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SUMMARY

The displacement-based formulation of the method of �nite spheres is observed to exhibit volumetric
‘locking’ when incompressible or nearly incompressible deformations are encountered. In this paper,
we present a displacement=pressure mixed formulation as a solution to this problem. We analyse the
stability and optimality of the formulation for several discretization schemes using numerical inf–sup
tests. Issues concerning computational e�ciency are also discussed. Copyright ? 2001 John Wiley &
Sons, Ltd.

KEY WORDS: method of �nite spheres; meshless technique; incompressible analysis

1. INTRODUCTION

Earlier we introduced a truly meshless numerical scheme—the method of �nite spheres—for
the solution of boundary value problems on complex domains [1]. In this technique the dis-
cretization is performed using functions that are compactly supported on general n-dimensional
spheres and the Galerkin weak form of the governing di�erential equations is integrated using
specialized numerical integration rules.
We noted, however, that while complex problems could be solved using the method of

�nite spheres, the method is not as e�cient as the traditional �nite element techniques. The
issue of e�ciency is clearly of primary importance. While many apparently di�erent meshless
techniques have been proposed in the literature, the ultimate utility of a meshless method
depends on whether it is reasonably e�cient when compared with the now classical �nite
element procedures. It is for this reason that we have focused on the issues of e�ciency and
reliability. In this respect, it need also be noted that the displacement-based method of �nite
spheres exhibits, of course, volumetric locking in almost or fully incompressible deformations.
The purpose of this paper is to investigate these issues in greater detail.
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276 S. DE AND K. J. BATHE

It is well known that the solution of almost incompressible elasticity problems using the
standard displacement-based �nite element technique and reasonable meshes may yield so-
lutions that are grossly in error [2]. The di�culty is that the computed displacement �eld
needs to satisfy the constraint of very small volumetric strains (which become zero as the
condition of total incompressibility is approached) while the pressure is of the order of the
boundary tractions. The displacement approximation space is not rich enough to accommodate
this constraint without a drastic reduction in the rate of convergence, a condition referred to
as ‘locking’ [2].
For the analysis of such problems, it is necessary to use a mixed formulation [2] in which

separate approximation spaces are used for the displacement and pressure �elds. While, in
principle, numerous mixed formulations may be developed, only those that are stable are useful
in practice. The solvability, stability and optimality of mixed formulations are expressed in
the ellipticity requirement and the inf–sup condition [2]. The ellipticity condition is relatively
easy to satisfy. The analytical proof whether the inf–sup condition is satis�ed for a speci�c
formulation is, however, di�cult. Hence, a numerical inf–sup test was designed [2; 3].
Over the past decade, several meshless techniques have been proposed but the issue of

locking has not been studied in depth. Until recently, it was stated that meshfree methods
are immune to locking. Indeed it was reported that the element free Galerkin method has the
advantage that it does not su�er from locking [4–7]. Furthermore, the element free Galerkin
method has been actually proposed as a solution to the locking problem in isochoric elasto-
plastic analyses especially when a su�ciently large support size for the interpolation functions
is chosen [8].
In the context of another meshless scheme, the reproducing kernel particle method, a similar

claim was made con�rming the absence of volumetric locking when analysing large defor-
mation behaviour of nearly incompressible hyperelastic materials [9]. More recently, Li and
Liu [10] have reported that they have been able to simulate shear band formation success-
fully in inelastic solids using an explicit displacement-based formulation and the reproducing
kernel particle method. They have linked the absence of locking to the choice of higher order
polynomial interpolation and the use of reduced order integration. In these publications, the
conclusions were drawn primarily by only studying the analysis results of a few example
problems and not considering the inf–sup condition.
Only recently, it has been reported that the element-free Galerkin method does indeed su�er

from locking in incompressible deformations [11]. The locking is pronounced when moving
least-squares interpolants with small support size are used. Functions with small support size
are necessary in practice for better localization and a lower bandwidth of the system matrices.
In their paper, Dolbow and Belytschko [11] have proposed a mixed displacement=pressure
formulation and selective reduced integration to alleviate locking. However, with a linear dis-
placement �eld and a constant pressure �eld, the scheme does not pass the numerical inf–sup
test. Chen et al. note that the use of large support size is computationally expensive and, more-
over, cannot remove pressure oscillations [12; 13]. They propose a pressure projection method
to remove locking and pressure oscillations in nearly incompressible �nite elasticity problems
together with a reduced integration scheme. No inf–sup tests were however performed to test
the stability of the proposed scheme.
In this paper we present a mixed displacement=pressure formulation as a remedy to the

problem of locking encountered in incompressible deformations and analyse the stability and
optimality of several displacement=pressure discretization schemes using a numerical inf–sup
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MIXED INTERPOLATION IN FINITE SPHERES 277

