provide
numerical damping for the spurious modes to be suppressed and,
secondly, the method requires the factorization of a banded matrix
if a non-diagonal damping matrix is used, like obtained with Ray-
leigh damping [12].

There are a number of dissipative explicit methods, in particular
those proposed by Newmark [32], Chung and Lee [33], Hulbert and
Chung [34], Zhai [35], Tchamwa and Wielgosz [36] and Noh and
Bathe [15]. The Newmark explicit and the Zhai explicit methods
are categorized as first-order accurate methods with the desired
high frequency dissipation but these techniques also decrease the
solution accuracy in the low frequency range. The other above-
mentioned methods are dissipative in the high-frequency range
and second-order accurate, but, except for the Noh-Bathe scheme,
provide less accurate solutions than the first order accurate
Tchamwa-Wielgosz method. The Noh-Bathe scheme provides
effective numerical damping for the spurious modes to be sup-
pressed and also does not require, for effectiveness, the use of a
non-banded damping matrix, hence can directly be used with Ray-
leigh damping [15].

In addition to using an effective time integration, the use of an
effective spatial discretization is necessary. Higher-order finite ele-
ments with the p-method have been used for many years in struc-
tural analysis but have finally found limited applications [37,38],
the traditional low-order elements have much prevailed in indus-
trial applications. However, recently the overlapping finite ele-
ments with enrichments have shown much promise, albeit in
implicit time integration [17,29]. These are in essence, elements
of higher-order with element interpolations and degrees of free-
dom designed to solve wave propagation problems. Given these
results obtained with higher-order elements, it is valuable to study
the use of spectral elements in transient wave propagations with
explicit time integration.

Our objective in this paper is to study and use the Noh-Bathe
explicit scheme with the spectral element method for the analysis
of wave propagations, to identify the effectiveness in comparison
to the use of the central difference scheme, and to evaluate
whether the higher-order spectral elements can be efficiently used
in solving wave propagation problems.

For this purpose, we perform an analysis of the spatial and the
temporal dispersion errors for different orders of spectral elements
2

and establish an appropriate CFL number for each element for use
of the central difference and Noh-Bathe schemes. To illustrate and
compare the performance of the Noh-Bathe and central difference
schemes when using the spectral element method, for different
element orders, CFL numbers and mesh densities, we give the solu-
tions of some numerical examples of wave propagations.

2. Preliminaries on the spectral element method

The spectral element method is a numerical method with char-
acteristics of spectral methods and finite element methods. The
method was developed for transient analyses to overcome numer-
ical errors due to period elongation and amplitude decay, known as
numerical dispersion and dissipation. We consider here the
Lobatto family of the spectral element method, in which the
Lobatto collocation points are used to construct the interpolation
functions and Gauss-Lobatto-Legendre quadrature is utilized to
compute the element matrices. Hence the mass matrix is diagonal
[28,39,40].

For a displacement field u ðx; y; tÞ in two-dimensional domains,
the equations of motion for elastic wave propagation are

q€u ¼ r � sþ f ð1Þ
in which q, s and f are the mass density, stress tensor and body
force vector, respectively. The governing equation is subjected to
two types of boundary conditions, the Dirichlet boundary condition,

u ¼ uSD ð2Þ
and the Neumann boundary condition

s � n ¼ fSN ð3Þ
where n denotes the unit normal vector on the boundary SN. Using
the principle of virtual work, we obtain [12]Z
V

�eTs dVþ
Z
V
q �uT€udV ¼

Z
V

�uTf dVþ
Z
SN

�uT
SN
fSNdS ð4Þ

in which �u and e
�
indicate the virtual displacement and the corre-

sponding virtual strain, respectively. Also, fSN are the imposed sur-
face tractions.

Discretizing Eq. (4), we arrive at the following matrix form of
the governing equations

M€Uþ C _Uþ KU ¼ R ð5Þ
where M, C and K are the mass, damping and stiffness matrices,
respectively. Also, €U, _U, U and R are the acceleration, velocity, dis-
placement and force vectors varying with time. The constitutive
law, strain–displacement and interpolation relations are defined as

s ¼ Ce ; e ¼ BU; u ¼ HU ð6Þ
For a two-dimensional spectral element of order n, we have the

following interpolation function matrix with ‘ nodes

H ¼
h1 0 h2 0 � � � h‘�1 0 h‘ 0

0 h1 0 h2 � � � 0 h‘�1 0 h‘

" #
2�2‘

ð7Þ

in which ‘ ¼ ðnþ 1Þðnþ 1Þ, and Lobatto collocation points are used
for the Lagrange polynomials in H.

In the isoparametric formulation, the Lobatto points are the
roots of the following equation for each dimension

ð1� r2ÞP0
n�1ðrÞ ¼ 0 ð8Þ

such that P0
n�1ðrÞ represents the first derivative of the Legendre

polynomial of degree n-1 usually obtained from the Rodrigues rela-
tion [2,28]
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P0
kðrÞ ¼

1

2kþ1ðkþ 1Þ!
dkþ2

drkþ2 ðr2 � 1Þkþ1 ð9Þ

As an example, the Lagrange interpolation functions of a 3rd
order quadrilateral spectral element with 16 nodes (see Fig. 1)
are [39]:

h1 ¼ 1
64 ð5r2 � 1Þð5s2 � 1Þðr � 1Þðs� 1Þ;

h2 ¼ �
ffiffi
5

p
64 ð5r �

ffiffiffi
5

p
Þð5s2 � 1Þðr2 � 1Þðs� 1Þ;

h3 ¼
ffiffi
5

p
64 ð5r þ

ffiffiffi
5

p
Þð5s2 � 1Þðr2 � 1Þðs� 1Þ;

h4 ¼ � 1
64 ð5r2 � 1Þð5s2 � 1Þðr þ 1Þðs� 1Þ;

h5 ¼ �
ffiffi
5

p
64 ð5r2 � 1Þð5s�

ffiffiffi
5

p
Þðr � 1Þðs2 � 1Þ;

h6 ¼ 5
64 ð5r �

ffiffiffi
5

p
Þð5s�

ffiffiffi
5

p
Þðr2 � 1Þðs2 � 1Þ;

h7 ¼ � 5
64 ð5r þ

ffiffiffi
5

p
Þð5s�

ffiffiffi
5

p
Þðr2 � 1Þðs2 � 1Þ;

h8 ¼
ffiffi
5

p
64 ð5r2 � 1Þð5s� ffiffiffi

5
p Þðr þ 1Þðs2 � 1Þ;

h9 ¼
ffiffi
5

p
64 ð5r2 � 1Þð5sþ

ffiffiffi
5

p
Þðr � 1Þðs2 � 1Þ;

h10 ¼ � 5
64 ð5r �

ffiffiffi
5

p
Þð5sþ

ffiffiffi
5

p
Þðr2 � 1Þðs2 � 1Þ;

h11 ¼ 5
64 ð5r þ

ffiffiffi
5

p
Þð5sþ

ffiffiffi
5

p
Þðr2 � 1Þðs2 � 1Þ;

h12 ¼ �
ffiffi
5

p
64 ð5r2 � 1Þð5sþ

ffiffiffi
5

p
Þðr þ 1Þðs2 � 1Þ;

h13 ¼ � 1
64 ð5r2 � 1Þð5s2 � 1Þðr � 1Þðsþ 1Þ;

h14 ¼
ffiffi
5

p
64 ð5r �

ffiffiffi
5

p
Þð5s2 � 1Þðr2 � 1Þðsþ 1Þ;

h15 ¼ �
ffiffi
5

p
64 ð5r þ

ffiffiffi
5

p
Þð5s2 � 1Þðr2 � 1Þðsþ 1Þ;

h16 ¼ 1
64 ð5r2 � 1Þð5s2 � 1Þðr þ 1Þðsþ 1Þ:

ð10Þ

We should note the uneven spacing of the nodal points of the
element, as depicted in Fig. 1.

3. Explicit time integration methods

In this section, we briefly state the governing solution steps
used in the central difference and Noh-Bathe explicit schemes.

3.1. Central difference scheme

The fundamental solution steps of the central difference
method (CDM) are as follows [12]:

Step 1: Form mass matrix M, damping matrix C, and stiffness
matrix K (but see comment below regarding K)

Step 2: Initialize displacement vector 0U, velocity vector 0 _U, and
acceleration vector 0 €U.

