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Computational issues in large strain elasto-plasticity:
an algorithm for mixed hardening and plastic spin
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SUMMARY

In this paper an algorithm for large strain elasto-plasticity with isotropic hyperelasticity based on the
multiplicative decomposition is formulated. The algorithm includes a (possible) constitutive equation for
the plastic spin and mixed hardening in which the principal stress and principal backstress directions
are not necessarily preserved. It is shown that if the principal trial stress directions are preserved
during the plastic flow (as assumed in some algorithms) a plastic spin is inadvertently introduced for
the kinematic/mixed hardening case. If the formulation is performed in the principal stress space,
a rotation of the backstress is inadvertently introduced as well. The consistent linearization of the
algorithm is also addressed in detail. Copyright � 2005 John Wiley & Sons, Ltd.

KEY WORDS: large strains; computational plasticity; plastic spin; kinematic hardening; cyclic plasti-
city; logarithmic strains

1. INTRODUCTION

Almost up to the 1990s, the continuum formulation of plasticity was based on the prescription
of hypoelastic constitutive relations, the additive decomposition of the strains into an elastic
and a plastic part and the use of, for example, the incremental Jaumann formulation, see
e.g. References [1–3]. Nonetheless the finite element analysis of hyperelastic materials and
elasto-plastic materials based on hyperelasticity was well establish 10 years earlier [4]. The use
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of hypoelastic constitutive relations with a Jaumann formulation produces dissipation under
elastic closed cycles [5], which is inconsistent with the definition of an elastic deformation
path. It has also been found that the use of the additive decomposition of the strain tensor in
finite deformation inelasticity may produce dependence of incremental elastic deformations on
the deformation history [6]. Nonetheless, new corrected formulations using similar approaches
have been recently advocated due to their simplicity and broad application [7, 8] and reported
numerical simulations using isotropic plasticity seem to produce results similar to multiplicative
plasticity. The approaches given in Reference [8] are based on an additive decomposition of
total (instead of incremental) logarithmic strains and, going back to the work of Green and
Nagdhi, the plastic logarithmic strain is defined in terms of the plastic metric tensor, considered
as an internal variable.

On the other hand, multiplicative plasticity based on the so-called multiplicative (or Lee)
decomposition [9] (see also Reference [10] and an earlier contribution in Reference [11])
is physically well grounded, since it is based on micromechanical dislocation theory and
observations, see for example References [12–15] and the references therein. Even more, it has
also a clear continuum interpretation as shown below. Therefore, computational plasticity based
on this decomposition has gained popularity in the late 1980s and 1990s, see for example
References [16–26] among others, although multiplicative plasticity had already been used
earlier in computational mechanics [27]. The initial formulations required ad-hoc algorithms
to integrate the stress-point constitutive equations due to the inherent non-linear nature of
both the elastic deformation and the plastic flow [13]. More recent formulations have been
developed based on a Kirchhoff hyperelastic stress function linear in terms of the logarithmic
strain measures, see Reference [20] for isotropic plasticity and Reference [21] for combined
hardening, see also References [22, 24–26, 28, 29], and the therein references. This hyperelastic
stress function has been shown to yield excellent predictions in moderately large elastic strain
ranges which develop in metal plasticity [29, 30]. Furthermore, the natural additive property of
principal logarithmic strain measures and the use of an exponential mapping in the integration
of the plastic gradient allows for a simple framework, in which the small strain radial return
algorithms remain unaltered and the large strain formulation reduces to a simple pre- and
post-processor [21].

In this paper the formulation of Eterović and Bathe [21], see also Gabriel and Bathe [31],
based on a vanishing plastic spin, is extended for the use of a (possible) constitutive equation
for the plastic spin. The new formulation allows for a comparison and more detailed analysis
of algorithms formulated in the principal stress space [22] and in which the principal stress
directions are kept constant during the plastic flow even in the kinematic hardening case. It is
shown that keeping the stress directions constant during the plastic flow introduces inadvertently
a spin which obviously affects the solution results. This spin can be interpreted as a plastic spin
since it only affects the plastic correction phase. Furthermore, a more detailed analysis of an
algorithm in which the stress integration is performed in the principal stretch directions shows
that in this case a rotation of the backstress is introduced which affects the plastic correction
phase in a similar way. Hence in both these cases, different computational results are obtained
from using an algorithm performed in the full stress space which does not include any plastic
spin and in which the principal directions are not necessarily preserved.

Also, the consistent algorithmic tangent is calculated. In this formulation, the customary
small strains consistent tangent moduli are modified to account for the non-linear geometry of
the large strain formulation.
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2. CONTINUUM FORMULATION

In the derivation of the continuum formulation as well as in the algorithm for the stress
calculation and the consistent tangent evaluation we follow the notation of References [32, 33].

2.1. Multiplicative decomposition and strain rate tensors

Let tx denote the current co-ordinates of the point 0x in the undeformed configuration. The
deformation gradient tensor is defined as

t
0X = � tx/� 0x (1)

The multiplicative plasticity is based on the well-known Lee decomposition [9] of the defor-
mation gradient into an elastic and a plastic part as

t
0X = t

0Xe t
0Xp (2)

or conceptually

t
0X = t

�X
e �

0Xp (3)

The physical meaning, based on crystal plasticity, is that a unique intermediate (unloaded
and here also rigid-body motion free) local configuration � is established. It is important
to recognize that this intermediate configuration is the only one with direct access to both
independent elastic and plastic deformation measures and therefore represents an effective
configuration to develop the continuum formulation and perform the stress-point integration. Of
course as noted for example in References [15, 34], an arbitrary rotation (or even deformation)
may always be inserted in (2) to obtain for example t

0X= t
0XeQQT t

0Xp, but since QT does
not represent a plastic deformation t

0Xp+ :=QT t
0Xp cannot be considered as a pure plastic

deformation gradient as a consequence of slip mechanisms [15]. It would be somewhat awkward
to have a change of the plastic gradient without any plastic deformation, with an essentially
elastic behaviour and/or rigid body motion, although inclusion of the rigid body motions
in the plastic deformation gradient tensor has been explored in the literature. However, if
the integration algorithm is objective the stress results must be the same regardless of the
preferred option.

Note also that the decomposition equation (2) is continuum based. Consider the current
co-ordinates tx of a point given by

tx = 0x + tup + tue (4)

where tup are the ‘plastic displacements’ from the reference configuration to the conceptual
configuration, that is due to the plastic deformations caused by slip mechanisms in the contin-
uum (dissipative, irrecoverable) and tue are the displacements from the conceptual configuration
to the final (spatial) configuration due to elastic deformations and the rigid body motions in
the continuum (non-dissipative and in principle recoverable). Defining �xp≡ txp := 0x+ tup the
co-ordinates of a stress-free (and rigid body motion free) configuration, the gradient of (4) with
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respect to the reference configuration given by the co-ordinates 0x is

t
0X= I+ � tue

� �xp

� �xp

� 0x
+ � tup

� 0x
= I+ � tue

� �xp

(
I+ � tup

� 0x

)
+ � tup

� 0x

= I+ � tue

� �xp
+ � tup

� 0x
+ � tue

� �xp

� tup

� 0x
=
(

I+ � tue

� �xp

)(
I+ � tup

� 0x

)
= t

�X
e �

0Xp (5)

where t
�X

e := � tx/� �xp and �
0Xp := � �xp/� 0x have the usual meaning and I is the second order

identity tensor. Equation (5) may be interpreted also as a change of reference configuration
from 0x to �xp—i.e. the configuration � in the interpretation of Equation (3)—which is the
view exploited in the numerical algorithm below. Obviously only 0x and tx are tied to the
kinematic compatibility constraint.

Of course, we could define txe := 0x+ tue as the co-ordinates of a dislocation-free configu-
ration and obtain the reverse multiplicative decomposition, sometimes explored in the literature,
see for example Reference [15] and references therein. However, since unloading occurs over
the elastic part first, the decomposition (2) is far more natural and useful.

The spatial velocity gradient tl = � tv/� tx is

tl = t
0Ẋ t

0X−1 (6)

and its symmetric part, the spatial deformation rate tensor, is

td = 1
2

(
t
0Ẋ t

0X−1 + t
0X−T t

0ẊT) (7)

In view of Equation (2), Equation (6) can be decomposed as

l︸︷︷︸ = le + lp = Ẋe (Xe)−1︸ ︷︷ ︸ + Xe[Ẋp (Xp)−1 ] (Xe)−1︸ ︷︷ ︸
� tv/� tx = � tve/� tx + (

� tx/� �xp) [� �v̄p/� �xp] (� �xp/� tx
) (8)

where tv = tve + (� tx/� �xp
)

�v̄p. The vector tve
(

tx
) = tu̇e

(
tx
)

is the velocity with the plas-
tic deformations frozen, �v̄p ( �xp) = �u̇p ( �xp) is the velocity with the elastic deformations
and rigid body motions frozen and measured in the intermediate configuration, and tvp =(
� tx/� �xp

)
�v̄p = tu̇p

(
tx
)
.

In the equations to follow in this section the time left-indices will be omitted since no
confusion is possible given that all quantities are evaluated at time t . The tensor

L̄
p := Ẋp (Xp)−1 (9)

is the modified plastic velocity gradient, i.e. the velocity gradient in the intermediate configura-
tion. The over-bar denotes that the tensor operates in the intermediate stress-free configuration.
The symmetric part of L̄

p
is the modified plastic deformation rate tensor

D̄p := 1
2

[
Ẋp (Xp)−1 + (Xp)−T ẊpT] (10)

while its skew part is the modified plastic spin

W̄p := 1
2

[
Ẋp (Xp)−1 − (Xp)−T ẊpT] (11)
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The tensor D̄p is a consequence of the averaged Schmid rate of deformation tensors on all active
slip mechanisms [15], while W̄p is a consequence of the averaged Schmid rate of spin tensors
on all active slip mechanisms which for isotropically oriented grains is commonly assumed
to be zero. The pull-back of le to the intermediate configuration is L̄

e := XeTleXe = XeTẊe,
and the corresponding symmetric and skew parts are the modified elastic strain rate tensor and
modified elastic spin tensor

D̄e := 1
2

(
XeTẊe + ẊeTXe) , W̄e := 1

2

(
XeTẊe − ẊeTXe) (12)

The symmetric part of le is the spatial elastic deformation rate tensor de= 1
2

[
Ẋe (Xe)−1+

(Xe)−T ẊeT
]
.