Figure 1. (a) A schematic of the method of �nite spheres; and (b) some shape
functions in two-dimensions.

test. This numerical inf–sup test is used for mixed formulations like the numerical patch test
is used for non-conforming displacement discretizations [3].
The organization of this paper is as follows. In Section 2 we review the interpolation

scheme used in the displacement-based method of �nite spheres. In Section 3 we introduce a
displacement= pressure mixed formulation for the analysis of problems involving linear elastic
solids. In Section 4 we address the important issue of numerical integration and introduce
several di�erent integration rules. In Section 5 we discuss the inf–sup condition, introduce
a numerical form in the context of the method of �nite spheres and analyse the stability of
several displacement=pressure discretization schemes.

2. THE INTERPOLATION SCHEME

In this section, we review the speci�c interpolation scheme used in the displacement-based
method of �nite spheres [1].

2.1. Shape functions

Let 
∈Rn (n=1; 2 or 3) be an open bounded domain and let S be its boundary (see Fig-
ure 1). Let a family of open spheres {B(xI ; rI); I =1; 2; : : : ; N} form a covering for 
, i.e.

⊂ ⋃N

I=1 B(xI ; rI), where xI and rI refer to the centre and radius of the sphere, respectively.
We associate a ‘node’ with the geometric centre of each sphere. By S(xI ; rI) we denote
the surface of the sphere with centre xI and radius rI . The spheres may be entirely within
the domain (interior spheres) or may have non-zero intercepts with the boundary (boundary
spheres), see Figure 1.
The interpolation functions are compactly supported on the spheres and are generated using

the partition of unity paradigm [14; 15]. The �rst step is to de�ne, at each node I, a basis
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function, ’0I (x), satisfying

1.
∑N

I=1’
0
I (x)=1 ∀x∈
.

2. supp(’0I (x))⊂B(xI ; rI).
3. ’0I (x)∈Cs0(Rn); s¿ 0:

This system of functions {’0I (x)}NI=1 is said to form a partition of unity subordinate to the
open cover {B(xI ; rI)}.
The functions {’0I (x)} satisfy zeroth-order consistency, i.e. they ensure that rigid body

modes are exactly represented. To attain higher-order consistency, we de�ne at each node
I , a local approximation space VhI =spanm∈I{pm(x)}, where pm(x) is a polynomial or other
function and I is an index set. The superscript h is a measure of the size of the spheres.
The global approximation space Vh is generated by multiplying the partition of unity func-

tion at each node I with the functions from the local basis

Vh=
N∑
I=1
’0I V

h
I

Hence, any function vh ∈Vh can now be written as

vh(x)=
N∑
I=1

∑
m∈I

hIm(x)�Im (1)

where

hIm(x)=’0I (x)pm(x) (2)

and hIm is a basis=shape function associated with the mth degree of freedom �Im of node I: It
can be seen that if a function pm(x) is included in the local basis of all the nodes, then it is
possible to exactly reproduce pm(x) on the entire domain. This is the well-known reproducing
property of the shape functions.

2.2. Choice of the partition of unity functions

We use a particular family of (nonpolynomial) partition of unity functions, called the Shepard
partitions of unity functions [16] de�ned by

’0I (x)=
WI∑N
J=1WJ

(3)

where WI (x) denotes a radial function compactly supported on the sphere centred at node I
such that supp(WI)⊂B(xI ; rI). Important consideration should be given to the choice of the
functions WI (x) so that a low cost partition of unity is obtained. We concentrate on radial
functions of the form WI (x)=W (sI), where sI = ‖x − xI‖0=rI . The following remarks are
useful in the choice of the functional form of WI :

Remark 2.1. Let WI ∈Cs0(B(xI ; rI)); I =1; 2; : : : ; N and let pm(x)∈Cl(
) for s; l¿ 0; then
the shape functions hIm(x) satisfy hIm(x)∈Cmin(s;l)0 (B(xI ; rI) ∩
).
The proof is immediate from Equation (2). The following two remarks are direct conse-
quences.
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MIXED INTERPOLATION IN FINITE SPHERES 279

Remark 2.2 (Displacement continuity). The displacement �eld is continuous so long as
the functions WI and pm(x) are continuous.