Step 3: Select time step size Dt 6 Dtcr , and calculate integration
constants as given by:
Fig. 1. A 3rd order spectral element.
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a0 ¼ 1
Dt2

; a1 ¼ 1
2Dt

; a2 ¼ 2a0; a3 ¼ 1
a2

ð11Þ

Step 4: Calculate �DtU ¼ 0 U� Dt 0 _Uþ a 0
3
€U.

Step 5: Form effective mass matrix as M̂ ¼ a0Mþ a1C.
Step 6: Calculate effective load vector at time t, as follows:

tR̂ ¼ tR � ðK� a2MÞ tU� ða0M� a1CÞ t�DtU ð12Þ
Step 7: Solve the following equation for displacement vector at

time t þ Dt:

M̂ tþDtU ¼ tR̂ ð13Þ
Step 8: If necessary, calculate acceleration and velocity vectors

at time t as follows:

t €U ¼ a0ð t�DtU� 2 tUþ tþDt UÞ
t _U ¼ a1ð� t�DtUþ tþDt UÞ

ð14Þ

Step 9: Continue with Step 6, but once all time steps have been
calculated, the process is terminated.

Since the K-matrix is only on the right-hand side in Eq. (13),
assuming no stiffness-proportional damping, the product K tU
can in practice be calculated element-by-element, then the com-
plete stiffness matrix is not assembled [12]. But we note that in
Eq. (13) the damping matrix is on the left-hand side of the
equation, hence if a banded matrix is used (like in Rayleigh damp-
ing, C ¼ aMþ bK where a; b are constants) each solution step is
very expensive, like in an implicit time integration, and too
expensive for an explicit integration, in particular for higher-
order elements which provide a large bandwidth in the governing
equations.

3.2. Noh-Bathe scheme

The fundamental solution steps of the Noh-Bathe method
(NBM) are as follows [15]:

Step 1: Form mass matrix M, damping matrix C, and stiffness
matrix K (but see comment below regarding K)

Step 2: Initialize displacement vector 0U, velocity vector 0 _U,
and acceleration vector 0 €U.

Step 3: Select time step size Dt 6 Dtcr and p (p = 0.54 is recom-
mended), and calculate integration constants as given by:

q1 ¼ 1�2p
2pð1�pÞ ; q2 ¼ 1

2 � pq1; q0 ¼ �q1 � q2 þ 1
2 ; a0 ¼ pDt;

a1 ¼ 1
2 ðpDtÞ2; a2 ¼ a0

2 ; a3 ¼ ð1� pÞDt; a4 ¼ 1
2 ðð1� pÞDtÞ2;

a5 ¼ q0a3; a6 ¼ ð12 þ q1Þa3; a7 ¼ q2a3

ð15Þ
Step 4-1: Calculate displacement and effective load vectors at

time t þ pDt, as follows:

tþpDtU ¼ tUþ a t
0
_Uþ a t

1
€U

tþpDtR
�
¼ ð1� pÞ tR þ p tþDtR

tþpDtR̂ ¼ tþpDtR
�
�K tþpDtU� Cð t _Uþ a t

0
€UÞ

ð16Þ

Step 4-2: Solve the following equation for acceleration vector at
time t þ pDt:

M tþpDt €U ¼ tþpDtR̂ ð17Þ
Step 4-3: Calculate velocity vector at time t þ pDt as follows:

tþpDt _U ¼ t _Uþ a2ð t €Uþ tþpDt €UÞ ð18Þ
Step 5-1: Calculate displacement and effective load vectors at

time t þ Dt, as follows:



Fig. 2. A mesh (patch) of four 3rd order spectral elements used for dispersion
analysis.
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tþDtU ¼ tþpDtUþ a tþpDt
3

_Uþ a tþpDt
4

€U
tþDtR̂ ¼ tþDtR � K tþDtU� CðtþpDt _Uþ a tþpDt

3
€UÞ

ð19Þ

Step 5-2: Solve the following equation for acceleration vector at
time t þ Dt:

M tþDt €U ¼ tþDtR̂ ð20Þ
Step 5-3: Calculate velocity vector at time t þ Dt as follows:

tþDt _U ¼ tþpDt _Uþ a t
5
€Uþ a tþpDt

6
€Uþ a tþDt

7
€U ð21Þ

Step 6: Continue with Step 4-1, but once all time steps have
been calculated, the process is terminated.

We note that again there is no need to assemble a complete
stiffness matrix K, in addition, in Eq. (17) the damping matrix does
not appear on the left-hand side of the equation, hence a banded
damping matrix (as for Rayleigh damping) can directly be used
effectively in the time integration.

4. Dispersion analysis

In this section, we analyze the dispersion errors arising from the
spatial discretization. Spectral elements with orders ranging from
3 to 8 seem very popular for the solution of transient wave propa-
gations [27]. Therefore, we focus on these orders of elements for
the solution of

@2u
@t2

� c2r2u ¼ 0 ð22Þ

subject to appropriate boundary and initial conditions. Here u is the
field variable (we refer to it as a displacement below) and c is the
exact wave velocity. The spectral element discretization yields, as
in traditional finite element analysis,

M€Uþ KU ¼ 0 ð23Þ
where

MðmÞ ¼ RVðmÞ HðmÞTHðmÞ dVðmÞ

KðmÞ ¼ c2
R
VðmÞ ðrHðmÞÞTðrHðmÞ ÞdVðmÞ

ð24Þ

and K(m) and M(m) are the stiffness and mass matrices for the m’th
element with volume V(m), respectively. In these equations, H is
the element displacement interpolation matrix. In the finite ele-
ment or spectral element solution of Eq. (22) we have only one
degree of freedom (DOF) per node. We should note that although
we give in Eq. (24) the equations for the consistent mass matrix
[12], when used for the Lobatto family of spectral elements with
Gauss-Lobatto-Legendre numerical integration, the mass matrix is
automatically diagonal.

4.1. Spatial dispersion of spectral elements

In two-dimensional analysis, the general solution of Eq. (22)
takes the form

t
x; y u ¼ AkeiðkxcosðhÞþkysinðhÞ�xtÞ ð25Þ
where x and y are the coordinate values of a point in the (x,y) sys-
tem placed at the mid-node of the patch, see Fig. 2, h is the direction
of wave travel, k is the wave number, Ak is a constant and x is the
frequency (rad/s).

For finding the dispersion relationship, a structured homoge-
neous mesh of equal-size elements is considered. We show in
Fig. 2 four typical elements constituting a patch. The displacement
of the central node is obtained in terms of the displacements at the
nodes around it. For the uniform mesh shown in Fig. 2, we define
x ¼ nxh; y ¼ nyh, where h is the ‘‘element length” and nx;ny are
4

numbers corresponding to the nodal points. Hence we have for
the nodal points

t
nxh; nyhu ¼ Akhe

iðkhnxhcosðhÞþkhnyhsinðhÞ�xhtÞ ð26Þ
in which kh is the computed wave number, Akh is a constant and xh

is the computed frequency.
For our dispersion analysis we define the following functions

based on Eq. (26)

f 1ðnx; nyÞ ¼ 2cos½khhðnxcoshþ nysinhÞ�
f 2ðnx; nyÞ ¼ 2cos½khhðnxcosh� nysinhÞ�
f 3ðnyÞ ¼ 2cos½khhðnysinhÞ�
f 4ðnxÞ ¼ 2cos½khhðnxcoshÞ�

ð27Þ

where, for example, Akhe
�ixhtf 1ð0:5; 1Þ denotes 0:5h;huþ �0:5h; �h u.