Some physical meaning of these symmetric tensors may be obtained from the Almansi strain
tensors for each component of the deformation tensor defined in its proper configuration (the
spatial configuration for the elastic strain tensor and the stress-free configuration for the plastic
strain tensor):

ae = 1
2

[
I− (Xe)−T (Xe)−1 ]

, Āp = 1
2

[
I− (Xp)−T (Xp)−1 ] (13)

The corresponding Green–Lagrange strain tensors in their corresponding reference configurations
are written as

Āe = 1
2

(
XeTXe − I

)
, Ap = 1

2

(
XpTXp − I

)
(14)

The time derivatives of these tensors with their reference configurations fixed are

˙̄Ae = 1
2

(
ẊeTXe + XeTẊe) = D̄e, Ȧp = 1

2

(
ẊpTXp + XpTẊp) (15)

and the covariant push-forward to the spatial and intermediate configurations gives the following
quantities that may be viewed as Lie derivatives with Xe and Xp as gradients (i.e. relative to
their reference configurations):

Le
v (ae)= 1

2

[ (
Xe)−T ẊeT + Ẋe (Xe)−1 ] = de

L
p
v

(
Āp)= 1

2

[ (
Xp)−T ẊpT + Ẋp (Xp)−1 ] = D̄p

(16)

This view is exploited in the derivation of the consistent tangent moduli. If we define L̄,
the modified velocity gradient as the pull-back of l to the intermediate configuration, we
arrive at

L̄ = L̄
e + C̄eL̄

p
(17)

where C̄e = XeTXe is the right Cauchy–Green deformation tensor in the intermediate config-
uration. In passing we note that some of our definitions differ from those sometimes found
in the literature. For example D̄p is sometimes defined as D̄p = sym

(
C̄eL̄

p)
, see for example
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References [19, 35, 36]. Nonetheless we believe that our definitions are more useful in the
present work.

2.2. Dissipation inequality

The stress power in the reference volume may be expressed in the intermediate configu-
ration as

S̄ : L̄= S̄ : (L̄e + CeL̄
p
) (18)

= S̄ : (D̄e + W̄e)+ S̄ : C̄e (D̄p + W̄p) (19)

where S̄ is the pull-back of the Kirchhoff stress � to the intermediate configuration. Since S̄
is symmetric the product S̄ : W̄e = 0, i.e. the modified elastic spin (which also contains the
rigid-body spin) produces no work. Thus, we are left with

S̄ : L̄ = S̄ : D̄e + C̄eS̄ : (D̄p + W̄p) (20)

where � := C̄eS̄ is the non-symmetric Mandel stress tensor [37] forced by equilibrium of angular
momentum to fulfil the condition C̄e−1� = �TC̄e−1. This tensor may be split into a symmetric
part �s = 1

2

(
C̄eS̄+ S̄C̄e

)
and a skew one �w = 1

2

(
C̄eS̄− S̄C̄e

)
, yielding

S̄ : L̄= S̄ : D̄e + (�s + �w) : (D̄p + W̄p)
= S̄ : D̄e + �s : D̄p + �w : W̄p (21)

Thus, the symmetric Mandel tensor produces power on the modified plastic strain rate, whereas
the skew–symmetric Mandel tensor produces power on the modified plastic spin. This last work
is due to the kinematic coupling produced by the Lee decomposition and possible change of
elastic anisotropy axes. In case of isotropy or deformation through the orthotropy axes, the
term vanishes. Neglecting the effect of temperature, the dissipation inequality from the second
law of thermodynamics is

Ḋ= � : d− �̇

= S̄ : D̄e + �s : D̄p + �w : W̄p − �̇ � 0 (22)

where � is the free energy function. This free energy is a function of an elastic strain measure
and other internal variables. In view of (15) we will express � as a function of Āe and other
strain-like set of internal variables {�̄, �} (for simplicity, but without loss of generality, we
consider in the present work that the set is formed by a tensor and a scalar). Thus

�̇ = ��

�Āe
: D̄e + ��

��̄
: ˙̄�+ ��

��
�̇ (23)

and

Ḋ =
(

S̄− ��

�Āe

)
: D̄e − ��

��̄
: ˙̄�− ��

��
�̇+ �s : D̄p + �w : W̄p � 0 (24)
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Since the equality must hold for pure elastic deformations,

S̄ = ��/�Āe (25)

By analogy we define a set of stress-like internal variables as �̄ = −��/��̄ (backstress) and
�̄ = −��/�� (overstress). The reduced (plastic) dissipation inequality is now

Ḋp = �̄ : ˙̄�+ �̄�̇+ �s : D̄p + �w : W̄p � 0 (26)

If, as usual, we assume the existence of a yield function f (�, �̄, �̄) as the contour of allowed
regions of stresses (for simplicity but, without loss of generality, we assume in the present
work that the contour may be expressed in terms of a single function f ), the Lagrangian for
the constrained problem is L = Ḋp− ṫf , were t is the consistency parameter. If we claim that
the principle of maximum dissipation holds, the stress and other internal variables are such
that ∇L = 0, i.e.

∇L = 0 ⇒




�L

��s

= 0 ⇒ D̄p = ṫ
�f
��s

�L

��w

= 0 ⇒ W̄p = ṫ
�f

��w

�L

��̄
= 0 ⇒ ˙̄� = ṫ

�f
��̄

�L

��̄
= 0 ⇒ �̇ = ṫ

�f
��̄

(27)

These expressions are the associated flow and hardening rules for general elasto-plasticity at
finite strains.

2.3. Isotropic elasticity and the logarithmic stored energy function

We consider in the rest of this paper the special case when the elastic part is isotropic. In this
case, the eigenvectors of S̄, Āe and C̄e are coincident, the matrices commute, and therefore
�w = 0. The important consequence is that the plastic spin does not dissipate energy in isotropic
elasticity and that �s alone fulfils the equations of angular momenta. Otherwise, in general a
change in �w is needed to re-establish the equilibrium of angular momentum lost by the local
symmetric plastic flow.

On the other hand, due to the commutative property, using the right polar decomposition for
the elastic deformation tensor Xe = ReUe, the symmetric Mandel tensor may be written as

�s = 1
2

(
C̄eS̄+ S̄C̄e) = UeS̄Ue (28)

which in terms of the spatial Kirchhoff stress tensor may be written as

� = �s = UeXe−1�Xe−TUe = ReT�Re = �̄ (29)

i.e. in isotropic elasticity the Mandel stress tensor coincides with the usually named rotated
Kirchhoff stress tensor �̄, see for example References [21, 32, 33].
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One of the major difficulties encountered in the development of algorithms was due to
the multiplicative nature of large strain elasto-plasticity. Weber and Anand [20] and Eterović
and Bathe [21] circumvented the problem using hyperelastic stored energy functions based on
logarithmic strain measures. As mentioned, this function has been shown to correlate well with
experiments in the range of moderately large elastic strains, see Reference [30]. Denoting by
�i the principal elastic stretches, by J = det(X) the Jacobian determinant and by �̂i = J−1/3�i

the isochoric principal elastic stretches, we have:

W(�1, �2, �3) = U(J )+ �
3∑

i=1

(
ln �̂i

)2 (30)

where � is interpreted as the shear modulus and U(J ) is the volumetric contribution. Applying
the chain rule to Equation (25) in principal directions we obtain (no sum on i):

S̄i =
3∑

j=1

�W
� ln �j

� ln �j

�
( 1

2�2
i

) = 3∑
j=1

�W
� ln �j

�ij

�i�j

= 1

�2
i

�W
� ln �i

(31)

Taking into account that

3∑
i=1

ln �̂i = 0,
��̂i

��j

= J−1/3

(
�ij − 1

3

�̂i

�̂j

)
(32)

from (30),

�W
� ln �i

=
3∑

k=1
U′(J )

�J

��k

��k

� ln �i

+ 2�
3∑

k=1

1

�̂k

(
ln �̂k

)��̂k

��i

��i

� ln �i

=U′(J )J + 2� ln �̂i (33)

Using (28) and (31), the symmetric Mandel stress tensor for this isotropic stored energy function
results in

� ≡ �s ≡ �̄ = �W
�Ee
= JU′(J )I+ 2�Eed (34)

where Eed = ln
(
J−1/3Ue

)
and Ee = ln Ue = 1

3 (ln J )I+Eed are the Hencky deviatoric and total
strain tensors. The proportionality relationship between �̄ and Ee is one of the main ingredients
in the development of the additive plastic return algorithm. Thus, for non-deviatoric plasticity
JU′(J ) must also be linear in ln J . For deviatoric plasticity other functions U(J ) may still
be used but, as shown below, some modifications are necessary. Stored energy functions W
that result in stresses non-linear in the logarithmic strains, different from (30), may still be
used, but from a numerical point of view they may require an additional iterative process in
the stress integration algorithm.

In passing we note that S̄ : D̄e = � : C̄e−1D̄e. In the case of isotropic elasticity � = �̄ and
by straightforward use of the spectral decomposition, taking into account that the eigenvectors
of �̄ coincide with those of C̄e, it can be shown that �̄ : C̄e−1D̄e = �̄ : Ėe = ∑3

i=1 �i �̇i/�i

(with �i the principal spatial Kirchhoff stresses). Thus, we are left with the stress power and
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dissipation expressions of [21]:
Ḋ = �̄ : Ėe + �̄ : D̄p − �̇ � 0 (35)

Nonetheless this form of the dissipation inequality is not necessary for the development of the
algorithm since it is implicitly employed by Equation (34) through the use of the chain rule.