Remark 2.3 (Stress continuity). The stress �elds, obtained by di�erentiating the displace-
ment �eld (1), are continuous on 
 if each of the functions WI has zero slope at the centre,
xI , and on the surface, S(xI ; rI) of the sphere on which it is de�ned, provided the functions
pm(x) and their derivatives are su�ciently smooth.

The above statement can be understood more clearly if we recognize that, for su�ciently
smooth functions pm(x), the stress �elds are continuous provided the derivatives of WI with
respect to the spatial coordinates xi (i∈{1; 2; 3})

@W (sI)
@xi

=
xi − xIi
r2I

[
1
sI
dW (sI)
dsI

]
(4)

are continuous in B(xI ; rI) and on S(xI ; rI).
This derivative exists as sI → 0 if WI has zero slope at the centre of the sphere. Moreover,

the derivative in Equation (4) is continuous on S(xI ; rI), i.e. as sI → 1 if WI has zero slope
on the surface S(xI ; rI).
Equation (4) introduces two conditions on the �rst derivative of the function WI if a

continuous stress �eld is to be obtained. A third condition arises from the constraint that the
function WI vanishes on S(xI ; rI), i.e. W (sI =1)=0. To satisfy these three conditions, the
function WI needs to be at least a cubic in sI . We have, therefore, chosen a cubic spline
weight function of the following form:

W (sI)=




2
3 − 4s2I + 4s3I ; 06sI¡ 1

2

4
3 − 4sI + 4s2I − 4

3s
3
I ;

1
2¡sI61

0; sI¿1

(5)

These cubic spline functions can be used to generate less expensive Shepard functions than
the quartic spline functions used in Reference [1].

3. MIXED DISPLACEMENT=PRESURE FORMULATION

In this section, we briey review the governing equations for a linear elastic continuum in
2D and then derive a displacement=pressure mixed formulation and discretized equations.

3.1. Governing equations

Let us consider an open bounded domain 
⊂R2. Let S be its boundary. The system of
governing di�erential equations and the boundary conditions can be written as

Equilibrium equations:

999TU c+ fB= 0 in 
 (6)

Strain–displacement relationships:

U=999Uu in 
 (7)
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Boundary conditions:

Nc= fS on Sf (8)

u= uS on Su (9)

In Equations (6)–(9), u, U and c are the displacement, stress and strain vectors, fS is the
prescribed traction vector on the Neumann boundary Sf, uS is the vector of prescribed dis-
placements on the Dirichlet boundary Su (note that the domain boundary S= Sf ∪ Su and
Sf ∩ Su= {0}), fB is the body force vector (including inertia terms), 999U is a linear gradient
operator and N is the matrix of direction cosine components of a unit normal to the domain
boundary (positive outwards).
If the body is made of an almost incompressible medium, we anticipate that the volumetric

strains will be small compared to the deviatoric strains and write the constitutive relationship
in the following form

c= − pI+2GUD (10)

where I is the vector corresponding to the Kronecker delta, G is the shear modulus

G=
E

2(1 + �)
(11)

where E and � are the Young’s modulus and the Poisson ratio of the material, respectively.
UD is the vector of deviatoric strain components,

UD = U− �V
3
I (12)

where �V is the volumetric strain,

�V =



(�xx + �yy) for plane strain conditions

1− 2�
1− � (�xx + �yy) for plane stress conditions

(13)

The pressure in the body is

p= − ��V (14)

where the bulk modulus � is

�=
E

3(1− 2�) (15)

In addition, we note that the vector of deviatoric stresses

cD = c+ pI (16)

is related to vector of deviatoric strains by the following constitutive relationship:

cD =CDUD (17)
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3.2. Variational form

We consider the following variational indicator [2]:

�∗(u;p)=
∫



[
1
2
UD

T
(u)CDUD(u)− 1

2
p2

�
− p�V(u)

]
d
−< (18)

The term < accounts for the externally applied body forces, surface tractions and applied
displacements,