4.1.1. 1st order traditional finite element
In this subsection, we consider first the traditional four-node

finite element. The spatial dispersion analysis of Eq. (22) gives
for the two-dimensional quadrilateral finite element for the M€U
term of the central node at (x = 0, y = 0) using Eq. (24) and a consis-
tent mass matrix,

h2

36
½16 0;0€uþ 4ð�h;0€uþ h;0 €uþ 0;�h €uþ 0;h €uÞ þ ð�h;�h

€uþ �h;h €u

þ h;h €uþ h;�h €uÞ� ð28Þ
and for the KU term

c2
6 ½16 0;0u� 2ðh;huþ �h;h uþ h;�h uþ �h;�h uÞ � 2ð�h;0uþ h;0 uÞ

�2ð0;�huþ 0;h uÞ�
ð29Þ

Using the relations in Eqs. (26)–(29) gives for a typical row in
Eq. (23) corresponding to the center node of a patch (similar to that
of Fig. 2)

� h2x2
h
e�ixhtAkh
36 ½16þ f 1ð1; 1Þ þ f 2ð1; 1Þ þ 4ðf 3ð1Þ þ f 4ð1ÞÞ�

c2e�ixhtAkh
6 ½16� 2ðf 1ð1; 1Þ þ f 2ð1; 1ÞÞ � 2ðf 3ð1Þ þ f 4ð1ÞÞ� ¼ 0

ð30Þ
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In this analysis, a specific time integration scheme does not
enter the above equation since we assume that a wave of the form
in Eq. (26) is travelling through the mesh. Hence, the above rela-
tionship is valid for any time integration scheme used. However,
we know that there are dispersion errors due to the spatial dis-
cretization and the time integration [17,29], hence we consider
here only the errors due to the spatial discretization. Using
ch ¼ xh

kh
we obtain

ch
c
¼ 1

khh
96� 12 f 1ð1; 1Þ þ f 2ð1; 1Þð Þ � 12 f 3ð1Þ þ f 4ð1Þð Þ

16þ f 1ð1; 1Þ þ f 2ð1; 1Þ þ 4f 3ð1Þ þ 4f 4ð1Þ
� �1=2

ð31Þ
where ch denotes the numerical (or computed) wave velocity for the
spatial discretization used. Discrepancies between the exact and
numerical wave velocities are determined using Eq. (31) and are
shown in Fig. 3a as a function of the computed wavelength kh (given
by 2p=kh) and considering various values of the wave incident angle
h.

On the other hand, we arrive at the following dispersion rela-
tion when using the lumped mass matrix
(a) 

(b) 

Fig. 3. Spatial dispersion of the 1st order quadrilateral finite element as a function
of relative wavelength for various propagating angles: (a) using consistent mass
matrix, and (b) using lumped mass matrix.

5

ch
c
¼ 1

khh
8� f 1ð1; 1Þ � f 2ð1; 1Þ � f 3ð1Þ � f 4ð1Þ

3

� �1=2
ð32Þ

Fig. 3b shows the results when a lumped mass matrix is used,
showing that the spatial dispersion is quite large.

4.1.2. 3rd order spectral element

The M€U term for the central node (using automatically a
lumped mass matrix) is obtained as

h2

36 0;0
€u ð33Þ

and the KU term for this node is

c2½ 269 0;0 u� 1
36 ð�h; 0uþ h; 0 uþ 0;�h uþ 0;h uÞ

þð5
ffiffi
5

p
24 � 25

72Þð�0:7236h;0uþ 0:7236h;0 uþ 0;�0:7236h uþ 0;0:7236h uÞ
�ð5

ffiffi
5

p
24 þ 25

72Þð�0:2764h;0uþ 0:2764h;0 uþ 0;�0:2764h uþ 0;0:2764h uÞ�
ð34Þ

After rearranging Eqs. (33) and (34) and substituting ch ¼ xh
kh

we

obtain

ch
c ¼ 6

khh
26
9 � 1

36 f 3ð1Þ þ f 4ð1Þð Þ þ ð5
ffiffi
5

p
24 � 25

72Þ f 3ð0:7236Þ þ f 4ð0:7236Þð Þ
h

�ð5
ffiffi
5

p
24 þ 25

72Þ f 3ð0:2764Þ þ f 4ð0:2764Þð Þ
i1=2

ð35Þ
As seen in Eq. (35) and Fig. 2, only the central node and the

nodes along the horizontal and vertical axes contribute to the
expression. Fig. 4a shows the dispersion errors given by Eq. (35)
for different values of propagating angles.

In the same way, we can evaluate the ch/c curves for the 4th to
the 8th order spectral elements. We give the details in Appendix B
and show the results in Fig. 4. Note that the vertical axis scale in
Fig. 4a is different from the scale in Fig. 3, and in Fig. 4b–f again
a new scale is used. Fig. 4 shows that as the order of the element
increases the dispersion error due to the spatial discretization
decreases. Indeed, this error is very small for a high-order element,
in particular for the elements of order equal to or greater than 5.

4.2. Establishing the CFL number

It is well established that, for an explicit time integration, the
highest frequency of the frequencies of any element in the mesh
can be used to establish a time step strictly equal to or smaller than
the critical time step [12]. Hence, to establish a usable time step,
strictly, we need to calculate the largest frequencies of the ele-
ments, or estimate a close upper bound. Accordingly, Table 1 gives
the critical time steps for the 1st order finite element as well as
various orders of spectral elements of size of h � h in the solution
of the wave equation, Eq. (22). The values given are strict upper
bounds to the highest frequency of the mesh using these elements
and lead to the use of (see also Eq. (49))

Dt ¼ CFL�
h�

c
ð36aÞ

In practice, however, distorted elements are used and then
either the exact highest element frequencies are calculated or a
close upper bound is established [12]. This is the secure way to
proceed so that the solution will not be unstable, but it may
involve significant computations and the time step thus used
may be smaller, and perhaps much smaller, than the actual critical
time step of the mesh. It should be noted that values reported in
Table 1 are rounded downwards to avoid using an unsuitable time
step size.

Hence, it is also of interest to see whether we can derive an
effective time step to use by considering the quadrilateral spectral



(a) (b)

(c) (d)

(e) (f)

Fig. 4. Spatial dispersion of quadrilateral spectral elements of different orders as a function of relative wavelength for various propagating angles: (a) 3rd order, (b) 4th order,
(c) 5th order, (d) 6th order, (e) 7th order, and (f) 8th order.
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elements as higher-order elements of the quadrilateral finite ele-
ment of first order. The CFL numbers for the classical 4-node finite
element using the CDM and the NBM schemes are 1.0 and 1.85,
respectively [15].

A simple way to proceed is to use the nodal spacing and wave
velocity to establish a time step
6

Dt ¼ CFL
dmin

c
ð36bÞ
where dmin is the ‘‘shortest distance” between any nodes in the
mesh of elements. If multiple waves are seen in an analysis, c is
the velocity of the fastest wave (usually the compression wave) in



Table 1
The critical time steps (rounded downwards to 4 digits) in terms of h*/c computed for various quadrilateral elements of size h � h; h* = h for the 4-node finite element using the
lumped mass matrix.

Element type Finite element Spectral element

consistent mass
matrix

lumped mass
matrix

Element order (n) 1 1 3 4 5 6 7 8
Dtcr = 2/xn = h*/c 0.4082 h/c h/c 0.1640 h/c 0.1044 h/c 0.0714 h/c 0.0516 h/c 0.0390 h/c 0.0304 h/c
h*/dmin 0.4082 1 0.1640/0.2764 0.1044/0.1727 0.0714/0.1175 0.0516/0.0849 0.0390/0.0641 0.0304/0.0501

(a) 

(b) 

Fig. 5. Spatial-temporal dispersion of the central difference method using the 1st
order quadrilateral finite element, with the lumped mass matrix, as a function of
relative wavelength: (a) for various CFL numbers when h = 0, and (b) for various
propagating angles when CFL = 1.

(a) 

(b) 

Fig. 6. Spatial-temporal dispersion using the central difference method and the 3rd
order quadrilateral spectral element as a function of relative wavelength: (a) for
various CFL* when h = 0, and (b) for various propagating angles when CFL* = 1.
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the domain. However, for higher order elements, this formula may
not give a good time step value for stability unless dmin is selected
very conservatively. It is of interest to compare the value obtained
for dmin from the nodal spacing of the elements with the values h�

calculated from the critical time steps, see Table 1.
7

4.3. Spatial-temporal dispersion of spectral elements

We next study the spatial-temporal dispersion using the CDM
and the NBM. Since both space and time discretizations are carried
out, we now use (instead of Eq. (26)) the following expression for
solving Eq. (22)



(a) 

(b) 

Fig. 7. Spatial-temporal dispersion of the Noh-Bathe method using the 1st order
quadrilateral finite element with the lumped mass matrix as a function of relative
wavelength; with p = 0.54: (a) for various CFL when h = 0, and (b) for various
propagating angles when CFL = 1.85.