2.4. The spatial and principal stress space formulations

The large strain elastoplasticity based on isotropic elastic response and logarithmic stretches has
also been developed in the spatial configuration, see for example Reference [22]. Of course,
both formulations result into identical response predictions. Using the left polar decomposition
theorem Xe = VeRe, we define �e = ln Ve = ReEeReT. Since � = Re�̄ReT = JU′(J )I+ 2��ed

we have from (34)

� = �W
��e
= 2

�W
�be

be (36)

where be is the elastic Finger tensor and �ed is the deviatoric part of �e. The second identity in
(36) is obtained using the spectral decomposition. Also, using the symmetry of �̄, the isotropy
of elastic response yields the following identities:

�̄ : D̄p = Ue−1�̄Ue : L̄p = ReT�Re : UeL̄
p
Ue−1 = � : XeL̄

p
Xe−1 = � : lp = � : dp (37)

These expressions inserted in the dissipation inequality give for (27) the spatial formulation
encountered, for example, in Reference [22]. In fact, given an arbitrary rotation Q on the
intermediate (rotated) configuration, the following tensors can be defined:

�̃ := QT�̄Q, d̃p = QTD̄pQ, �̃e = QT ln UeQ (38)

and still �̃ = �W/��̃e, and � : dp = �̃ : d̃p. This property was used for the development of
a stress integration algorithm in the principal stress space, considering isotropic plasticity in
Reference [22] (simply set Q =∑3

i=1 Ni ⊗ ei , where Ni are the eigenvectors of �̄ and ei are
the fixed Cartesian unit vectors). However, as shown below, the integration in a reduced dimen-
sion of (three) principal stresses produces different results in the case of kinematic/combined
hardening due to the back-stress evolution.

3. NUMERICAL ALGORITHM INCLUDING PLASTIC SPIN

In this section we use the time super- and subscripts to clearly indicate the time integration used.

3.1. General formulation

From (9) the evolution of the plastic deformation gradient tensor is given by the differential
equation

t
0Ẋp = t L̄

p t
0Xp (39)
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168 F. J. MONTÁNS AND K. J. BATHE

whose backward-Euler exponential solution is given by

t+�t
0 Xp = exp

(
�t t+�t L̄

p) t
0Xp (40)

where the exponential function of a matrix exp
(
�t t+�t L̄

p)
is defined as

exp
(
�t t+�t L̄

p) := ∞∑
n=0

(
�t t+�t L̄

p)n
n! (41)

and for small steps such that h := ∥∥�t t+�t L̄
p∥∥>1 can be approximated by

exp
(
�t t+�t L̄

p) = I+ �t t+�t L̄
p + · · · + O

(
h2) (42)

Also, since t+�t L̄
p = t+�t D̄p + t+�tW̄p, we thus have

exp
(
�t t+�t L̄

p) = exp
(
�t t+�t D̄p) exp

(
�t t+�tW̄p)+ · · · + O

(
h2) (43)

yielding the following useful update formulas:

t+�t
0 Xp−1 = t

0Xp−1 exp
(− �t t+�tW̄p) exp

(− �t t+�t D̄p) (44)

and

t+�t
0 Xe = Xe∗ exp

(− �t t+�tW̄p) exp
(− �t t+�t D̄p) (45)

where the tensor Xe∗ ≡ t+�t
0 Xe∗ := t+�t

t X t
0Xe is the trial elastic deformation gradient (i.e. with

the plastic state frozen). For trial tensors we omit the left time superindex since they are
always evaluated at t + �t and no confusion is possible. In the present work we have used
for simplicity the same consistency parameter �t for both the symmetric and the skew parts.
However, t+�t D̄p and t+�tW̄p are frequently defined up to a scalar parameter and sometimes
different consistency parameters may be necessary. The polar decomposition theorem yields

Xe∗ = Re∗Ue∗ (46)

where Ue∗ is the trial (elastic) right stretch tensor and Re∗ is the trial rotation tensor.
Now defining

t+�t
tR

w := exp
(
�t t+�tW̄p) (47)

which is an orthogonal tensor and using (45) and Ce∗ := XeT∗ Xe∗ (the trial right Cauchy–Green
deformation tensor) we obtain

Ce∗ = t+�t
tR

wT exp
(
�t t+�t D̄p)t+�t

0Ce exp
(
�t t+�t D̄p)t+�t

tR
w (48)

= [ t+�t
tR

wT exp
(
�t t+�t D̄p)t+�t

tR
w
][

t+�t
tR

wT t+�t
0Ce t+�t

tR
w
]

×[ t+�t
tR

wT exp
(
�t t+�t D̄p)t+�t

tR
w
]

(49)
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The following tensors are next defined

t+�t
0C̃e := t+�t

tR
wT t+�t

0Ce t+�t
tR

w (50)

exp
(
�t t+�tD̃p) := t+�t

tR
wT exp

(
�t t+�t D̄p)t+�t

tR
w (51)

where t+�t
0Ce := ( t+�t

0 Xe
)T t+�t

0 Xe and is, of course, unknown. We also define Ee∗ (the trial

Hencky strain tensor) and t+�t
0Ẽe such that Ce∗ =: exp(2Ee∗) and t+�t

0C̃e =: exp
(
2 t+�t

0Ẽe
)
.

Using (42), Equation (49) may be re-written as

Ee∗ � t+�t
0Ẽe + �t t+�tD̃p (52)

with the additional restriction that h∗ := ∥∥Ee∗
∥∥>1, i.e. the elastic strains and incremental steps

are only moderately large, which typically holds in metal plasticity. Note that the restriction
h∗>1 is more restrictive than h>1. Defining the trial unrotated stress and backstress tensors

T̄∗ := �̄∗ := �W
�Ee∗

and B̄∗ := t�̄ (53)

from (271) and (51) we have

D̄p∗ =
�f
(
T̄∗ − B̄∗, t�̄

)
�T̄∗

(54)

and for the case of J2 plasticity t+�tD̃p = D̄p∗. Equation (52) is recognized as the incrementally
additive decomposition of logarithmic strains that allows for the use of the small strain algo-
rithms to perform the plastic return. In this plastic return the tensor t+�t

0Ẽe in (52)—or more
accurately the tensor t+�tT̄—is obtained. If the plastic spin is non-zero, the resulting strain
(stress) is a rotated one. The correct stress is then obtained using (50) and the integration of
any proper constitutive equation for the plastic spin. Which constitutive relation to use is in
general an open issue.

Taking the volumetric and deviatoric parts of (52) for the particular case of deviatoric
plasticity, the stress update is performed through the set of equations

�̄vol = �̄vol(ln J ) (55)

t+�tT̄d = 2� t+�t
0Ẽed, t+�t�̄ = t+�t

tR
w t+�tT̄ t+�t

tR
wT (56)

t+�t�̄ = t+�t
tR

w t+�tB̄ t+�t
tR

wT (57)

where (·)d denotes the deviatoric part. Note that the plastic spin is skew and produces no
work on symmetric tensors, hence the plastic spin is decoupled from the symmetric plastic
return, unless the specific constitutive equation employed for the plastic spin couples them. In
such a case a simultaneous integration should be performed. The spatial Kirchhoff stress and
backstress are finally obtained as

t+�t� = Re∗ t+�t�̄ReT∗ , t+�t� = Re∗ t+�t�̄ReT∗ (58)
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The integration may also be performed in any arbitrarily rotated configuration instead of that
given by Q = ReT∗ , which is an obvious consequence of the objectivity principle that must
hold even for the integration algorithm. We note that the use of our choice makes unnecessary
the update of the backstress by (582) since this rotated configuration is invariant to rigid
body motions.

The rotation component of the trial elastic gradient tensor is obtained by use of the right
polar decomposition theorem and formulas (45) and (42) as:

Re∗ = t+�t
0Re exp

(
t+�t

0Ee) exp
(
�t t+�t D̄p) exp

(
�t t+�tW̄p) exp

(−Ee∗
)

= t+�t
0Re t+�t

tR
w exp

(
t+�t

0Ẽe)t+�t
tR

wT

× t+�t
tR

w exp
(
�t t+�tD̃p)t+�t

tR
wT t+�t

tR
w exp

(−Ee∗
)

= t+�t
0Re t+�t

tR
w + · · · + O

(
h∗
)2 (59)

which yields

t+�t
0Re � Re∗ t+�t

tR
wT (60)

and so we note that the elastic part of the rotation t+�t
0Re changes with the incremental plastic

rotation t+�t
tR

w. The main tensors and configurations used in the stress integration algorithm are
depicted in Figure 1, whereas the layout of the stress integration algorithm is given in Table I.

Equation (52) constitutes the basis for the algorithm developed in this paper. However,
depending on the constitutive equation for the plastic spin, a different form may be sometimes

Figure 1. Configurations and tensors in the stress integration algorithm.
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Table I. Stress integration algorithm for the total Lagrangian (TL) and
updated Lagrangian (UL) formulations.

Given t�̄, t�̄, and ( t
0Xp−1 and t+�t

0X in TL) or ( t
0Xe and t+�t

tX in UL)

1. Obtain trial elastic tensor: Xe∗ = t+�t
0X t

0Xp−1 = t+�t
tX

t
0Xe

2. Compute trial Cauchy–Green deformation tensor Ce∗ = XeT∗ Xe∗
3. Obtain �∗i , N∗

i
⊗ N∗

i
and Ue∗ =

∑3
i=1 �∗i N∗

i
⊗ N∗

i
and Re∗ = Xe∗Ue−1∗ (J = det t+�t

0X > 0)
4. Compute rotated trial stress �̄∗ = T̄∗ = JU′(J )I+ 2�

∑3
i=1 ln

(
J−1/3�∗i

)
N∗

i
⊗N∗

i
and set B̄∗ = t�̄;

�̄∗ = t�̄

5.