<=
∫


uTfB d
 +

∫
Sf

uTfS dS +
∫
Su
fuT(u − us) dS (19)

where fu is the traction vector on the Dirichlet boundary Su and may be expressed as

fu=NCDUD(u)− pNI (20)

Here fu is a vector of Lagrange multipliers to enforce the Dirichlet boundary conditions.
Invoking the stationarity of �∗ we obtain the following weak forms
∫



[
UDT(v)CDUD(u)− �V(v)p

]
d
−

∫
Su

[
UDT(v)CDNTu+ vTNCDUD(u)

]
dS +

∫
Su
vTNIp dS

=
∫


vTfB d
 +

∫
Sf

vTfS dS −
∫
Su
UD

T
(v)CDNTuS dS ∀v∈H 1(
) (21)

and

−
∫


q
[
�V(u) +

p
�

]
d
 +

∫
Su
qITNTu dS=

∫
Su
qITNTuS dS ∀q∈L2(
) (22)

where and H 1(
) and L2(
) are the �rst-order Hilbert space and Lebesgue space of square
integrable functions, respectively.

3.3. Nodal interpolations

We have the following approximation for the displacement �eld:

u(x; y)=
N∑
J=1

∑
n∈I

HJn(x; y)QJn=H(x; y)U (23)

where U=[Q10 Q11 Q12 : : : QJn : : :]T is the vector of nodal unknowns and QJn=[uJn vJn] is
the vector of nodal unknowns at node J corresponding to the nth degree of freedom (uJn and
vJn are the nodal variables for the x and y direction displacements at node J corresponding
to the nth degree of freedom). The shape function matrix corresponding to node J and the
nth degree of freedom is

HJn(x; y)=
[
hJn(x; y) 0
0 hJn(x; y)

]
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We choose the following approximation for the pressure �eld:

p(x; y)=
N∑
J=1

∑
n∈I

hpJn(x; y)pJn=Hp(x; y)P (24)

where P=[p10 p11 p12 : : : pJn : : :]T is the vector of nodal point unknowns corresponding
to the pressure degrees of freedom. The shape function hpJn(x; y) at node J corresponding to
the nth degree of freedom is also generated using the partition of unity paradigm described
in Section 2. This construction of the pressure approximation space results in a continuous
pressure �eld.
The approximations for the strains in Equations (12) and (13) are

UD(x; y)=
N∑
J=1

∑
n∈I

BDJn(x; y)QJn=BD(x; y)U (25)

and

�V(x; y)=BV(x; y)U (26)

where BD and BV are the corresponding strain interpolation matrices.

3.4. Discrete equations

Using Equations (23)–(26) in Equations (21) and (22) we obtain the following discrete sets
of equations corresponding to node I and degree of freedom m:

N∑
J=1

∑
n∈I

[
KuuImJn KupImJn

KTupImJn KppImJn

]{
QJn
pJn

}
=

{
fIm

0

}
+ f̂ Im (27)

where

KuuImJn =
∫

I
BDTIm C

DBDJn d
 (28)

KupImJn =−
∫

I
BTVImh

p
Jn d
 (29)

KppImJn =−1
�

∫

I
hpImh

p
Jn d
 (30)

and

fIm=
∫

I
HImfB d
 (31)

where 
I =
∩B(xI ; rI). If I is a node associated with an ‘interior sphere’, then
f̂ Im= 0

from the property of compact support. If I is a node associated with a ‘boundary sphere’ then
f̂ Im allows us to incorporate the prescribed boundary conditions.
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If the sphere corresponding to node I has a non-zero intercept on the Neumann boundary
Sf, then

f̂ Im=




∫
SfI

HImfS dS

0


 (32)

where Sf= ∪I∈Nf SfI ; Nf being the index set of such nodes.
On the other hand, if the sphere corresponding to node I has a non-zero intercept on the

Dirichlet boundary Su, then

f̂ Im=
N∑
J=1

∑
n∈I

[
KUuuIm Jn KUupIm Jn

KUTupIm Jn 0

]{
���Jn

pJn

}
−

{
f UuIm
f UpIm

}
(33)

where

KUuuIm Jn =
∫
SuI

HImNC
DBDJn dS +

∫
SuI

BDTIm C
DNTHJn dS (34)

KUupIm Jn =−
∫
SuI

HImNIh
p
Jn dS (35)

fUuIm =
∫
SuI

BDTIm C
DNTuS dS (36)

and

fUpIm = −
∫
SuI

hpImI
TNTuS dS (37)

where Su=
⋃
I∈Nu

SuI ; Nu being the index set of such nodes.
A point to note is that we can incorporate the Dirichlet conditions exactly at nodes on the

Dirichlet boundary by a special arrangement of the nodes [1].

