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Abstract

The ADINA program can be used for analyses of fluid flows fully coupled with structures. Fluid flows can be modeled
as incompressible, slightly compressible, fully compressible and porous media flows. Both iterative (partitioned) and direct
(simultaneous) solution procedures can be used. The capabilities available in ADINA are briefly summarized and various
experiences regarding the use of the two solution procedures are given. It is concluded that it is valuable to have both
analysis approaches in one code.
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1. Introduction

The analysis of fluid–structure interaction (FSI) prob-
lems, in which the fluid is modeled using the general
Navier–Stokes or Euler equations, has been given increased
attention in the recent years. The reason is that the numeri-
cal methods and the computer hardware have now reached
the capacities that FSI problems can be realistically mod-
eled and solved in engineering and scientific analyses. In
various fields of scientific investigations, the fluid flows
fully coupled with structural deformations represents the
essence of the problems considered, for example in biome-
chanical analyses; and in many engineering designs the
interaction between the fluid flows and structures needs to
be investigated in order to reach safe and economical, and
therefore competitive designs.

Various approaches have been followed to obtain an FSI
solution capability. With an efficient fluid solver available,
simple structural elements have been programmed into the
solver (such as spring elements) and certain FSI problems
have been solved efficiently. Another more common ap-
proach is to couple fluid and structural solvers by data
transfer between the solvers; the data is transferred so as
to satisfy, by iteration, in each incremental solution step
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the physical conditions on the fluid–structure interfaces.
This approach is commonly referred to as the ‘partitioned’
or ‘iterative’ solution procedure. Sometimes, the iteration
is not performed and the solution is simply attempted by
passing data at the beginning=end of the incremental steps
from one to the other solver.

The most powerful solution approach appears to be
to ‘simply’ set up the fully coupled governing fluid flow
and structural equations and solve the equations using the
Newton–Raphson method, all in one code. This approach
is referred to as the ‘simultaneous’ or ‘direct’ solution
procedure.

The objective of this paper is to briefly summarize the
partitioned (iterative) and simultaneous (direct) solution
procedures available in ADINA, and to present some ex-
periences with the approaches. The fact that both solution
approaches are available in one code renders it possible
to make direct comparisons between the approaches — of
course, as implemented in ADINA.

2. ADINA for FSI solutions

The ADINA program is a general-purpose finite
element=finite volume code for the analysis of structures,
fluids and FSI problems [1]. Structures are modeled us-
ing finite element procedures. The structural response can
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be linear or highly nonlinear, including contact condi-
tions. A general Lagrangian formulation for the structural
response is used. Fluids are modeled using the general
Navier–Stokes equations (or Euler equations). The usual
Eulerian formulation is solved when the fluid boundaries
do not move, i.e. when there is no prescribed wall move-
ment and there are no structural interactions. An arbitrary
Lagrangian–Eulerian (ALE) formulation is employed when
there is movement of the fluid boundaries. The Navier–
Stokes equations of incompressible flows are solved us-
ing finite element procedures (mixed velocity=pressure
based discretizations are used), whereas the Navier–Stokes
equations of high-speed compressible flows are solved us-
ing control volume procedures. For slightly compressible
and low-speed compressible flow solutions, a mixed finite
element=finite volume discretization is employed. In each
case, high Reynolds and Peclet number flows require the
use of an upwinding procedure that has been derived from
control volume techniques [1,2].

An acoustic fluid assumption can also be used, in which
case the fluid response is calculated by a potential formu-
lation. Then the fluid finite element discretization results
into symmetric coefficient matrices that are coupled to the
structural stiffness matrices. Hence, in this case, the simul-
taneous solution approach is always employed. We do not
consider this formulation further in this paper, but refer to
[1,2].

The key in the coupling of the Navier–Stokes or Euler
fluid flow discretized equations to the structural discretized
equations lies in how the interface conditions are imposed.
At fluid structural interfaces, the conditions of compati-
bility of displacements=velocities and of stress equilibrium
must be fulfilled. The relevant equations on the interface
are:

displacement compatibility,
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where dS
f and dS

s are the displacements of the fluid and
solid, respectively; and

traction equilibrium,
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where f S
f and f S

s are the tractions of the fluid and solid on
the interface, respectively.