Call small strains subroutine to perform stress integration returning :
t+�tT̄ (as stress), t+�tB̄ (backstress), �t t+�tD̃p (plastic strain incr.), t+�t�̄
t+�tD̃ (as constitutive tensor)

6. Integrate plastic spin obtaining t+�t
tR

w := exp(�t t+�tW̄p)

7. Rotate { t+�t�̄, t+�t�̄} = t+�t
tR

w{ t+�tT̄, t+�tB̄} t+�t
tR

wT

8. Obtain Cauchy stress J−1 t+�t� = J−1Re∗ t+�t�̄ReT∗
9. During iterative phase compute consistent tangent t+�tC(i) as shown in Section 4 (correct the

volumetric part of t+�tD̃ if necessary and push/pull t+�tC(i) as needed)
10. In convergence phase update t+�t

0Xp−1 = t
0Xp−1 exp(−�t t+�tD̃p)t+�tRwT if TL or t+�t

0Xe =
Xe∗ exp(−�t t+�tD̃p)t+�tRwT if UL formulation is used

more convenient, see Reference [38]. Equation (52) may be rearranged as

t+�t
tR

wEe∗ t+�t
tR

wT � t+�t
0Ee + �t t+�t D̄p (61)

and using t+�t
tR

w � I+ �t t+�tW̄p we obtain

t+�t
0Ee � Ee∗ − �t t+�t D̄p − �t t+�t� (62)

where t+�t� is the commutation tensor between Ee∗ and t+�tW̄p defined as

t+�t� := Ee∗ t+�tW̄p − t+�tW̄pEe∗ (63)

Equation (62) also preserves the convenient additive incremental decomposition of (logarithmic)
strains.

3.2. Isotropic hardening and mixed hardening without and with plastic spin

Some cases are of special interest and have been studied extensively in the literature. The
first case is isotropic hardening without plastic spin. In this simplest case which was proposed
by Weber and Anand [20] the principal directions of the trial strain (stress) tensor and the
final strain tensor are coincident. Thus t+�t

0Ẽe = t+�t
0Ee and t+�t

0Re � Re∗. Furthermore, since
the principal directions are fixed during the plastic flow, the return may be performed in the
principal directions space, i.e. reducing the dimension of the problem to three. In this setting
we define �̂princ := [�1, �2, �3]T as the vector of principal stress values and perform the integra-
tion using this vector, instead of using the full stress vector �̂ := [�11, �22, �33, �12, �23, �13]T.
Also, since Re plays no role in the formulation, it is sufficient to store only the elastic Finger
tensor instead of the plastic or elastic deformation gradient as shown by Simó [22].
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The second case is kinematic hardening when the plastic spin is zero. This formulation
was presented by Eterović and Bathe [21]. In such cases the formulation simplifies consider-
ably during the stress-integration phase since t+�t

0Ẽe= t+�t
0Ee and t+�t

0Re�Re∗. However, it is
necessary to note that in general anisotropic kinematic (or combined) hardening the principal
directions do not remain constant during the plastic flow, as a simple inspection of the update
formula (52) shows, since, as shown below, the principal directions of the backstress and the
rotated stress tensors are not, in general, coincident.

Given that for the isotropic hardening case the principal directions of the stress tensor
remain constant in an incremental step during the plastic flow, one may be tempted to extend
this setting to the kinematic/mixed hardening formulation in order to simplify the numerical
algorithm using the following assumptions:

• Assumption 1
The final stresses have the same principal directions as the trial stresses even for the
kinematic hardening case.
• Assumption 2

In addition to using Assumption 1, we simplify the model further by performing the
integration in a space of reduced dimension, using only the principal stress values, i.e.
the vectors �̂princ=[�1, �2, �3]T for the actual stresses and �̂princ=[�1, �2, �3]T for the
backstresses. This implies that the principal directions of the trial backstress tensor are
also the same as those of the trial stress tensor.

This simplified setting, with both assumptions, was considered in Reference [22], whereas
in Reference [24] the authors used Assumption 1 but using the full stress space for the plastic
return. However, these assumptions have some consequences in the constitutive model and in
the predictions obtained.

3.2.1. Consequences of Assumption 1. The first assumption includes inadvertently a plastic spin
for the general kinematic/mixed hardening cases. This plastic spin is given by the requirement
that the eigenvectors of t+�t

0Ee (or t+�t�̄) are the same as those of Ee∗. Thus, denoting by N∗i ,
t+�tÑi and t+�tNi the eigenvectors of Ee∗, t+�t

0Ẽe and t+�t
0Ee, respectively, the requirement is

t+�tNi ≡ t+�t
tR

w t+�tÑi = N∗i (64)

so the incremental plastic rotation is obtained by the explicit expression

t+�t
tR

w =
3∑

i=1
N∗i ⊗ t+�tÑi (65)

and the plastic spin is inherently given by

t+�tW̄p = 1

�t
ln
(

t+�t
tR

w
)

(66)

Let us denote by �N∗ the spin of the trial basis (i.e. ‘freezing’ the plastic flow) such

that Ṅ∗i = �N∗N∗i and by t+�t�Ñ the spin of the eigenbasis of t+�tT̄ at t + �t such
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that t+�t ˙̃Ni = t+�t�Ñ t+�tÑi . Then

t+�t�Ñ :=
3∑

i=1

t+�t ˙̃Ni ⊗ t+�tÑi and �N∗ :=
3∑

i=1
Ṅ∗i ⊗ N∗i (67)

and the plastic spin may be obtained from (65) and a simple inspection of Equations (39) and
(40) also as

t+�tW̄p = t+�t
tṘ

w t+�t
tR

wT = �N∗ + t+�t
tR

w
(

t+�t�Ñ
)T t+�t

tR
wT (68)

In the limit case when �t → 0 we have t+�t
tR

w = I+�t t+�tW̄p → I and tW̄p = �N∗− t�Ñ ,
which is the continuum value for this particular formulation. Therefore the spin tensor for the

vectors tNi is t�N ≡ t�Ñ+ tW̄p = �N∗ and, as expected, we have that the stress tensor rotates
in the same way as the trial stress tensor. This spin produces a special kind of anisotropic
kinematic hardening, different from the usual one as already mentioned in Reference [24].
As shown in the examples below, the predicted behaviour under non-proportional loading is
different from that obtained with the usual kinematic hardening model.

3.2.2. Consequences of Assumption 2. The use of Assumption 2 also introduces inadvertently
a rotation to the backstress. This hidden rotation takes place even during purely elastic defor-
mations, but affects the stresses only during plastic flow (and therefore it can be viewed as
some sort of plastic spin). To understand the reason of this additional rotation it is sufficient
to consider two consecutive solution steps.

Let tXe be the final, converged, elastic deformation gradient at the end of step t consisting
of a pure stretch tensor tUe. For simplicity we consider a 2D case

tXe = tUe =
[

�

1/�

]
(69)

The eigenvectors of this stretch tensor are

tN1 = [1, 0]T, tN2 = [0, 1]T (70)

Consider now that the trial deformation gradient Xe∗ := t+�t
t X tXe for the step t + �t is also

a pure stretch tensor Ue∗, with a different eigenbasis

Xe∗ = Ue∗ =
[

a b

b a

]
(71)

If b = ±√a2 − 1 the tensor is isochoric. Of course depending on the values of a, b the
incremental response may still be elastic. For instance, the values a = 1

2 (� + 1/�) and b =
1
2 (�− 1/�) give for (71) the same eigenvalues as those of (69). The incremental deformation

gradient is t+�t
t X = Ue∗ tUe−1 and the trial eigenvectors N∗i differ from tNi , i.e. for (71) we have

N∗1 = 1√
2
[1, 1]T, N∗2 = 1√

2
[−1, 1]T (72)

The (elastic) rotation tensors of the solid at both time steps are tRe = Re∗ = I. If the solution
is performed using the principal trial stress directions for the stress and the backstresses, the
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trial backstress eigenvectors at t + �t are given by N∗i instead of the correct tNi . Namely, the
backstress at the end of step t was

t�̄ =
2∑

i=1

t�i
tNi ⊗ tNi =

[ t�1

t�2

]
(73)

Of course since t�̄ is deviatoric in nature, t�2=− t�1 for the 2D case. The trial backstress
for step t + �t , which by definition should be �̄∗ = t�̄, takes instead the value

�̄∗ =
2∑

i=1

t�iN
∗
i ⊗ N∗i =

1

2

[ t�1 + t�2
t�1 − t�2

t�1 − t�2
t�1 + t�2

]
=
[

0 t�1

t�1 0

]
(74)

That is to say, although the eigenvalues are the same, the backstress has rotated the amount

t+�t
tR

� =
2∑

i=1
N∗i ⊗ tNi = 1√

2

[
1 −1

1 1

]
(75)

so that �̄∗ = t+�t
tR

� t�̄
(

t+�t
tR

�
)T. This effect was already noted in Reference [39], where also

more results are reported using a spatial algorithm and a Finger tensor based algorithm. We
note that this backstress rotation affects both the backstress and stress evolution during the
plastic return, since the backstress rotation takes place over the trial value. However, it is only
due to the trial stress rotation. Thus, it seems difficult to formulate a physical characterization
of this spin and a constitutive model that explicitly accounts for this spin.