4. NUMERICAL INTEGRATION ISSUES

Much of the computational e�ort in the method of �nite spheres is expended on the accurate
evaluation of the integrals presented in Section 3. One of the primary reasons for the success
of the �nite element technique is the ease with which numerical integration can be performed.
The functions to be integrated are usually polynomials (or mapped polynomials), the elements
do not overlap and they can be mapped to n-dimensional cubes. Hence Gauss–Legendre
product rules are used for numerical integration with relatively low computational cost and
high accuracy.
In the method of �nite spheres, however, the shape functions are rational (nonpolynomial)

functions and the integration domains are spheres, spherical shells or general sectors. More-
over, the spheres overlap giving rise to general lens-shaped regions. Hence, a separate class
of integration rules is required.
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In this section, we focus on developing numerical integration rules for two-dimensional
integration domains in the method of �nite spheres. First, we recapitulate some of the rules
presented in Reference [1] for integration on interior disks and boundary disks. We realize
that integration on the lens shaped region of overlap of two disks is an important issue and
propose and compare two di�erent integration rules.
With the improvements in numerical integration reported in this section and the choice

of the interpolation functions (see Section 3) the method of �nite spheres was found to be
about �ve times slower than the traditional �nite element schemes when used to solve some
representative test examples in 2D.

4.1. Integration on an interior disk

In this section we state a product cubature rule for the integral∫∫


f(x; y) dx dy :=

∑
i

∑
j
Dijf(xi; yj) (38)

with an accuracy of k. The region, 
, under consideration is a disk with radius R0 (see
Figure 2). The dot over the equality signi�es that the relationship is a strict equality if
the function f(x; y) is a polynomial of order at most k in x and y, otherwise it is an
approximation. The following theorem is due to Peirce [17].

Theorem 4.1. If it is required that the rule in Equation (38) have accuracy k=4m + 3;
m=0; 1; 2; : : : ; in x= r cos � and y= r sin �; and if it is required to have a minimum number
of evaluation points which are taken at the intersection of concentric arcs (radius rj) with rays
emanating from the origin (angle �i), then it is both necessary and su�cient for the existence
of a unique set of weights Dij ∈R that

�i+1 − �i= 2�
k + 1

; i=1; 2; : : : ; k

and that the r2i be the m + 1 zeros of Pm+1(r
2), the Legendre polynomial in r2 of degree

m+ 1, orthogonalized on [0; R20]. The (unique) weights Dij are of the form AiBj, where

Ai=
2�
k + 1

; i=1; 2; : : : ; k + 1

and

Bj=
1

2P′
m+1(r

2
j )

∫ R20

0

Pm+1(r2)
r2 − r2j

dr2; j=1; 2; : : : ; m+ 1

For an interior disk (see Figure 2(a)), we use this theorem and are able to integrate with any
given precision. The integration points are on equally spaced radii and the integration weights
are independent of angular position (Gauss–Chebyshev rule in the �-direction).
To demonstrate the e�ciency of this rule we compare it with the Gauss–Legendre product

rule on the disk∫∫


f(x; y)dx dy=

∫ R0

y=−R0

∫ X (y)

x=−X (y)
f(x; y)dx dy '

Nx∑
i=1

Ny∑
j=1
Dijf(xi; yj) (39)

Copyright ? 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 51:275–292



MIXED INTERPOLATION IN FINITE SPHERES 285

Figure 2. Integration on an ‘interior’ disk of radius 1.0. In (a) integration points corresponding to the
rule in Theorem 4.1 (Rule 1) are shown. To integrate a polynomial of degree 11 exactly 36 integration
points are required. In (b) integration stations corresponding to a Gauss–Legendre product rule (Rule 2)

are shown. In (c) Rules 1 and 2 are used to evaluate the area of the disk.

where Nx and Ny are the number of integration points chosen along the x and y-directions,
respectively, and Dij=Wx

i W
y
j is the product of the usual Gaussian weights Wx

i and Wy
j in

the x and y-directions. It is not possible to guarantee exact integration of polynomials of any
degree using this rule. For demonstration we consider the simple problem of computing the
area of a unit circle (where f(x; y)=1) in Figure 2(c).