(a) 

(b) 

Fig. 8. Spatial-temporal dispersion of the Noh-Bathe method using the 1st order
quadrilateral finite element with the lumped mass matrix as a function of relative
wavelength for various values of p when h = 0: (a) CFL = 1.5, and (b) CFL = 1.85.
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ntDt
nxh; nyh

u ¼ Akhe
iðkhnxhcosðhÞþkhnyhsinðhÞ�ntDtxhÞ ð37Þ

with xh ¼ khch and nt the time step counter.
Using CFL ¼ cDt

h , we obtain

ntDt
nxh; nyh

u ¼ Akhe
iðkhnxhcosðhÞþkhnyhsinðhÞ�ntkhhCFLðch=cÞÞ ð38Þ

We recall that nx ¼ ny ¼ 0 corresponds to the position of the
center node of the patch of the elements that we consider, see
Fig. 2.

Of course, we can use the functions defined in Eq. (27) also in
the spatial-temporal dispersion relations.

4.3.1. Central difference scheme
Using Eq. (5) with C = 0 we have [12]

tþDtUþ ð�2Iþ h2CFL2

c2
M�1KÞtUþ t�DtU ¼ 0 ð39Þ

We use the term corresponding to the center node of the patch
consisting of four elements to determine the numerical dispersion.
Let g1 be a function of the f i functions in Eq. (27), corresponding to
8

the (h2/c2)(M�1KU) term for the center node. Substituting Eq. (38)
into Eq. (39) we obtain, using nt = 0 for ease of arithmetic but
without loss of generality,

ðAkhe
ið�khhCFLðch=cÞÞ � 2Akh þ Akhe

iðkhhCFLðch=cÞÞÞ þ h2CFL2

c2
c2Akh

h2 g1

 !
¼ 0

ð40Þ
and hence

2Akhcos khhCFL
ch
c

� �
� 2Akh

� �
þ ðAkhCFL

2g1Þ ¼ 0 ð41Þ
or

2cosðkhhCFL chc Þ þ ð2þ CFL2g1Þ ¼ 0 ð42Þ
Thus, we arrive at the following form of dispersion relation –

which is general for any element of any order

ch
c
¼ 1

khhCFL
arccos 1� CFL2

2
g1

 !
ð43Þ

where g1 depends on the spatial discretization expressed in terms
of the functions defined in Eq. (27). The CDM is stable when the
argument of arccosð:Þ is within [�1, 1].



(a) 

(b) 

Fig. 9. Percentage amplitude decay of the Noh-Bathe method using the 1st order
quadrilateral finite element with the lumped mass matrix as a function of relative
wavelength; with h = 0: (a) for various CFL when p = 0.54, and (b) for various values
p when CFL = 1.85.

(a) 

(b) 

Fig. 10. Spatial-temporal dispersion of the Noh-Bathe method using the 3rd order
quadrilateral spectral element as a function of relative wavelength; with p = 0.54:
(a) for various CFL* when h = 0, and (b) for various propagating angles when
CFL* = 1.85.

P. Zakian and K.J. Bathe Computers and Structures 254 (2021) 106531
4.3.1.1. 1st order finite element. First, we assess the numerical dis-
persion using the 1st order finite element with the lumped mass
matrix and the CDM. In this case, the M�1KU term for the central
node is given by:

c2

3h2 ½8 0;0u� ðh;huþ �h;h uþ h;�h uþ �h;�h uÞ � ð�h;0uþ h;0 uÞ

� ð0;�huþ 0;h uÞ� ð44Þ
where we only evaluate the spatial discretization because the time
discretization is considered in Eq. (43) for which we now seek g1.
Combining Eqs. (27), (38) and (44) yields g1

g1 ¼ 1
3
½8� f 1ð1; 1Þ � f 2ð1; 1Þ � f 3ð1Þ � f 4ð1Þ� ð45Þ

Therefore, the dispersion relation Eq. (43) becomes

ch
c
¼ 1
khhCFL

arccosð1�CFL2

6
½8� f 1ð1; 1Þ� f 2ð1; 1Þ� f 3ð1Þ� f 4ð1Þ�Þ ð46Þ

Fig. 5 shows that, as expected, we have no dispersion when
CFL = 1 and h = 0. Of course, Eq. (46) degenerates to Eq. (32) in
9

the limit as the CFL ! 0: Also, comparing the results given in
Figs. 3b and 5, we see how the spatial and temporal dispersion
errors ‘‘cancel each other out” when CFL = 1 and h = 0.

4.3.1.2. 3rd order spectral element. In this case the M�1KU term for
the central node is

c2

2h2
½208 0;0u� 2ð�h;0uþ h;0 uþ 0;�h uþ 0;h uÞ

þð15
ffiffiffi
5

p
� 25Þð�0:7236h; 0uþ 0:7236h;0 uþ 0;�0:7236h uþ 0; 0:7236h uÞ

�ð15
ffiffiffi
5

p
þ 25Þð�0:2764h; 0uþ 0:2764h;0 uþ 0;�0:2764h uþ 0;0:2764h uÞ�

ð47Þ
Hence, we have

g1 ¼ 1
2
½208� 2ðf 3ð1Þ þ f 4ð1ÞÞ þ ð15

ffiffiffi
5

p
� 25Þðf 3ð0:7236Þ

þ f 4ð0:7236ÞÞ � ð15
ffiffiffi
5

p
þ 25Þðf 3ð0:2764Þ

þ f 4ð0:2764ÞÞ� ð48Þ



(a) 

(b) 

Fig. 11. Spatial-temporal dispersion of the Noh-Bathe method using the 3rd order
quadrilateral spectral element as a function of relative wavelength for various
values of p when h = 0: (a) CFL* = 1.5, and (b) CFL* = 1.85.

(a) 

(b) 

Fig. 12. Percentage amplitude decay of the Noh-Bathe method using the 3rd order
quadrilateral spectral element as a function of relative wavelength; with h = 0: (a)
for various CFL* when p = 0.54, and (b) for various values of p when CFL* = 1.85.

y 
x 

2 m 

Fig. 13. Geometry of computational domain for two-dimensional scalar wave
propagation in a pre-stressed membrane due to an excitation force applied at the
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Let Dtcr be h�
=c as reported in Table 1. Using CFL ¼ cDt

h in Eq. (38)
leads to a CFL number frequently used in spectral finite element
solutions since dmin has already been used to calculate g1. However,
it is more strict to use h* given in Table 1, and so we define

CFL� ¼ CFL
h�=dmin

¼ dmin
h�

cDt
h corresponding to

Dt ¼ CFL�
h�

c
ð49Þ

where h� corresponds to an effective length. Clearly, the scale factor
is h�

=dmin. For the first order element h�
=dmin ¼ 1 but it decreases for

higher order elements. In this study, Eq. (49) is employed for calcu-
lating the time step, and hence the scale factor is utilized.

For the 3rd order spectral element, the scale factor is equal to
h�
=dmin = 0.1640/0.2764 = 0.5933. Replacing CFL in Eq. (43) by

0:5933 CFL� and then using Eq. (48) give the dispersion relation

ch
c
¼ 1

0:5933khhCFL
� arccosð1� 0:59332CFL�2

4
½208� 2ðf 3ð1Þ

þ f 4ð1ÞÞ þ ð15
ffiffiffi
5

p
� 25Þðf 3ð0:7236Þ þ f 4ð0:7236ÞÞ

� ð15
ffiffiffi
5

p
þ 25Þðf 3ð0:2764Þ þ f 4ð0:2764ÞÞ�Þ ð50Þ
center point C.

10



Central difference scheme Noh-Bathe scheme 

(a) 

(b) 

(c) 

Fig. 14. Displacement variations along zero propagating angle using various CFL*, u (m) at time t = 0.9 s, using CDM (left) and NBM (right): (a) 3rd order spectral element with
80 � 80 element mesh, (b) 5th order spectral element with 48 � 48 element mesh, and (c) 8th order spectral element with 30 � 30 element mesh.
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The result is shown in Fig. 6. We see that the maximum disper-
sion error is less than about 10 percent for the CFL* numbers smal-
ler than 0.6.

4.3.2. Noh-Bathe scheme
Using the same procedure as for the CDMwe obtain for the NBM

tþDtUþð�2Iþh2CFL2

c2
M�1Kþa1

h4CFL4

c4
ðM�1KÞ2Þ tU

þðIþb1
h4CFL4

c4
ðM�1KÞ2Þ t�DtU¼0 ð51Þ
11
with a1 ¼ 1
2p

2ðp� 1Þ and b1 ¼ � 1
2 p

3 þ 5
4p

2 � pþ 1
4 being the numer-

ical damping factors imposed by the NBM in order to suppress
spurious high frequencies; p denotes the numerical damping ratio
ranging from 0.5 to 2�

ffiffiffi
2

p
.