3.2.3. Example. In order to exemplify the concepts discussed above, consider a 2D example
with two consecutive load steps. The (isochoric) deformation gradient for the first step consists
of the pure stretch tensor:

1X = 1Xe∗ = 1Ue∗ =
[

2

1
2

]
(76)

Consider as material constants �= 5, H ′ = 15 (a linear kinematic) and 	y = 4 as yield stress.
The trial stresses and backstresses are

1T̄∗ ≡ �̄∗ = 2� ln 1Ue∗ =
[

6.932 0

0 −6.932

]
, 1B̄∗ = 0 (77)

For the Mises yield function f := ∥∥T̄− B̄
∥∥−√ 3

2	y , the flow direction and consistency parameter
increment are

1D̄p = �f
�T̄
=

1T̄∗ − 1B̄∗∥∥1T̄∗ − 1B̄∗
∥∥ = 1√

2

[
1 0

0 −1

]
, 1�t = f

(
1T̄∗ − 1B̄∗

)
2�+ 2

3H ′
= 0.2452 (78)
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Therefore, the final solution for the step is

1T̄≡ 1�̄ = 1T̄∗ − 2�1�t 1D̄p =
[

5.198 0

0 −5.198

]
(79)

1B̄≡ 1�̄ = 1B∗ + 2
3H ′ 1�t 1D̄p =

[
1.734 0

0 −1.734

]
(80)

We consider now that the trial (isochoric) elastic deformation gradient for the second step is

2Xe∗ = 2Ue∗ =
[

1.6667 1.3333

1.3333 1.6667

]
(81)

The trial stresses and backstresses are

2T̄∗ = 2� ln 2Ue∗ =
[

0 10.986

10.986 0

]
, 2B̄∗ = 1�̄ =

[
1.734 0

0 −1.734

]
(82)

The stresses 2T̄∗ have the eigenvectors

2N∗1 = 1√
2
[1 1]T and 2N∗2 = 1√

2
[1 − 1]T (83)

The solution, following the same procedure as for step 1, is

2D̃p =
[−0.110 0.698

0.698 0.110

]
, 2�t = 0.541

2T̄=
[

0.597 7.204

7.204 −0.597

]
, 2B̄ =

[
1.137 3.782

3.782 −1.137

] (84)

If vanishing plastic spin is assumed, the solution is 2�̄= 2T̄ and 2�̄= 2B̄, as performed in
Reference [21].

If Assumption 1 is enforced, then we proceed to check the eigenvectors of 2T̄ and see that
they differ from those of 2T̄∗:

2Ñ1 = [0.736 0.677]T and 2Ñ2 = [0.677 − 0.736]T (85)

Hence, we apply the incremental plastic rotation

2
1Rw =

3∑
i=1

2N∗i ⊗ 2Ñi =
[

0.99915 −0.04133

0.04133 0.99915

]
(86)

to obtain

2�̄ = 2
1Rw 2T̄ 2

1RwT =
[

0 7.228

7.228 0

]
, 2�̄ = 2

1Rw 2B̄ 2
1RwT =

[
0.821 3.863

3.863 −0.821

]
(87)
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We note that in this case the eigenvectors of 2�̄ are 2N∗i (we have enforced it) but those of 2�̄
take on, in general, different values:

2N�
1 = [0.777 0.630]T and 2N�

2 = [0.630 − 0.777]T (88)

If Assumption 2 is enforced, the trial backstress in Equation (82) rotates in order to have
the same eigenvectors as those of 2T̄∗. The value of these backstresses are

2�̄∗ =
2∑

i=1

1�i
2N∗i ⊗ 2N∗i =

[
0 1.734

1.734 0

]
(89)

Hence, the results from Equations (82) to (88) are different (note that the stresses have the
same direction as with Assumption 1, but differ in magnitude)

2D̄p = 1√
2

[
0 1

1 0

]
, 2�t = 0.409, 2�̄ =

[
0 8.091

8.091 0

]
, 2�̄ =

[
0 4.628

4.628 0

]
(90)

Of course in this case the trial stress, trial backstress, final stress and final backstress tensors
have all the same eigenvectors. In fact the solution could have been performed using only the
eigenvalues.

In Figure 2 the integration process for the algorithms considered here is illustrated. In this
figure we (heuristically) represent tensors by 2D vectors with one ‘principal direction’ given
by the direction of the vector and one ‘principal value’ given by its modulus. It is seen that
all algorithms would give different results. It is remarkable that the backstress rotation, that
takes place in the integration algorithm performed in the reduced space, results in an effective
yield surface (the one detected using the test on the trial yield function 2f∗ = 0 for all the
possible trial states) similar to that obtained using isotropic hardening, as shown in Figure 2(e).
In the six-dimensional space a similar effect is observed, although, since in this case negative
eigenvalues are possible, a stress reversal would result in plastic flow. The practical consequence
of these observations is illustrated in Section 5, especially in the numerical examples under
cyclic shearing.

We finally note that both special types of kinematic/mixed hardening could also be per-
formed in infinitesimal strain analysis, but such approaches are not a common choice. Hence,
the selection of this model in finite deformation analysis seems to be based only on numerical
simplicity. The more general formulation presented in this paper also allows for the use of
anisotropic yield functions. Note that no assumption has been made so far on the shape of
the yield function and that, frequently, the elastic properties are considered isotropic, even
in the case of anisotropic plastic properties developed in cold-worked metals, see for exam-
ple References [40, 41] and for an experimental confirmation [33, 42]. If elastic anisotropic
properties are to be modelled, some modifications to the algorithm are necessary, but the kine-
matics of the formulation remains essentially the same, see Reference [38]. Also, the more
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Figure 2. Evolution of the stresses and backstresses for the ‘models’ without and with Assumptions 1
and 2: (a) Step 1—all models; (b) step 2—usual kinematic hardening without plastic spin; (c) step
2—kinematic hardening with plastic spin; (d) step 2—Integration in the reduced space given by the
line O- 2T̄∗; and (e) step 2—‘effective’ yield surface for integration in reduced space; obtained by

rotating the trial yield surface 2f∗ about the origin O.

sophisticated implicit multilayer kinematic hardening models [43, 44] or bounding surface mod-
els [45] for a better description of cyclic plastic behaviour can be inserted in the formulation
with ease.
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4. ALGORITHMIC CONSISTENT TANGENT MODULI

Although a numerically evaluated algorithmic constitutive tangent is possible by means of
a perturbation process of the stress-integration algorithm as shown in References [46, 47],
the development of the (analytical) consistent tangent moduli should not be regarded simply
as an important computational convenience to (possibly) reduce the computational time. The
derivation also allows a more detailed analysis of the algorithm itself, which frequently gives
further insight into the formulation.

4.1. General case

During the iterative process, the trial elastic state changes as shown in Figure 3. The updated
co-ordinates are

t+�tx(i+1) = t+�tx(i) + �u(i+1)
(i) (91)

where � is a parameter which has the value � = 1 in Equation (91) and u(i+1)
(i) is the increment

between iterations. The total and trial deformation gradient tensors may be expressed as (just
following the same steps to obtain Equation (5))

t+�t
0 X(i+1) =X(i+1)

(i)
t+�t

0 X(i) (92)

Xe(i+1)∗ =X(i+1)
(i) Xe(i)∗ (93)

Figure 3. Main configurations involved in the linearization of the algorithm around iteration (i).
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where X(i+1)
(i) = I+ �∇(i)u

(i+1)
(i) and ∇(i) = �/� t+�tx(i) denotes the gradient with respect to the

configuration for iteration (i). In the finite element formulation we wish to obtain the tensor
t+�tC such that (see Reference [32])

J−1L
(i)

�
t+�t�(i) = J−1 t+�tC(i) : ∇s

(i)
t+�tu(i+1) (94)

where ∇s
(i) is the symmetric gradient and L

(i)

� (·) is the incremental Lie derivative at iteration
(i) defined for contravariant tensors as

L
(i)

� (contr)(i) = t+�t
0 X(i)

[
d

d�

(
t+�t

0 X(i+1)−1(contr)(i+1) t+�t
0 X(i+1)−T

)∣∣∣∣
�=0

]
t+�t

0 X(i)T (95)

and for covariant tensors as

L
(i)

� (cov)(i) = t+�t
0 X(i)−T

[
d

d�

(
t+�t

0 X(i+1)T(cov)(i+1) t+�t
0 X(i+1)

)∣∣∣∣
�=0

]
t+�t

0 X(i)−1 (96)

Given a preimposed fixed (during the iteration process) plastic deformation tensor t
0Xp, it

is easily checked that since t+�t
0 X(i+1) = Xe(i+1)∗ t

0Xp, expressions (95) and (96) may be used

employing either t+�t
0 X or Xe∗; this fact follows also from a comparison of Equations (92)

and (93).
Defining the trial elastic Almansi strain tensor as

a∗ = 1
2

(
I− Xe−T∗ Xe−1∗

)
(97)

and the pull-back to the stress free configuration as Ā(i+1)∗ = 1
2

(
Xe(i)T∗ X(i+1)T

(i) X(i+1)
(i) Xe(i)∗ − I

)
,

the Lie derivative for the current one is (see Reference [32] for a different but equivalent
approach)

L
(i)

� a(i)∗ = Xe(i)−T∗

[
d

d�
Ā(i+1)∗

∣∣∣∣
�=0

]
Xe(i)−1∗ = ∇s

(i)
t+�tu(i+1) (98)

i.e. d(i) :=L
(i)

� a(i) =L
(i)

� a(i)∗ .
Furthermore, given a superimposed arbitrary rotation Q, it is easily seen that,

L
(i)

� (·)(i) = QTL
(i)
Q

(
Q(·)QT)(i) Q (99)

where L
(i)
Q (·)(i) coincides with (95) or (96) upon substitution of t+�t

0 X by t+�t
0X̃ = Q t+�t

0 X.

Common meaningful choices are, as already mentioned, Q = ReT∗ , Q = I and Q = RprincT∗ .

Hence, it is simply necessary to obtain the rotated tensor t+�tC
(i)ijkl
Q = Q.i

a.Q
.j
b.Q

.k
c.Q

.l
d.

t+�tC(i)abcd such that

L
(i)
Q

(
t+�t�̄(i)

) = t+�tC
(i)
Q :L(i)

Q

(
t+�tā(i)∗

)
(100)

where t+�t�̄(i) = Q t+�t�(i)QT and t+�tā(i)∗ = Q t+�ta(i)∗ QT are the rotated quantities. In order
to simplify the notation we will denote derivatives with respect to the parameter � as time

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 63:159–196



180 F. J. MONTÁNS AND K. J. BATHE

derivatives and the iteration index (i) will be omitted. Also, to keep the formulation simple
and concrete, we consider the case Q = ReT∗ , but the same procedure applies to any other case.