4.2. Integration on a boundary sector

We categorize the boundary sectors into two major groups depending on the angle ’0 that
the radii joining the center of the disk to the two intercepts of the disk on S make interior
to the domain:

Type I sector: ’06� (see Figure 3(a)). The rule that allows us to perform numerical
cubature on this sector to any desired order of accuracy is computationally expensive [1].
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Figure 3. Integration points on a boundary sector: (a) type I boundary sector with ’06�;
(b) type II boundary sector with ’0¿�.

We, therefore, propose an ‘engineering solution’ and use Gauss–Legendre quadrature in the
�-direction.
Type II sector: ’0¿� (see Figure 3(b)). This type of boundary sector is more expensive

to handle. We decompose a Type II sector into a sector for which the rules of the Type I
sector can be used and a triangle as shown in Figure 3(b). For the triangle we use a product
rule based on Gauss–Legendre quadrature.

4.3. Integration on the lens

If nodes I and J are such that B(xI ; rI) ∩ B(xJ ; rJ ) 6=0, then we propose two schemes for
numerically evaluating

∫∫

IJ
f(x; y)dx dy where 
IJ =B(xI ; rI) ∩ B(xJ ; rJ ):

Scheme 1 (see Figure 4(a)). In this scheme we use a Gauss–Legendre product rule of the
form ∫∫


IJ
f(x; y)dx dy=

∫ y0

y=−y0

∫ X2(y)

x=−X1(y)
f(x; y) dx dy '

Nx∑
i=1

Ny∑
j=1
Dijf(xi; yj) (40)

where Nx and Ny are the number of integration points chosen along the x and y-directions,
respectively and Dij=Wx

i W
y
j is the product of the usual Gaussian weights Wx

i and W
y
j in the

x and y-directions.
Scheme 2 (see Figure 4(b)). In this scheme, we map the domain 
IJ onto a unit disk and

compute the resulting integral using the scheme in Theorem 4.1∫∫

IJ
f(x; y)dx dy=

∫ 1

�= 0

∫ 2�

�= 0
F(�; �) J � d� d� (41)

where J is the Jacobian of the transformation.
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Figure 4. Integration on the lens. Some integration points generated using schemes 1, see (a) and 2,
see (b), of Section 4.3 are shown on the intersection of two disks of radii 0.8 and 1.0, respectively,

with centre-to-centre distance of 0.9.

We note that none of the schemes can guarantee polynomial accuracy for the integrand
f(x; y). However, numerical experiments performed using these two schemes suggest that
scheme 1 requires fewer integration points for the same accuracy than scheme 2 [18].

5. INF–SUP TEST

In this section, we investigate the stability and optimality of the mixed formulation.

5.1. The inf–sup condition

To obtain a stable and optimal procedure for the selected interpolations, the mixed formulation
in Equations (21) and (22) should satisfy the ellipticity condition (readily satis�ed in this
linear analysis since no reduced integration is used) and the inf–sup condition [2; 3]

inf
qh∈Qh

sup
vh∈Vh

∫


qh div vh d


‖qh‖0‖vh‖1 = h¿¿0 (42)

where  is a positive constant independent of h. Vh⊂H 1
0 (
) is the displacement approximation

space (H 1
0 contains functions that are in the �rst-order Hilbert space and satisfy the homo-

geneous Dirichlet boundary conditions of the problem) and Qh is the pressure approximation
space. The norms ‖ · ‖0 and ‖ · ‖1 are de�ned as

‖ · ‖20 =
∫


(·)2 d
 (43)

and

‖ · ‖21 =
∫



2∑
i; j=1

(
@(·)i
@xj

)2
d
 (44)

Note that loading does not enter the inf–sup condition.
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5.2. Numerical inf–sup test