Consider a general structural mesh (using 2D, 3D, beam
or shell elements) and a general fluid mesh, using of course
entirely different elements, in size and otherwise. Usually,
a much finer fluid mesh than structural mesh is needed.
The conditions of compatibility then require that the fluid
mesh ‘abut’ to the structural mesh using the displacement
interpolations of the structural elements. Of course, the
fluid mesh can slide on the structural mesh in the ALE
formulation of fluid flow. If the Navier–Stokes equations
are solved for the fluid, then, at the interface, the velocities

of the fluid particles must be equal to the velocities of
the structural particles (no slip condition), whereas if the
Euler equations are used to model the fluid, the fluid par-
ticles are free to slip along the interface, that is, along the
structural mesh (of course at the physical relative velocity,
which is in general different from the fluid mesh velocity).
In ADINA, these conditions are imposed using the differ-
ent element interpolation functions for displacements (and
velocities).

The conditions of stress equilibrium require that the
stresses in the fluid be balanced by the stresses in the struc-
ture on the interface. The forces exerted onto a structural
element are
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where the matrix HS stores the shape functions of the
element and the vector f S

f contains the tractions exerted by
the fluid. Note that in this equation, the nodal consistent
forces are evaluated, which is an important requirement for
an accurate analysis (the patch condition is satisfied [2]).

In ADINA, the iterative solution procedure solves the
fluid flow equations for the last calculated structural config-
uration, then calculates the forces in Eq. (3), applies these
forces onto the structural model, evaluates incremental
structural displacements, applies these incremental struc-
tural displacements onto the fluid model, and continues to
iterate until convergence for that load=time step is reached.
The iteration is effective because the structural and fluid
flow solvers are called as subroutines, using dynamically
allocated memory, with all shared data directly available
to both solvers. Hence the amount of disk reading and
writing is minimized. Since the fluid flow and structural
equations are solved sequentially, the same memory is used
for the structural and the fluid flow coefficient matrices. Of
course, at convergence the fully coupled solution has been
obtained.

If, in this solution approach, no iteration is performed,
but the solution is simply marched forward, then for some-
what strongly coupled problems, errors in the solution
accumulate and may well lead to instability of the re-
sponse prediction. This phenomenon is quite similar to
what is seen if no iteration is performed in a nonlinear
dynamic analysis (see [2]). Hence, it is best to always per-
form iterations to reach convergence to within reasonable
convergence tolerances.

The direct solution procedure in ADINA solves the
same governing equations for the structure and the fluid as
the partitioned procedure, but obtains the solution by solv-
ing these equations simultaneously using one coefficient
matrix. This matrix contains the same structural and fluid
matrices as in the partitioned procedure plus a Jacobian
matrix corresponding to the interface conditions, obtained
by imposing directly the compatibility conditions and by
linearization of Eq. (3).
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3. A sample solution

Both approaches have been applied to the solutions of
many problems. Here, we present one simple but demon-
strative solution.

Fig. 1 shows the problem considered. A sudden pre-
scribed displacement onto the piston causes a pressure
wave in the fluid, which moves the steel ball vertically
up to the top of the chamber. Fig. 2 shows various con-
figurations of the steel ball during its travel to the top of
the chamber. The difficulties in the solution result from
the large travel of the ball and the contact=gap conditions
for the ball in the initial configuration and when the ball
hits the top of the chamber. Fig. 3 shows the vertical dis-
placements of the ball and the piston as functions of time.
The same solution was obtained by the direct and iterative

Fig. 1. Example problem (ratios of dimensions physically as
shown in figure).

Fig. 2. Various configurations of the steel ball and velocity fields.

procedures, although the most effective way is to use the
partitioned approach when the contact=gap conditions are
active and the direct procedure at the other solution steps.

4. Conclusions

Considering the iterative and direct solution procedures
in ADINA, the following conclusions are reached.
ž The direct procedure requires considerably more stor-

age, but can be used to solve problems for which the
iterative procedure cannot be used due to the large
nonlinearities present.

ž The iterative procedure is usually effective if conver-
gence in the iterations is achieved using a reasonable
number of iterations per step and the number of solution
steps does not need to be much larger than when using
the direct procedure.

ž The iterative procedure becomes more effective as the
size of the model considered increases.

ž If the structural model contains only a few degrees of
freedom (in comparison with the fluid model), the direct
procedure is frequently the most effective method.
Of course, the most effective way to proceed is to use

an adaptive procedure, which automatically chooses during
the solution path, at the solution steps, the direct or iterative
procedure depending on which approach is more effective.
An example of such solution was given above.
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Fig. 3. Vertical displacements of the steel ball and the piston.
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