The Lie derivative of the rotated stress tensor and the rotated Almansi strains may be
written as

L
(i)
Q

(
t+�t�̄

)
= Ue∗ t+�t ˙̄SUe∗, L

(i)
Q

(
t+�tā∗

)
= Ue−1∗ ˙̄A∗Ue−1∗ (101)

where t+�tS̄ is the pull-back of the spatial Kirchhoff stress tensor (and of the rotated one) to the
intermediate stress-free configuration. It is noted that the pull-back by Xe∗ of the eigenvectors
of t+�t� do not necessarily form an orthogonal basis in the Euclidean metric. In view of (101),
the tensor t+�tC

ijkl
Q may be obtained as the push forward by Ue∗ of the tensor t+�tC̄ such that

t+�t ˙̄S = t+�tC̄ : ˙̄A∗ (102)

Note that if Q = ReT∗ then

t+�tCijkl = Xei.∗.aX
ej.
∗.bX

ek.∗.cXel.
∗.d

t+�tC̄abcd (103)

and if t+�tCS is the material fourth-order constitutive tensor such that t+�tṠ = t+�tCS : t+�tȦ
(with S the second Piola–Kirchhoff stress tensor and A the Green–Lagrange strain tensor), then

t+�tC
ijkl
S = 0

t+�tX
pi.
.a

0
t+�tX

pj.

.b
0

t+�tX
pk.
.c

0
t+�tX

pl.

.d
t+�tC̄abcd (104)

The desired tensor depends on whether we are using the updated Lagrangian (UL) formulation
or the total Lagrangian (TL) formulation.

We are now left only with the need for the computation of t+�tC̄ defined by (102). We
note that

t+�tS̄ = Xe−1∗ t+�t�Xe−T∗ (105)

For the case at hand with Q = ReT∗ , using (581) we are left with

t+�tS̄ = Ue−1∗ t+�t�̄Ue−1∗ (106)

The �-derivative of t+�tS̄ is written as

t+�t ˙̄S = ˙
Ue−1∗ t+�t�̄Ue−1∗ + Ue−1∗ t+�t ˙̄�Ue−1∗ + Ue−1∗ t+�t�̄

˙
Ue−1∗ (107)

Using

�N∗ :=
3∑

i=1
Ṅ∗i ⊗ N∗i =

3∑
i=1

3∑
j=1

�N∗
ij N∗i ⊗ N∗j (108)

The derivative of the inverse of the trial stretch tensor is obtained in spectral form as

˙
Ue−1∗ =

3∑
i=1
− 1

�∗2i

�̇
∗
i N∗i ⊗ N∗i +

3∑
i=1

∑
j �=i

(
1

�∗j
− 1

�∗i

)
�N∗

ij N∗i ⊗ N∗j (109)
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whereas the derivative of the trial elastic Green–Lagrange strain is

˙̄A∗ =
3∑

i=1
�∗i �̇
∗
i N∗i ⊗ N∗i +

3∑
i=1

∑
j �=i

1
2

(
�∗2j − �∗2i

)
�N∗

ij N∗i ⊗ N∗j (110)

Therefore, using the customary arguments, the following geometric tensor U∗ relates both rates

as
˙

Ue−1∗ = U∗ : ˙̄A∗:

U∗ =
3∑

i=1
− 1

�∗3i

M∗i ⊗M∗i +
3∑

i=1

∑
j �=i

2
1/�∗j − 1/�∗i
�∗2j − �∗2i

M∗i
S�M∗j (111)

where for short we defined (no sum on i, j )

M∗i :=N∗i ⊗ N∗i (112)

M∗i
S�M∗j := 1

4 (N∗i ⊗ N∗j + N∗j ⊗ N∗i )⊗ (N∗i ⊗ N∗j + N∗j ⊗ N∗i ) (113)

The tensor U∗ has minor and major symmetries and can, therefore, be stored in the commonly
reduced form used for constitutive tensors. For the special case �∗i = �∗j it is straightforward
to show that

lim
�∗j→�∗i

2
1/�∗j − 1/�∗i
�∗2j − �∗2i.

= − 1

�∗3i

(114)

Hence (107) may be rewritten as

t+�t ˙̄S = t+�tT : ˙̄A∗ +
(
U∗ : ˙̄A∗

) : t+�tZ̄+ t+�tZ̄T : (U∗ : ˙̄A∗) (115)

where the unsymmetric two-point stress tensor t+�tZ̄ is defined as (note that �̄∗ and Ue−1∗
commute in isotropic elasticity but t+�t�̄ and Ue−1∗ do not commute in general)

t+�tZ̄ := t+�t�̄Ue−1∗ (116)

and the fourth-order tensor t+�tT, yet to be determined, is defined such that

Ue−1∗ t+�t ˙̄�Ue−1∗ = t+�tT : ˙̄A∗ (117)

From Equation (117), by a straightforward application of the chain rule, it is easily checked that

t+�tT = J∗ : t+�tD : E∗ (118)

In this expression J∗ is a geometric tensor based on the trial stretch that maps contravariant
tensors from the rotated to the stress-free configuration:

J∗ = Ue−1∗ � Ue−1∗ , i.e. (J∗)ij....kl = 1
2 (U e−1∗ )i..k(U

e−1∗ )
j.
.l + 1

2 (U e−1∗ )i..l(U
e−1∗ )

j.
.k (119)

where the lowering index operation is (U e−1)i..k = (U e−1)inInk and I is the metric tensor (the
identity in the Euclidean space used). The tensor J∗ has also the minor symmetries that allow
compact matrix storage. The tensor E∗ in (118) is also a geometrical tensor based on trial
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measures, i.e. a fourth-order tensor such that Ėe∗ = E∗ : ˙̄A∗. Using the spectral decomposition
of Ee∗, the derivative is written as

Ėe∗ =
3∑

i=1

1

�∗i
�̇
∗
i N∗i ⊗ N∗i +

3∑
i=1

∑
j �=i

(
ln �∗j − ln �∗i

)
�N∗

ij N∗i ⊗ N∗j (120)

and by (110), E∗ is expressed in spectral form as

E∗ =
3∑

i=1

1

�∗2i

M∗i ⊗M∗i +
3∑

i=1

∑
j �=i

2
ln �∗j − ln �∗i
�∗2j − �∗2i

M∗i
S�M∗j (121)

In the special case of �∗i = �∗j it is easily checked that

lim
�∗j→�∗i

2
ln �∗j − ln �∗i
�∗2j − �∗2i

= 1

�∗2i

(122)

Finally, it is noted that in (118), the tensor t+�tD relates the derivative of t+�t�̄ with that
of Ee∗ and is the only one in the computation of C̄ that is material-dependent. If this tensor is
known the constitutive tensor in (102) is written in component form as

C̄ijkl = (J∗)ij....mn

(
t+�tD

)mnpq
(E∗)..kl

pq.. + (U∗)inkl
(
Z̄
).j
n.
+ (Z̄).i

n.
(U∗)njkl (123)

which has also minor symmetries. The spatial or material tensor may be obtained through
(103) or (104).

The tensor t+�tD coincides with the constitutive tensor returned by the small strain plastic
correction algorithm in the frequent assumption of no plastic spin

(
t+�t�̄ = t+�tT̄

)
. Otherwise,

in the presence of plastic spin t+�tD needs the following slightly more elaborate formulation.
Taking the derivative of (562):

˙̄�= t+�t
tR

w t+�t ˙̄T t+�t
tR

wT + t+�t
tṘ

w t+�t
tR

wT t+�t�̄+ t+�t�̄ t+�t
tR

w t+�t
tṘ

wT (124)

= t+�t
tR

w t+�t ˙̄T t+�t
tR

wT + t+�tW̄p t+�t�̄− t+�t�̄ t+�tW̄p (125)

Following similar steps as for expression (115) and defining

t+�tD̃w :=Rw : t+�tD̃ (126)

Rw := t+�t
tR

w � t+�t
tR

w (127)

where t+�tD̃ is the unmodified small strain constitutive tensor that relates t+�t ˙̄T to Ėe∗ and

the tensor t+�tD̃w relates t+�t
tR

w t+�t ˙̄T t+�t
tR

wT with Ėe∗ (i.e. is the small strains constitutive
tensor in the updated configuration). The tensor t+�tD may be written in component form as

t+�tDijkl = t+�tD̃ijkl
w + t+�tW i.kl

.n..
t+�t�̄nj − t+�t�̄in t+�tW

.jkl
n... (128)

where t+�tW is such that

t+�tW̄p = t+�tW : Ėe∗ (129)
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which obviously depends on the constitutive equations and integration algorithm for the plastic
spin. Again, t+�tD̃w, Rw and

[
t+�tW i.kl

.n..
t+�t�̄nj − t+�t�̄in t+�tW

.jkl
n...