Here we use the central node of a patch consisting of 16 ele-
ments to determine the numerical dispersion. All 16 elements in
the patch (due to the bandwidth of (M�1K)2) contribute to the term
of the central node.

Utilizing Eq. (38) and Eq. (51) leads to



Central difference scheme Noh-Bathe scheme

(a)

(b)

(c)

Fig. 15. Contour plots of displacement distributions, u (m) at t = 0.9 (s), using central difference scheme, CFL* = 1, (left) and Noh-Bathe scheme, CFL* = 1.85 (right): (a) 3rd
order spectral element with 80 � 80 element mesh, (b) 5th order spectral element with 48 � 48 element mesh, and (c) 8th order spectral element with 30 � 30 element mesh.
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Akhðe�iðkhhCFLðch=cÞÞ þ eiðkhhCFLðch=cÞÞÞ þ b1CFL
4Akhe

iðkhhCFLðch=cÞÞg2

þ ð�2Akh þ CFL2Akhg1 þ a1CFL
4Akhg2Þ ¼ 0 ð52Þ
12
for which ch/c should be sought. Hence, the following form of dis-
persion relation is obtained – which is general for any element of
any order



Fig. 16. Geometry of computational domain for two-dimensional wave propaga-
tions within a semi-infinite elastic medium (a Lamb problem) where the excitation
force is applied at point C and two receivers are placed at x = 640 m and x = 1280 m
on the surface boundary.

Table 2
Normalized elapsed times to 1.0 and the corresponding CFL* for the analyses of the two L

Load function Mesh Element order (n)

Case 1 400 � 200 3
240 � 120 5
150 � 75 8

Case 2 960 � 480 3
576 � 288 5
360 � 180 8

(a)

(b)

Fig. 17. Comparison of displacement histories obtained using 3rd order spectral elemen
vertical (right) displacements at x = 640 m, and (b) horizontal (left) and vertical (right) d
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13
ch
c
¼ i

khhCFL
lnð1

2
½2� CFL2g1 � a1CFL

4g2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�2þ CFL2g1 þ a1CFL

4g2Þ
2 � 4ð1þ b1CFL

4g2Þ
q

�Þ ð53Þ

in which g1 is a function corresponding to the (h2/c2)(M�1KU) term
for the central node; and g2 is a function corresponding to the (h4/
c4)(M�1K)2U term for that node. Since the NBM is a dissipative
scheme, ch/c is a complex number: the real part gives the dispersion,
and the imaginary part when negative gives the dissipation. We
note that a non-monotonic behavior of the imaginary part (i.e., a
sudden increase after a decrease) shows an instability.

The percentage amplitude decay [41] of the scheme can be
determined by

AD ¼ 1� eImðxhÞDt
� �� 100 ð54Þ

where xh ¼ chkh is equal to
amb problems, results are shown in Figs. 17–23.

CFL* Normalized elapsed time

CDM NBM CDM NBM

1.2 2.2 1.2 1.2
1.2 2.2 1.0 1.1
1.2 2.2 1.7 1.7
1.2 2.2 16.0 17.9
1.2 2.2 14.3 15.8
1.1 2.2 22.6 22.7

t with 400 � 200 element mesh; Ricker wavelet excitation: (a) horizontal (left) and
isplacements at x = 1280 m.



(a)

(b)

Fig. 18. Comparison of displacement histories obtained using 5th order spectral element with 240 � 120 element mesh; Ricker wavelet excitation: (a) horizontal (left) and
vertical (right) displacements at x = 640 m, and (b) horizontal (left) and vertical (right) displacements at x = 1280 m.
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xh ¼ i
Dt

ln
1
2
½2� CFL2g1 � a1CFL

4g2

	

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�2þ CFL2g1 þ a1CFL

4g2Þ
2 � 4ð1þ b1CFL

4g2Þ
q

�



ð55Þ

which is derived from Eq. (53). Of course, the amplitude decay cal-
culated using Eq. (54) is due to both the spatial discretization and
the time discretization.

4.3.2.1. 1st order finite element. We consider the use of the lumped
mass matrix for which g1 was previously obtained in Eq. (45). The
(M�1K)2U term for the central node is

c4

9h4 ½72 0; 0u� 14ðh;huþ�h; h uþh; �h uþ�h; �h uÞ

� 12ð�h; 0uþh; 0 uÞ � 12ð0; �huþ0; h uÞ

þ 3ð�2h; 0uþ2h; 0 uÞ þ 3ð0; �2huþ0; 2h uÞ

þ 2ð2h; huþ�2h; h uþ2h; �h uþ�2h; �h uÞ

þ 2ðh; 2huþ�h; 2h uþh; �2h uþ�h; �2h uÞ

þ ð2h; 2huþ�2h; 2h uþ2h; �2h uþ�2h; �2h uÞ�

ð56Þ
14
Combining Eqs. (27), (38) and (56) leads to

g2 ¼ 1
9
½72� 14ðf 1ð1; 1Þ þ f 2ð1; 1ÞÞ � 12ðf 3ð1Þ þ f 4ð1ÞÞ

þ 3ðf 3ð2Þ þ f 4ð2ÞÞ þ 2ðf 1ð2; 1Þ þ f 2ð2; 1Þ þ f 1ð1; 2Þ
þ f 2ð1; 2ÞÞ þ f 1ð2; 2Þ þ f 2ð2; 2Þ� ð57Þ

Using Eqs. (45) and (57), the dispersion is calculated based upon
Eq. (53). Fig. 7 shows some results for p = 0.54.

The choice of amount of numerical damping is an important
issue when using a dissipative scheme. Fig. 8 shows the effect of
p for two CFL numbers, CFL = 1.5 and 1.85. We see that the value
p = 0.54 is a good value to use. Fig. 9 shows the percentage ampli-
tude decay in terms of CFL numbers and various values of p. When
p = 0.54, a larger CFL gives a larger amplitude decay, see Fig. 9a. For
CFL = 1.85, as anticipated, the larger value of p leads to larger
amplitude decay as shown in Fig. 9b. Thus, in order to have an effi-
cient amplitude decay along with a small dispersion error, for this
element, the use of CFL = 1.85 and p = 0.54 is a good choice, as rec-
ommended in Ref. [15].

4.3.2.2. 3rd order spectral element. For the 3rd order spectral ele-
ment, g1 was already determined in Eq. (48); now g2 is obtained
from the term (M�1K)2U for the central node as follows:
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c4

2h4
½244400; 0uþ 4ðh; huþ�h; h uþh; �h uþ�h; �h uÞ

þð50� 30
ffiffiffi
5

p
Þð0:7236 h; huþ�0:7236 h; h uþ0:7236 h; �h uþ�0:7236 h; �h u

þ h; 0:7236 huþ� h; 0:7236 h uþh; �0:7236 h uþ� h; �0:7236 h uÞ
þð50þ 30

ffiffiffi
5

p
Þð0:2764h; huþ�0:2764h; h uþ0:2764h; �h uþ�0:2764 h; �h u

þ h; 0:2764huþ� h; 0:2764h uþh; �0:2764 h uþ� h; �0:2764h uÞ
�500ð0:2764h; 0:7236huþ�0:2764h; 0:7236h u
þ0:2764h; �0:7236huþ�0:2764 h; �0:7236h u
þ 0:7236h; 0:2764huþ� 0:7236h; 0:2764h u
þ0:7236h; �0:2764 huþ� 0:7236h; �0:2764h uÞ
þð1750� 750

ffiffiffi
5

p
Þð0:7236 h; 0:7236 hu

þ�0:7236 h; 0:7236 huþ0:7236 h; �0:7236 h uþ�0:7236 h; �0:7236 h uÞ
þð1750þ 750

ffiffiffi
5

p
Þð0:2764 h; 0:2764 huþ�0:2764 h; 0:2764 h u

þ0:2764 h; �0:2764 huþ�0:2764 h; �0:2764 h uÞ
þ2ð�2h; 0uþ2h; 0 uþ0; �2h uþ0; 2h uÞ
þð25� 15

ffiffiffi
5

p
Þð�1:7236h; 0uþ1:7236h; 0 uþ0; �1:7236h uþ0; 1:7236h uÞ

þð25þ 15
ffiffiffi
5

p
Þð�1:2764h; 0uþ1:2764h; 0 uþ0; �1:2764h uþ0; 1:2764h uÞ

�616ð�h; 0uþh; 0 uþ0;�h uþ0; h uÞ
þð�4125þ 2805

ffiffiffi
5

p
Þð�0:7236h; 0uþ0:7236h; 0 u

þ0;�0:7236huþ0; 0:7236h uÞ
�ð4125þ 2805

ffiffiffi
5

p
Þð�0:2764h; 0uþ0:2764h; 0 u

þ0; �0:2764huþ0; 0:2764h uÞ�
ð58Þ
(a)