While it is highly desirable to obtain an analytical proof that a given discretization scheme
satis�es the inf–sup condition (42), such proofs are quite di�cult due to the complex (rational)
nature of the interpolation functions used in the method of �nite spheres. Hence, we adopt a
numerical inf–sup test [2].
In the numerical inf–sup test, the inf–sup parameter h in (42) is computed for a sequence

of discretizations of a model problem. A mixed formulation with given displacement=pressure
interpolations is said to have passed the inf–sup test if the inf–sup parameter asymptotically
approaches a positive value greater than zero as the discretization is re�ned. Our experience is
that if the inf–sup test is passed for a well-chosen problem, the inf–sup condition is satis�ed.
In order to obtain the inf–sup parameter, h, numerically for a given discretization, we

express the relationship (42) in matrix form

inf
Wh
sup
Vh

WT
h GhVh√

WT
h GhWh

√
VTh ShVh

= h¿ ¿0 (45)

where

‖qh‖20 =WT
h GhWh (46)

and

‖vh‖21 =VTh ShVh (47)

We consider a sequence of discretizations in which all the displacement degrees of freedom
corresponding to spheres that have nonzero intercepts with the Dirichlet boundary are set to
zero. Then, for a given discretization, Equations (27) can be written as[

(Kuu)h (Kup)h

(Kup)Th − 1
�Th

]{
Uh

Ph

}
=



fh

0


 (48)

where

ThImJn =
∫

I
hpImh

p
Jn d
 (49)

We now consider the following generalized eigenvalue problem

G′
hgh= �Thgh (50)

where

G′
h=(Kup)

T
hS

−1
h (Kup)h (51)

If �p is the smallest eigenvalue of the generalized eigenvalue problem, then the inf–sup
parameter is given by the relationship [2]

h=
√
�p (52)

Note that the rank veri�cation test used by some researchers only addresses the issue of
solvability and not of stability of the discretization scheme. For example, a scheme using
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Figure 5. Problem considered for the inf–sup
experiments: a cantilever plate (L=2:0)

in plane strain.

Figure 6. Inf–sup test results, PS1 =P
S
0 and P

S
2 =P

S
0

discretizations.

a �rst degree polynomial approximation for the displacement and pressure approximation
spaces (number of displacement degrees of freedom per node =6 and number of pressure
degrees of freedom per node =3, in R2 for this case) passes the rank veri�cation test but is
unstable (see Section 5.3).

5.3. Results

In the �nite element method, the inf–sup test described in Section 5.2 has been employed
successfully in identifying speci�c displacement=pressure mixed interpolation schemes that are
stable and result in optimal convergence [2]. We follow a similar approach in the context of
the method of �nite spheres and identify useful displacement=pressure interpolation schemes.
The numerical scheme in Section 5.2 is used to test several discretizations in two-dimensional
plane strain analysis.
Throughout the tests, the same system is used: the simple cantilevered square block, shown

in Figure 5. This problem has been used to identify several e�ective �nite element discretiza-
tion schemes [2]. In every instance, the domain is discretized using a sequence of regular
arrangement of nodes. The results are plotted in the form log(h)=f(log h), where h is the
inf–sup parameter in Equation (52) and h is the radius of each sphere.
In the �nite element technique regular and irregular discretizations have been widely used for

numerical inf–sup tests [2; 19]. However, in the method of �nite spheres, the approximation
space corresponding to a �ner discretization does not contain the approximation space corres-
ponding to a previous coarser discretization, and hence using even a regular grid is quite a severe
test. But, of course, additional studies using irregular nodal arrangements would be valuable.
In order to satisfy the inf–sup condition (42), the inf–sup parameter must be bounded above

zero with increase in re�nement. Therefore, when a steady decrease of log(h) is observed
on the graph, the discretization scheme is said to fail the inf–sup test, whereas, if the inf–sup
value approaches a value greater than zero with increase in re�nement, the test is passed.
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Figure 7. Inf–sup tests results, PS1 =P
S
1 and P

S
1 =Q

S
1

discretizations.
Figure 8. Inf–sup tests results, PS2 =P

S
1 ; P

S
2 =Q

S
1 and

PS2 =P
S
2 discretizations.

Table I. Inf–sup numerical predictions.