]
have minor symmetries

and can be stored/operated on in compact format.
It it worth to mention that the previous constitutive tangent is tied to the assumption that

the volumetric part of the stored energy function is of the form

U(J ) = 1
2�(ln J )2 (130)

where � is interpreted as the bulk modulus. The pressure for this function is p = �J−1 ln J .
In deviatoric plasticity the flow is isochoric and it is necessary to resort to mixed formulations
in order to avoid locking [32, 48], see also Reference [49] for an assumed strain method.
An unrestricted u-p formulation that can be used for arbitrary U(J ) expressions requires an
evaluation of the Jacobian determinant J̃ corresponding to the separately interpolated pressure
p̃. For the mentioned U(J ), the inversion yields a Lambert W function [50] of non-trivial
evaluation. In order to avoid these computations, given that the elastic deformations are small,
we can use

U(J ) = �[1+ J (ln J − 1)] (131)

with the pressure p = � ln J . This function—in contrast with (130)—is convex, i.e. U′′(J ) =
�/J > 0 and has the correct asymptotic values: U(1) = 0, U′(1) = 0, U′′(1) = �, U(J→∞)→
∞, U′(J→∞)→∞. However, in the compression limit U(J→ 0)→ �, so the companion
function C(J ) = U(1/J ) must be used in the large compression regime (which unfortunately
also requires the evaluation of the Lambert W function):

C(J ) = �
[
1− J−1(ln J + 1)

]
, 0 < J � 1 (132)

This function is also convex in the compression regime since C′′(J ) = �J−3(1 − 2 ln J ) > 0
and has the limit values: C(1) = 0, C′(1) = 0, C′′(1) = �, C(J→ 0)→∞, C′(J→ 0)→−∞,
C′′(J→ 0)→∞.

Obviously, the use of an arbitrary U(J ) requires that the volumetric part of the tangent be
corrected. To perform such correction, we subtract the volumetric part from the small strains
tangent t+�tD̃← t+�tD̃− �I⊗ I, use the deviatoric stresses in (116), and then correct in the
UL formulation the final large strain tensor as:

t+�tC← t+�tC+ J 2U′′I⊗ I+ JU′(I⊗ I− 2I) (133)

and in the TL formulation as:

t+�tCS ← t+�tCS + J 2U′′C−1 ⊗ C−1 + JU′
(
C−1 ⊗ C−1 − 2C−1 � C−1) (134)

4.2. Isotropic hardening and mixed hardening without and with plastic spin

In the case of isotropic hardening and kinematic/mixed hardening with the stress integra-
tion performed in the principal stress space the constitutive tangent simplifies considerably.
The algorithmic constitutive tangent for these special cases was obtained by Simó [22] who
used the procedure of hyperelasticity formulated in principal stretches, see References [51, 52].
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In these cases the tangent is written as

t+�tC(i) =
3∑

i=1

3∑
j=1

(
� t+�t�i

� ln �∗j
− 2 t+�t�i�ij

)
m∗i ⊗m∗j +

3∑
i=1

∑
j �=i

2
t+�t�i�

∗2
j − t+�t�j�

∗2
i

�∗2i − �∗2j

m∗i
S�m∗j
(135)

where m∗i = n∗i ⊗ n∗i are the spatial trial eigenbases and � t+�t�i/� ln �∗j is the small strain
algorithmic tangent in the reduced principal stress space. The special case �∗i = �∗j is given by

lim
�∗j→�∗i

2
t+�t�i�

∗2
j − t+�t�j�

∗2
i

�∗2i − �∗2j

= � t+�t�j
� ln �∗j

− � t+�t�i

� ln �∗j
− 2 t+�t�i (136)

However, the above equations are only valid if the stress integration is performed in the
reduced space of the three principal values, i.e. using Assumptions 1 and 2 of Section 3.2.
If only Assumption 1 is considered, the principal stress directions are kept frozen during the
plastic return, and the stress integration should be performed in the full stress space since the
principal directions of the back-stress are not the same as those of the stress. In such a case,
the general expression derived in the previous subsection must be used. The only unknown in
that expression is the tensor t+�tW in (129) which depends on the constitutive relation for the
plastic spin. The plastic spin for this particular case may be obtained from (68) and written as

t+�tW̄p =
3∑

i=1

∑
j �=i


1−

t+�t�Ñ
ij

�N∗
ij


�N∗

ij N∗i ⊗ N∗j (137)

Using the definition in (129) and (140) we arrive at

t+�tW =
3∑

i=1

∑
j �=i

1− t+�t�Ñ
ij /�N∗

ij

ln �∗j − ln �∗i
N∗i ⊗ N∗j ⊗ 1

2

(
N∗i ⊗ N∗j + N∗j ⊗ N∗i

)
(138)

where t+�t�Ñ
ij /�N∗

ij is known since it can be extracted from the small strain constitutive tangent
as follows. Consider the derivatives of the rotated stress tensor and the trial logarithmic strains
(similar expressions apply for the spatial formulation):

˙̄T=
3∑

i=1

t+�t�̇i
t+�tÑi ⊗ t+�tÑi +

3∑
i=1

∑
j �=i

(
t+�t�j − t+�t�i

)
t+�t�Ñ

ij
t+�tÑi ⊗ t+�tÑj

(139)

Ėe∗ =
3∑

i=1

d

d�
(ln �∗i )N∗i ⊗ N∗i +

3∑
i=1

∑
j �=i

(
ln �∗j − ln �∗i

)
�N∗

ij N∗i ⊗ N∗j (140)

The rotated �-derivative of T̄ is

t+�t
tR

w t+�t ˙̄T t+�t
tR

wT =
3∑

i=1

t+�t�̇iN∗i ⊗ N∗i +
3∑

i=1

∑
j �=i

(
t+�t�j − t+�t�i

)
t+�t�Ñ

ij N∗i ⊗ N∗j

(141)
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The spectral form of the constitutive tangent in (126) that relates both expressions is

t+�tD̃w =
3∑

i=1

3∑
j=1

� t+�t�i

� ln �∗j
M∗i ⊗M∗j +

3∑
i=1

∑
j �=i

t+�t�j − t+�t�i

ln �∗j − ln �∗i

t+�t�Ñ
ij

�N∗
ij

M∗i
S�M∗j (142)

Thus, taking the dot product with
(
N∗i ⊗ N∗j + N∗j ⊗ N∗i

)
(i �= j) we arrive at

t+�t�Ñ
ij

�N∗
ij

= ln �∗j − ln �∗i
t+�t�j − t+�t�i

t+�t
(
D̃w

)∗
ij

(143)

where for short
t+�t

(
D̃w

)∗
ij
:= 1

2

(
N∗i ⊗ N∗j + N∗j ⊗ N∗i

) : t+�tD̃w :
(
N∗i ⊗ N∗j + N∗j ⊗ N∗i

)
(144)

The tensor t+�tW does not have minor symmetry in the first indices due to the lack of
symmetry of t+�tW̄p, but since it is skew–symmetric in such indices, the tensor may still be
stored in compact matrix format if the skew symmetry is accounted for during operations with
the tensor. It is easy to see from Equations (128), (138) and (142) that the effect of t+�tW

on t+�tD̃w is to substitute the geometric part which contains terms in t+�t�Ñ
ij /�N∗

ij by terms

with the final t+�t�Ñ
ij /�N∗

ij = 1.

5. ILLUSTRATIVE SOLUTIONS

We consider in this section some numerical examples to illustrate the concepts discussed above.
In the first two examples we study the behaviour predicted for one finite element under isochoric
stretching and simple shear. The third and fourth examples are oriented towards demonstrating
the performance of the algorithms in some more complex situations. The results for four
different models are shown:

1. Pure isotropic hardening, which we label (IH) and for which all formulations yield exactly
the same results given that the principal directions do not change during the plastic flow.

2. Pure kinematic hardening with no plastic spin, W̄p = 0, which we label (KH), i.e. the
model given by Eterović and Bathe [21] for pure kinematic hardening.

3. Pure kinematic hardening with the plastic flow performed with the principal stress direc-
tions fixed, which we label (KH w/PS), i.e. with W̄p given by (68) and integrated using
the full stress space. In this formulation, which we also refer to as a ‘model’, we enforce
Assumption 1 of Section 3.2, but not Assumption 2.

4. Pure kinematic hardening with the stress integration performed in the reduced space of
the three principal stresses, which we label (KH in RS), i.e. the model by Simó [22],
which inadvertently introduces a backstress rotation. In other words, in this ‘model’, we
enforce Assumptions 1 and 2 of Section 3.2.

5.1. Isochoric stretching

As a first example consider the isochoric stretching example, already considered in Reference
[21]. The problem is modelled by a bilinear plane strain element and the imposed deformation
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gradient is

t
0X =


�(t)

1/�(t)

1


 (145)

The material constants are � = 166.67MPa, � = 76.92MPa, 	0 = 0.75MPa (initial yield stress)
Hl = 2.0 MPa (linear hardening modulus). The predictions using either isotropic or kinematic
hardening are shown in Figure 4. The results for all the above-mentioned models, as of course
anticipated, are coincident.

Figure 5 shows the predictions when a stretching cycle is performed. As could be inferred,
the three kinematic hardenings present exactly the same response since no rotation of the
principal stress directions takes place.

5.2. Simple shear

As a second more revealing example we have selected a simple shear, four node finite element
in which the deformation gradient is given by

t
0X =


1 
(t)

1
1


 (146)

also considered in References [21, 39] (a similar problem can be also found in Reference [22]).
The material constants are the same as in the previous example. The analysis has been performed
using the backward Euler scheme and the results are given for comparison purposes. For

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Incremental stretch (λ -1)

C
au

ch
y 

st
re

ss
 σ 

xx
 (

M
P

a)

IH
KH      
KH w/ PS
KH in RS

Isochoric stretching

Figure 4. Predictions for the isochoric stretching example.

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 63:159–196



AN ALGORITHM FOR MIXED HARDENING AND PLASTIC SPIN 187

-0.5 0 0.5

-3

-2

-1

0

1

2

3

C
au

ch
y

st
re

ss
σ xx

(M
P

a)

-0.5 0 0.5
-3

-2

-1

0

1

2

3

-0.5 0 0.5

-3

-2

-1

0

1

2

3

-0.5 0 0.5
-3

-2

-1

0

1

2

3

Incremental stretch (λ-1) Incremental stretch (λ-1)

C
au

ch
y

st
re

ss
 σ

xx
(M

P
a)

IH      
KH      
KH w/ PS
KH in RS

Figure 5. Predicted behaviour for isochoric stretching cycles.

a detailed analysis of the errors induced by the use of the backward Euler integration algorithm
without plastic spin and results using the trapezoidal rule see Reference [31].