(b)

Fig. 19. Comparison of displacement histories obtained using 8th order spectral elemen
vertical (right) displacements at x = 640 m, and (b) horizontal (left) and vertical (right) d
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Thus, we have

g2 ¼ 1
2 ½24440þ 4ðf 1ð1; 1Þ þ f 2ð1; 1ÞÞ

þð50� 30
ffiffiffi
5

p
Þðf 1ð0:7236; 1 Þ þ f 2ð0:7236; 1 Þ

þf 1ð1; 0:7236Þ þ f 2ð1; 0:7236 ÞÞ
þð50þ 30

ffiffiffi
5

p
Þðf 1ð0:2764; 1 Þ þ f 2ð0:2764; 1 Þ

þf 1ð1; 0:2764Þ þ f 2ð1; 0:2764 ÞÞ
�500ðf 1ð0:2764; 0:7236 Þ þ f 2ð0:2764; 0:7236 Þ
þf 1ð0:7236; 0:2764Þ þ f 2ð0:7236; 0:2764 ÞÞ
þð1750� 750

ffiffiffi
5

p
Þðf 1ð0:7236; 0:7236Þ þ f 2ð0:7236; 0:7236 ÞÞ

þð1750þ 750
ffiffiffi
5

p
Þðf 1ð0:2764; 0:2764 Þ þ f 2ð0:2764; 0:2764 ÞÞ

þ2ðf 3ð2Þ þ f 4ð2ÞÞ þ ð25� 15
ffiffiffi
5

p
Þðf 3ð1:7236Þ þ f 4ð1:7236ÞÞ

þð25þ 15
ffiffiffi
5

p
Þðf 3ð1:2764Þ þ f 4ð1:2764ÞÞ � 616ðf 3ð1Þ þ f 4ð1ÞÞ

þð�4125þ 2805
ffiffiffi
5

p
Þðf 3ð0:7236Þ þ f 4ð0:7236ÞÞ

�ð4125þ 2805
ffiffiffi
5

p
Þðf 3ð0:2764Þ þ f 4ð0:2764ÞÞ�

ð59Þ
Using the above procedure and replacing CFL by 0:5933 CFL�,

the dispersion relation based on Eq. (53) is obtained. Some results
are shown in Fig. 10 for p = 0.54. In comparison with Fig. 7, the dis-
persion error shown in Fig. 10 is considerably smaller. Further-
more, Fig. 10 shows that selecting CFL* = 1.85 can be unsafe for
the 3rd order spectral element, while CFL* = 1.8 is a conservative
choice.
t with 150 � 75 element mesh; Ricker wavelet excitation: (a) horizontal (left) and
isplacements at x = 1280 m.
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(c)

Fig. 20. Snapshots of von Mises stress at t = 0.9828 s, using central difference scheme (left) and Noh-Bathe scheme (right); Ricker wavelet excitation: (a) 3rd order spectral
element using 400 � 200 element mesh, (b) 5th order spectral element using 240 � 120 element mesh, and (c) 8th order spectral element using 150 � 75 element mesh.
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Figs. 11 and 12 illustrate that the effects of changing p are dif-
ferent from those seen when using the 1st order element. Signifi-
cant sudden amplitude decays are seen at larger values of
h=0:5kh when using CFL* = 1.85, even with p = 0.5.

The derivation of the spatial-temporal dispersion for the spec-
tral elements with an order higher than 3 can be pursued in the
same manner as above.
5. Wave propagation solutions

In this section, we give solutions of wave propagation problems
using the spectral elements and the CDM and the NBM. We use for
the solutions, 3rd order, 5th order and 8th order spectral elements.
Earlier investigations demonstrated that the spectral element with
an order greater than 3 is useful for the analysis of wave propaga-
16
tions, while the highest order is usually selected to be 8 [4,25,42].
We use p = 0.54 for the NBM. First, we solve a two-dimensional
transient scalar wave propagation problem and then we consider
Lamb problems comprising different propagating waves in a
semi-infinite elastic medium. In these examples, the solution time
is such that the waves do not reach the truncated boundary of the
model, hence we do not impose absorbing boundary conditions for
suppressing artificially reflected waves. We performed the
dynamic analyses using a PC with the Intel Core i7-4790 K CPU @
4.00 GHz.

5.1. Two-dimensional scalar wave propagation in a pre-stressed
membrane

Fig. 13 introduces the two-dimensional scalar wave propaga-
tion problem. A concentrated point excitation Fc at the center of
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Fig. 21. Comparison of displacement histories obtained using 3rd order spectral element and 960 � 480 element mesh; excitation by step functions: (a) horizontal (left) and
vertical (right) displacements at x = 640 m, and (b) horizontal (left) and vertical (right) displacements at x = 1280 m.
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a pre-stressed membrane is considered [17]. The governing equa-
tion for the transverse displacement u is

@2u
@x2

þ @2u
@y2

þ Fc ¼ 1
c2

@2u
@t2

ð60Þ

with the wave velocity c = 1 m/s. We use the initial conditions

uðx ¼ 0; tÞ ¼ 0 m;

_uðx ¼ 0; tÞ ¼ 0 m=s
ð61Þ

and the force

Fcðx ¼ 0; tÞ ¼ 1:6� 102t ð0:1� tÞHð0:1� tÞ; t > 0 ð62Þ
In Eq. (62), H is the Heaviside function. The computational

domain is limited to [�1, 1] � [�1, 1] m, and the analytical solution
of Eq. (60) is based on the Green’s function and the convolution
integral [43].

The meshes are 80 � 80 elements of order 3, 48 � 48 elements
of order 5 and 30 � 30 elements of order 8 for which the number of
DOFs are identical, each time for the complete membrane.

Fig. 14 shows displacement variations from the point of excita-
tion by the force to the edge of the membrane. The numerical solu-
tions are compared to the exact solution. Four CFL* numbers are
considered for each element order. Overall, the NBM provides
higher accuracy with diminishing spurious oscillations. Further-
more, snapshots of wave fronts at t = 0.9 s are shown in Fig. 15,
demonstrating the reduction of spurious oscillations when using
17
the NBM. Also, Fig. 15 shows that the solutions using the NBM
are more accurate even for low order elements as they can capture
the wave fronts better. As visible in Fig. 14 for the 8th order ele-
ment, a higher order spectral element does not necessarily give a
higher solution accuracy. This phenomenon can happen when a
non-smooth function like Eq. (62) is considered. Using finer
meshes, the spurious oscillations are reduced but then, of course,
the cost of solution increases. Indeed, if the coarsest meshes using
the CDM and NBM are employed to give (almost) no spurious oscil-
lations, the solution using the NBM is significantly less costly.
5.2. Two-dimensional wave propagations in a semi-infinite elastic
medium

We consider here the solution of wave propagations in a semi-
infinite elastic medium, referred to as Lamb problems
[15,17,44,45], see Fig. 16. Plane strain conditions are assumed for
an isotropic semi-infinite elastic medium with mass density
q = 2200 kg/m3, P-wave velocity cp = 3200 m/s and Poisson’s ratio
0.25, giving the S-wave velocity cs = 1847.5 m/s. The initial dis-
placements and velocities are assumed to be zero and the compu-
tational domain is truncated to [�3200, 3200] � [�3200, 0] m. In
the solutions, we use the maximum CFL* numbers for both the
CDM and NBM, for which stability holds, as given in Table 2. These
CFL* numbers are slightly larger than 1.0 and 1.85, for the CDM and
NBM respectively, because we consider a plane strain elasticity
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Fig. 22. Comparison of displacement histories obtained using 5th order spectral element with 576 � 288 element mesh; excitation by step functions: (a) horizontal (left) and
vertical (right) displacements at x = 640.5 m, and (b) horizontal (left) and vertical (right) displacements at x = 1281.7 m.
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problem. We established the CFL* in Table 2 using the fact that the
critical wave velocity is larger and checked by numerical experi-
mentation to identify when indeed the solutions become unstable.
This illustrates that the results in Table 1 can also be used for other
wave propagation problems to estimate an appropriate CFL*.