Discretization Numerical
scheme inf–sup prediction

PS1 =P
S
0 PASS

PS1 =P
S
1 FAIL

PS1 =Q
S
1 FAIL

PS2 =P
S
0 PASS

PS2 =P
S
1 PASS

PS2 =Q
S
1 PASS

PS2 =P
S
2 FAIL

In this paper we focus attention on polynomial local approximation spaces. To label the
various mixed interpolation function spaces we introduce the following notation. Let Pn and Qn
denote, respectively, the space of complete polynomials of degree ‘n’ and tensor product poly-
nomials of degree ‘n’ in R2 (e.g. P1 = span{1; x; y} and Q1 = span{1; x; y; xy}). In the method
of �nite spheres we use the approximation spaces PSn =

∑N
i=1 ’

0
i Pn and Q

S
n =

∑N
i=1 ’

0
i Qn, and

refer to a mixed interpolation scheme using, for example, PSn for displacement approximation
and QSn for the pressure approximation simply as the ‘P

S
n =Q

S
n interpolation’.

We have considered seven di�erent displacement=pressure discretization schemes. Figures 6
–8 show the numerical results. The conclusions regarding whether the inf–sup test is passed
or not are readily drawn and are summarized in Table I. It is interesting to observe that
while the inf–sup parameter corresponding to certain discretizations that fail the inf–sup test
(e.g. the PS1 =P

S
1 discretization) steadily decreases, the inf–sup parameter corresponding to

certain other discretizations (e.g. the PS2 =P
S
2 discretization) initially increases and then starts

Copyright ? 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 51:275–292



MIXED INTERPOLATION IN FINITE SPHERES 291

Figure 9. (a) Analysis of a cantilever plate (L=2:0) in plane strain. Uniformly distributed load of
magnitude w=1:0 per unit length is applied. Poisson’s ratio, �=0:3 and 0:4999. In (b) the convergence
in strain energy (Eh) with decrease in radius of support (h) is shown for two di�erent Poisson ratios 0.3
and 0.4999. The pure displacement-based formulation is observed to lock when �=0:4999. A mixed
formulation using both pressure and displacement interpolations remedies locking (refer to the text for
an explanation of the symbols used). E is an accurate estimate of the strain energy (reference solution).

to decrease. Another interesting point to note is that while in the �nite element context, the
simple 3=1 (P1=P0) element fails the inf–sup test, the PS1 =P

S
0 discretization scheme passes the

test.
In Figure 9(b) we show the convergence in strain energy when a uniform h-type re�nement

is performed corresponding to two values of the Poisson ratio, �, equal to 0.3 and 0.4999.
We observe that for the displacement-based method corresponding to the Poisson ratio of 0.3,
we obtain an excellent convergence rate (as the discretization is re�ned). On the other hand,
the displacement-based formulation ‘locks’ when the Poisson ratio is increased to 0.4999.
The PS2 =Q

S
1 displacement=pressure mixed discretization scheme alleviates locking as expected

(see Table I). The strain energy of the reference solution was obtained from a �nite ele-
ment analysis of the same problem using a 50× 50 mesh of nine noded �nite elements (9=3
displacement=pressure elements for the nearly incompressible case [2]).
Note that in none of the test cases zero eigenvalues were encountered indicating that no

spurious pressure modes were present.

6. CONCLUDING REMARKS

In this paper we have developed a displacement=pressure mixed formulation to overcome the
problem of ‘locking’ encountered in the pure displacement-based method of �nite spheres.
Several di�erent discretization schemes have been tested for stability and optimal convergence
properties using a numerical inf–sup test. All the discretization schemes considered in this
paper assume continuous displacement and pressure �elds. In this sense the formulation we
have presented is analogous to the u=p-c formulation used in �nite element analysis [2].
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An interesting observation is that the simple PS1 =P
S
0 discretization scheme passes the inf–sup

test and is observed to be optimal. The variety in the behaviour of the inf–sup curves for
the di�erent discretization schemes is also noteworthy. While in this paper these curves have
been used merely as indicators of whether a particular discretization scheme passes or fails
the test, an analytical investigation regarding the behaviour of the inf–sup parameters would
be very valuable.
The issue of computational e�ciency is of utmost importance in determining the overall

success of a meshless discretization scheme. We have focused our e�orts to obtain a meshless
scheme that is e�cient and reliable. Computational e�ciency is attained by use of a simple
but e�cient formulation and the proper choice of approximation functions and numerical
integration schemes. In this paper, we have discussed several advances in these respects. We
discuss the issues of e�ciency in greater detail in a forthcoming publication [18].
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