Figure 6 shows the results obtained. Except for the case of classical kinematic hardening
(KH), the shear stress plots are almost identical for the range of deformations shown and
essentially linear, as already noted in Reference [22]. In the case of kinematic hardening
without plastic spin (KH) an oscillatory stress prediction is obtained, in contrast with the
predictions using the other kinematic hardening models (KH w/PS) and (KH in RS). The
presence of oscillatory response in kinematic hardening models is a well known fact also
observed experimentally, see for example References [53–58] and references therein, and it is
not only due to the use of the Jaumann rate as sometimes concluded. The inclusion of a plastic
spin in kinematic hardening has been explored in the literature [53–58] in order to control
the oscillatory response of this type of hardening. Of course, it is not our goal to elaborate
on which model is more adequate for a specific material, but only to highlight the different
predictions obtained. In fact, different results would have been obtained with other possible
constitutive equations for the plastic spin and/or mixed hardening models.

The predictions of the other stresses are very different even for moderate deformations, as
it can be seen in Figure 7 for the 	yy component. The basic kinematic hardening model (KH)
presents in this component also an oscillatory behaviour as it is well known. The difference
between the (KH) model and the (KH w/PS) model is only due to the plastic spin. It can be
seen that there is also a difference between the response obtained using the kinematic hardening
model with the plastic flow directions fixed using the full stress space (KW w/PS) and that
using the reduced principal stress space (KH in RS). This difference can only be attributable
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Figure 6. Predicted Cauchy shear stresses by the different hardening formulations for the case of
simple shear monotonic loading.
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Figure 7. Predicted Cauchy normal stresses 	yy by the different hardening formulations for the case
of simple shear monotonic loading.

to the effect of the different plastic rotations. Also note that the algorithm performed in the
principal stress space (KH in RS) presents almost identical results to those using the isotropic
hardening assumption.
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The cyclic behaviour of these models for a shearing cycle is shown in Figure 8. It is
somewhat surprising that under cyclic shearing the models (KH w/PS) and (KH in RS) give a
cyclic behaviour close to the response obtained using isotropic hardening, and only the classical
kinematic hardening model (KH) yields a behaviour with no growth of the hysteresis loop. To
further study the influence of the hardening in cyclic plasticity, the same plots are calculated
but with a larger plastic hardening modulus of Hl = 20 MPa, see Figure 9. In this figure, it
is seen that upon reversal, the models (KH w/PS) and (KH in RS) behave initially as the
usual kinematic hardening model, but soon the plastic rotation orientates the flow so that the
response becomes like we observe when using the isotropic hardening assumption. Of course,
this is probably an undesirable behaviour if pure kinematic hardening is to be modelled. Thus,
testing the cyclic behaviour is important in order to check the suitability of different plastic
spin expressions, since to model cyclic loading is the actual motivation for using kinematic
hardening models.

5.3. Necking of a cylindrical bar

The necking of a cylindrical bar has been studied for example in References [13, 22], see
also the references therein. Only a quarter of the specimen of length 53.334 mm and radius
6.413 mm is modelled due to symmetry conditions. The bulk and shear moduli are 164.2 and
80.19 GPa, respectively. The initial yield stress is �0 = 0.45 GPa. The hardening is modelled
using the SPM method (see Reference [59]). The material loading function is given by the
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Figure 8. Predicted behaviour using the different hardening models for simple shear cyclic
loading. Hardening modulus Hl = 2 MPa.
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Figure 9. Predicted behaviour using the different hardening models for simple shear cyclic
loading. Hardening modulus Hl = 20 MPa.

expression

�̂
(
Ēp) = �0 + (�∞ − �0)

[
1− exp

(−�Ēp)]+HlĒ
p (147)

and the isotropic and kinematic hardening moduli are obtained, respectively, as

K ′
(
Ēp)=M �̂′

(
Ēp) (148)

H ′
(
Ēp)= (1−M)�̂′

(
Ēp) (149)

In these expressions Ēp is the effective logarithmic plastic strain, M is the mixed hardening
parameter, Hl is the linear hardening modulus, and �∞, � are the saturation law material parame-
ters. For the case at hand, these parameters are: Hl = 0.13GPa, �∞ = 0.715GPa and � = 16.93.
For the volumetric response equation (131) is used. The specimen is modelled using nine-noded
mixed (Q9/3) axisymmetric elements (see Reference [32]). The mesh and the final configura-
tions for isotropic hardening, classical kinematic hardening and kinematic hardening with flow
in principal directions (KH in RS) are shown in Figure 10. The shading scale corresponds to
equivalent logarithmic plastic strains. The neck radius reductions are presented in Figure 11.

As it could have been anticipated from the results of the previous example, the predictions
using the isotropic hardening model (IH) and the kinematic hardening model in principal
directions (KH in RS) are very similar—the (KH w/PS) results are almost identical to those
of (KH in RS) and thus not shown—, but different from those of the kinematic hardening
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Figure 10. Necking of a circular bar. From left to right: Original mesh; final configurations and
equivalent logarithmic plastic strains for isotropic hardening (IH), classical kinematic hardening (KH),

kinematic hardening with flow in principal trial stress directions (KH in RS).
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Figure 11. Necking of a circular bar: Neck radius reduction versus specimen elongation for the
different hardening formulations.
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Figure 12. Necking of a circular bar: Close-up views of the necking zone: (a) original mesh; (b)
isotropic hardening prediction (IH); (c) kinematic hardening prediction (KH); and (d) prediction with

kinematic hardening flow in principal trial stresses (KH in RS).

model (KH), even though the stress change is almost proportional, and the necking effect is the
only non-proportionality source. The rotation of the exterior part of the specimen in the necking
zone induces a more pronounced plastic flow in that zone using the (KH) model, resulting in a
larger necking effect. Figure 12 shows close-ups of the necking zones in the final configurations.

5.4. Impact of a cylindrical bullet

This problem, also considered in Reference [22], consists of the dynamic impact of a cylindrical
bar against a rigid frictionless wall, is known as the Taylor impact test [60–62], and is used
by many authors as a benchmark problem. The length of the specimen herein considered is
32.4mm and the radius is 3.2mm. The elastic bulk modulus is 130GPa while the shear modulus
is 40 GPa. The specimen has a density in the reference configuration of �0 = 8930 kg/m3 and
travels towards the wall at an initial speed of 227 m/s. The material hardens linearly with a
modulus of Hl = 0.1 GPa. We modelled the specimen using 128 nine-noded mixed (Q9/3)
axisymmetric elements with a consistent mass matrix. Figure 13 shows the final configurations
obtained with two of the hardening models together with the equivalent logarithmic plastic
strains. It can be seen that the response predictions for this case are almost identical, a fact
that can also be confirmed inspecting Figure 14, where the radius enlargement at the contact
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Figure 13. Impact of a cylindrical bullet: Original mesh (left) and final predicted configuration and
equivalent logarithmic strains for isotropic (middle) hardening and kinematic hardening (right).
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Figure 14. Impact of a cylindrical bullet: Radius increase at the impact section versus decrease in
length for the different hardening models.

section is depicted. These results are in close agreement with those reported in Reference [22]
and the predicted final state resembles the one obtained in experiments, cf. Figure 3.17 of
Reference [63].
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6. CONCLUSIONS

The formulation and an algorithm are presented for the analysis of large strain elasto-plastic
problems incorporating mixed hardening and a possible constitutive equation for the plastic
spin. The actual constitutive equation to be used is still to be explored [38]. The algorithm
is based on the well known multiplicative decomposition of the deformation gradient. The
consistent linearization of the stress integration algorithm is also presented.

This formulation allows to analyse in detail the algorithmic steps and solutions obtained using
isotropic hardening and kinematic hardening with various assumptions. With the formulation
given, two earlier published algorithms for kinematic hardening in large strain elasto-plastic
analysis could be analysed, and it is shown that (inadvertently) a behaviour is obtained like
when introducing a plastic spin. In simple shearing, the predicted response is like that obtained
using an isotropic hardening model, but with little control on the actual physical behaviour.

It is clearly valuable to have an algorithm in which the plastic spin can be included in
a physical manner. The formulation and algorithm given in this paper provide the basis for
incorporating the plastic spin using an actual constitutive relation.

ACKNOWLEDGEMENTS

The present work has been carried out during a stay of the first author at the Massachusetts Institute
of Technology, due to a leave granted by the Universidad de Castilla-La Mancha, which we gratefully
acknowledge. Financial support for the major part of the stay was provided by the Secretaría de
Estado de Educación y Universidades, Ministerio de Educación, Cultura y Deportes of Spain under
Grant PR2003-0345. This is also part of the research project DPI2002-02065 (70% FEDER funds)
granted by the Secretaría de Estado de Política Científica y Tecnológica, Ministerio de Ciencia y
Tecnología of Spain.

REFERENCES

1. Nagtegaal JC, Veldpaus FE. On the implementation of finite strain plasticity equations in a numerical model.
In Numerical Analysis of Forming Processes, Pittman JFT, Zienkiewicz OC, Wood RD, Alexander JM (eds).
Wiley: New York, 1984.

2. Goudreau GL, Hallquist JO. Recent developments in large-scale finite element Lagrangian hydrocode
technology. Computer Methods in Applied Mechanics and Engineering 1982; 33:725–757.

3. Rolph III WD, Bathe KJ. On a large-strain finite-element formulation for elasto–plastic analysis. In Constitutive
Equations, Macro and Computational Aspects, Willam KJ (ed.). Winter annual meeting. ASME: New York,
1984; 131–147.

4. Bathe KJ, Ramm E, Wilson EL. Finite element formulations for large deformation dynamic analysis.
International Journal for Numerical Methods in Engineering 1975; 9:353–386.
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25. Perić D, Owen DRJ, Honnor ME. A model for finite strain elasto–plasticity based on logarithmic strains:
computational issues. Computer Methods in Applied Mechanics and Engineering 1992; 94:35–61.
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