We consider separately two concentrated load cases consisting
of a Ricker wavelet excitation and an excitation by a sum of step
functions. The analytical solutions are based on the Green’s func-
tion as per Ref. [44] and the convolution integral.

The concentrated Ricker force is located at the center of the free
surface

Fc ¼ �106ð1� 2p2 f̂
2ðt � t0Þ2Þexpð�p2 f̂

2ðt � t0Þ2Þ; t > 0 ð63Þ

where f̂ and t0 are taken as 12.5 Hz and 0.1 s, respectively. We use
three meshes of different spectral element orders with identical
number of DOFs: a mesh of 400 � 200 elements of element order
3, a mesh of 240 � 120 elements of order 5 and a mesh of
150 � 75 elements of order 8. Figs. 17–19 show the predicted hor-
izontal and vertical surface displacements at x = 640 m and
x = 1280 m, where the receivers are located, in comparison with
the analytical solutions. All predicted solutions using the CDM
and NBM are very accurate. Fig. 20 depicts snapshots of the pre-
dicted von Mises stress at t = 0.9828 s. Hence in this analysis, the
meshes and time steps used are appropriate for an accurate numer-
ical solution.
18
A more difficult problem to solve accurately is obtained when
the following concentrated force is applied

Fc ¼ 106½Hð0:15� tÞ � 3Hð0:1� tÞ þ 3Hð0:05� tÞ�; t > 0 ð64Þ

which requires much finer meshes to achieve a reasonably accurate
solution. We now use a mesh of 960 � 480 elements of order 3, a
mesh of 576 � 288 elements of order 5 and a mesh of 360 � 180
elements of order 8, so that we have in all solutions 4,151,521 nodes
for the complete domain considered (we do not use symmetry). As
in the previous case, we use the element-by-element assemblage to
calculate the required vectors for both integration schemes. The
predicted horizontal and vertical surface displacements at the posi-
tions of the receivers (i.e., at x = 640 m and x = 1280 m) are shown
in Figs. 21–23 with the analytical solutions. The response predic-
tions are not very accurate but reasonable and the solutions using
the NBM show less oscillations. The CFL* used corresponding to
the results shown in Figs. 21–23 are listed in Table 2. In addition,
we give in Figs. 24 and 25 the solutions using the CDM with
CFL* = 1.2 and 1.0. We see that although the CDM can be used with
CFL* = 1.2 (like for the other elements), the response prediction is
very inaccurate. Here we have a case in which the solution does
not ‘‘blow up” showing instability when using the CDM but simply
is very inaccurate – this can be of particular concern in the solution
of practical engineering problems and is not found when using the
NBM. In comparing the solutions obtained using the CDM and NBM,
we see that for this problem, using the NBM gives a reasonable
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Fig. 23. Comparison of displacement histories obtained using 8th order spectral element with 360 � 180 element mesh; excitation by step functions: (a) horizontal (left) and
vertical (right) displacements at x = 640 m, and (b) horizontal (left) and vertical (right) displacements at x = 1280 m.
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response prediction even when employing more than two times lar-
ger a CFL*, that is CFL* = 2.2.

These solutions show that when using spectral elements in the
analyses of wave propagations, the differences in accuracy
obtained with the CDM and NBM, can be more significant when
using lower order elements and/or when the loading forces high
frequency transient excitations. Table 2 also lists normalized com-
putational times for each analysis performed. We see that the com-
putational times using the NBM are near to those using the CDM,
while providing better accuracy.
6. Concluding remarks

We focused in this research on the performance of the Noh-
Bathe explicit time integration scheme when compared with the
central difference scheme and used in the analysis of wave propa-
gations with spectral finite elements. We calculated spatial disper-
sion relations for spectral elements, and also derived spatial-
temporal dispersion relations for both the CDM and NBM which
can be employed for different elements.

Although the NBM requires the ‘‘internal” calculations in a time
step due to a sub-step, the computational effort is near the effort
employed for the CDM due to the use of a 1.85 to 2 times larger
CFL* numbers. An advantage is that the use of the NBM can pro-
vide, using the same mesh, higher accuracy with lower spurious
oscillations. However, since the use of spectral elements can signif-
19
icantly reduce the spatial numerical dispersion, the solution differ-
ence between using the two schemes may in some analyses not be
significant. The improved accuracy and elimination of spurious
oscillations using the NBM are visible for every element order
when a complex transient excitation is imposed, in which a large
number of high frequency vibration modes contribute to the
response. But here we might note that for the solution of the Lamb
problem with the step loadings, the overlapping finite elements
used with the implicit Bathe scheme are quite effective [45].

Another advantage in the use of the NBM scheme is that a
banded damping matrix can directly be included without a very
large increase in the solution cost. Hence Rayleigh damping includ-
ing the stiffness matrix term can be used and absorbing boundary
conditions providing a bandwidth can be included.

Although we considered in this paper the solution of model
problems, the theoretical derivations and insights obtained are
valuable for the solution of general transient wave propagation
problems.
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Fig. 24. Displacement histories obtained using 8th order spectral element with 360 � 180 element mesh; CFL* = 1.2; excitation by step functions: (a) horizontal (left) and
vertical (right) displacements at x = 640 m, and (b) horizontal (left) and vertical (right) displacements at x = 1280 m.
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Appendix A

We present here the mass and stiffness matrices of square quadri-
lateral elements used in the paper; h and c are the element
‘‘length” and wave velocity, respectively. For the 1st order quadri-
lateral finite element, the mass and stiffness matrices are given by:

MðmÞ ¼ h2

36

4 2 2 1
4 1 2

4 2
sym: 4

2
6664

3
7775 ðA:1Þ

KðmÞ ¼ c2

6

4 �1 �1 �2
4 �2 �1

4 �1
sym: 4

2
6664

3
7775 ðA:2Þ

For the 3rd order quadrilateral spectral element shown in Fig. 1,
the mass and stiffness matrices are given by:

diagðMðmÞÞ ¼ h2

144
½1; 5; 5; 1; 5; 25; 25; 5; 5; 25; 25; 5; 1; 5; 5; 1�

ðA:3Þ
where diag(.) means that the mass matrix is diagonal and only the
diagonal elements are listed, and
20
KðmÞ ¼ c2

k1 k5 k3 k4

k5 k2 25k4 k3

k3 25k4 k2 k5

k4 k3 k5 k1

2
6664

3
7775 ðA:4Þ

in which the block matrices are

k1 ¼

13=18 �a� b a� b �1=72

�a� b 5=2 �25=72 a� b

a� b �25=72 5=2 �a� b

�1=72 a� b �a� b 13=18

2
6666664

3
7777775

ðA:5Þ

k2 ¼

5=2 �5a� 5b 5a� 5b �5=72

�5a� 5b 125=18 �125=72 5a� 5b

5a� 5b �125=72 125=18 �5a� 5b

�5=72 5a� 5b �5a� 5b 5=2

2
6666664

3
7777775

ðA:6Þ

k3 ¼

a� b 0 0 0
0 5a� 5b 0 0
0 0 5a� 5b 0
0 0 0 a� b

2
6664

3
7775 ðA:7Þ
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Fig. 25. Displacement histories obtained using 8th order spectral element with 360 � 180 element mesh; CFL* = 1; excitation by step functions: (a) horizontal (left) and
vertical (right) displacements at x = 640 m, and (b) horizontal (left) and vertical (right) displacements at x = 1280 m.
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k4 ¼

�1=72 0 0 0
0 �5=72 0 0
0 0 �5=72 0
0 0 0 �1=72

2
6664

3
7775 ðA:8Þ

k5 ¼

�a� b 0 0 0
0 �5a� 5b 0 0
0 0 �5a� 5b 0
0 0 0 �a� b

2
6664

3
7775 ðA:9Þ

with a ¼ 5
ffiffiffi
5

p
=48 and b ¼ 25=144.

Appendix B

4th order spectral element:
TheM€U term for the central node at (x = 0, y = 0) is expressed as

0:01 h2
0;0€u ðB:1Þ

and the KU term for this node is

c2½2:8x;yuþ 0:01ð�h; 0uþh; 0 uþ0; �h uþ0; h uÞ
�0:0341ð�0:8273h; 0uþ0:8273h; 0 uþ0; �0:8273h uþ0; 0:8273h uÞ
þ0:1067ð�0:5h; 0uþ0:5h; 0 uþ0; �0:5h uþ0; 0:5h uÞ
- 0:7826ð�0:1727h; 0uþ0:1727h; 0 uþ0; �0:1727h uþ0; 0:1727h uÞ�

ðB:2Þ

thus, we have
21
ch
c ¼ 10

khh
2:8þ0:01 f 3ð1Þþ f 4ð1Þð Þ�0:3041 f 3ð0:8273Þþ f 4ð0:8273Þð Þ½

þ0:1067 f 3ð0:5Þþ f 4ð0:5Þð Þ�0:7826 f 3ð0:1727Þþ f 4ð0:1727Þð Þ�1=2
ðB:3Þ

Fig. 4b shows the dispersion curves obtained using Eq. (B.3) for
different values of propagating angles.

5th order spectral element:

The M€U term gives

0:0044h2
0; 0€u ðB:4Þ

while the KU term is expanded as

c2½2:75550; 0u� 0:0044ð�h; 0uþh; 0 uþ0; �h uþ0; h uÞ
þ0:0136ð�0:8825h; 0uþ0:8825h; 0 uþ0; �0:8825h uþ0; 0:8825h uÞ
� 0:0310ð�0:6426h; 0uþ0:6426h; 0 uþ0; �0:6426h uþ0; 0:6426h uÞ
þ0:1004ð�0:3574h; 0uþ0:3574h; 0 uþ0; �0:3574h uþ0; 0:3574h uÞ
� 0:7674ð�0:1175h; 0uþ0:1175h; 0 uþ0; �0:1175h uþ0; 0:1175h uÞ�

ðB:5Þ
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Hence, we reach
ch
c ¼ 1ffiffiffiffiffiffiffiffiffiffi

0:0044
p

khh
2:7555� 0:0044 f 3ð1Þ þ f 4ð1Þð Þ½

þ0:0136 f 3ð0:8825Þ þ f 4ð0:8825Þð Þ
� 0:0310 f 3ð0:6426Þ þ f 4ð0:6426Þð Þ
þ0:1004 f 3ð0:3574Þ þ f 4ð0:3574Þð Þ
� 0:7674 f 3ð0:1175Þ þ f 4ð0:1175Þð Þ�1=2

ðB:6Þ

which is used in Fig. 4c.

6th order spectral element:

The M€U term for the central node is expanded as

0:0023 h2
0;0€u ðB:7Þ

and the KU term for the central node is formulated as

c2½2:73020; 0uþ 0:0023ð�h; 0uþh; 0 uþ0; �h uþ0; h uÞ
� 0:0065ð�0:9151h; 0uþ0:9151h; 0 uþ0; �0:9151h uþ0; 0:9151h uÞ
þ0:0127ð�0:7344h; 0uþ0:7344h; 0 uþ0; �0:7344h uþ0; 0:7344h uÞ
� 0:0290ð�0:5h; 0uþ0:5h; 0 uþ0;�0:5h uþ0;0:5h uÞ
þ0:0968ð�0:2656h; 0uþ0:2656h; 0 uþ0; �0:2656h uþ0; 0:2656h uÞ
� 0:7587ð�0:0849h; 0uþ0:0849h; 0 uþ0;�0:0849h uþ0; 0:0849h uÞ�

ðB:8Þ

Thus we arrive at
ch
c ¼ 1ffiffiffiffiffiffiffiffiffiffi

0:0023
p

khh
2:7302þ0:0023 f 3ð1Þþ f 4ð1Þð Þ - 0:0065 f 3ð0:9151Þþ f 4ð0:9151Þð Þ½

þ0:0127 f 3ð0:7344Þþ f 4ð0:7344Þð Þ - 0:0290 f 3ð0:5Þþ f 4ð0:5Þð Þ
þ0:0968 f 3ð0:2656Þþ f 4ð0:2656Þð Þ - 0:7587 f 3ð0:0849Þþ f 4ð0:0849Þð Þ�1=2

ðB:9Þ
Fig. 4d shows the variation of the relative velocity in Eq. (B.9)

for different angles of propagation.

7th order spectral element:

For this element, the M€U term gives

0:0013 h2
0;0€u ðB:10Þ

and the KU term is

c2½2:71430; 0u - 0:0013ð�h; 0uþh; 0 uþ0; �h uþ0; h uÞ
þ0:0035ð�0:9359h; 0uþ0:9359h; 0 uþ0; �0:9359h uþ0; 0:9359h uÞ
� 0:0062ð�0:7959h; 0uþ0:7959h; 0 uþ0; �0:7959h uþ0; 0:7959h uÞ
þ0:0119ð�0:6046h; 0uþ0:6046h; 0 uþ0; �0:6046h uþ0; 0:6046h uÞ
� 0:0277ð�0:3954h; 0uþ0:3954h; 0 uþ0; �0:3954h uþ0; 0:3954h uÞ
þ0:0946ð�0:2041h; 0uþ0:2041h; 0 uþ0; �0:2041h uþ0; 0:2041h uÞ
� 0:7533ð�0:0641h; 0uþ0:0641h;0 uþ0; �0:0641h uþ0; 0:0641h uÞ�

ðB:11Þ

such that
ch
c ¼ 1ffiffiffiffiffiffiffiffiffiffi

0:0013
p

khh
2:7143 � 0:0013 f 3ð1Þ þ f 4ð1Þð Þ½

þ0:0035 f 3ð0:9359Þ þ f 4ð0:9359Þð Þ
�0:0062 f 3ð0:7959Þ þ f 4ð0:7959Þð Þ
þ0:0119 f 3ð0:6046Þ þ f 4ð0:6046Þð Þ
� 0:0277 f 3ð0:3954Þ þ f 4ð0:3954Þð Þ
þ0:0946 f 3ð0:2041Þ þ f 4ð0:2041Þð Þ
� 0:7533 f 3ð0:0641Þ þ f 4ð0:0641Þð Þ�1=2

ðB:12Þ

Fig. 4e shows the results using Eq. (B.12).

8th order spectral element:

The M€U term gives
22
7:7160e � 04h2
0; 0€u ðB:13Þ

and the KU term is

c2½2:70370; 0uþ 7:7160e � 04ð�h 0uþh; 0 uþ0; �h uþ0; h uÞ
� 0:0021ð�0:9499h; 0uþ0:9499h; 0 uþ0; �0:9499h uþ0; 0:9499h uÞ
þ0:0034ð�0:8386h; 0uþ0:8386h; 0 uþ0; �0:8386h uþ0; 0:8386h uÞ
� 0:0059ð�0:6816h; 0uþ0:6816h; 0 uþ0; �0:6816h uþ0; 0:6816h uÞ
þ0:0113ð�0:5h; 0uþ0:5h; 0 uþ0; �0:5h uþ0; 0:5h uÞ
� 0:0269ð�0:3184h; 0uþ0:3184h; 0 uþ0; �0:3184h uþ0; 0:3184h uÞ
þ0:0931ð�0:1614h; 0uþ0:1614h; 0 uþ0; �0:1614h uþ0; 0:1614h uÞ
� 0:7497ð�0:0501h; 0uþ0:0501h; 0 uþ0; �0:0501h uþ0; 0:0501h uÞ�

ðB:14Þ
hence

ch
c ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

7:7160e � 04
p

khh
2:7037þ 7:7160e � 04 f 3ð1Þ þ f 4ð1Þð Þ½

� 0:0021 f 3ð0:9499Þ þ f 4ð0:9499Þð Þ
þ0:0034 f 3ð0:8386Þ þ f 4ð0:8386Þð Þ � 0:0059 f 3ð0:6816Þ þ f 4ð0:6816Þð Þ
þ0:0113 f 3ð0:5Þ þ f 4ð0:5Þð Þ � 0:0269 f 3ð0:3184Þ þ f 4ð0:3184Þð Þ
þ0:0931 f 3ð0:1614Þ þ f 4ð0:1614Þð Þ � 0:7497 f 3ð0:0501Þ þ f 4ð0:0501Þð Þ�1=2

ðB:15Þ
with the results shown in Fig. 4f.

We used for all these computations double-precision arithmetic
on the computer but report the results only to four digits.
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