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Abstract-The objective in this paper is to present fundamental considerations regarding the finite el- 
ement analysis of shell structures. First, we review some well-known results regarding the asymptotic 
behaviour of a shell mathematical model. When the thickness becomes small, the shell behaviour falls 
into one of two dramatically different categories; namely, the membrane-dominated and bending-domi- 
nated cases. The shell geometry and boundary conditions decide into which category the shell structure 
falls, and a seemingly small change in these conditions can result into a change of category and hence 
into a drama.tically different shell behaviour. 

An effective finite element scheme should be applicable to both categories of shell behaviour and the 
rate of convergence in either case should be optimal and independent of the shell thickness. Such a 
finite element scheme is difficult to achieve but it is important that existing procedures be analysed and 
measured with due regard to these considerations. To this end, we present theoretical considerations 
and we propose appropriate shell analysis test cases for numerical evaluations. 0 1997 Elsevier Science 
Ltd 

1. INTRODUCTION 

Numerous shell finite elements have been proposed 
and yet there is a consensus that there are still diffi- 
culties in analysing general shell structures. Also, it 
is difficult to identify which shell elements are the 
most effective elements currently available, and how 
to arrive at more efficient shell analysis procedures. 

Shell structures may be called the prima donnas 
of structures. Their behaviour is difficult to analyse 
and can be somewhat unpredictable in that appar- 
ently small changes of geometry or support con- 
ditions can result into a totally different response. 
Finite element discretizations of shell structures 
therefore can also show sensitivity to the geometry 
and support conditions. When such sensitivity 
arises, certain aspects in the discretization are fre- 
quently blamed without reference to the fundamen- 
tal reasons as to why there might be a different 
shell structural behaviour. 

Considering the presently available finite element 
schemes for shell analysis, we frequently find that 
the specific proced.ures work quite well for certain 
for shell problems but, but example due to numeri- 
cal locking[l], do not work well for other problems. 
Clearly, it is this numerical unreliability and the 
insuf-hcient knowledge of the actual physical sensi- 
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tivity of the shell structures that together can cloud 
the understanding of the analysis results. 

Our objective in this paper is to give insight and 
understanding in the finite element analysis of shell 
structures. We aim to accomplish this goal by first 
recalling the crucial and well-known fact that the 
behaviour of a shell structure is dramatically differ- 
ent depending on whether it is a membrane-domi- 
nated or bending-dominated structure, see for 
example [2,3,4] and the references therein. This dis- 
cussion leads us to point out how we can identify 
into which category a shell structure falls and that a 
structure may, with seemingly only small changes in 
geometry or boundary conditions, change from one 
to the other category. 

An effective finite element discretization must of 
course reflect this change in fundamental behaviour 
and should perform well in both membrane- and 
bending-dominated situations. Indeed, ideally, the 
error in the solution of the mathematical shell 
model for a given finite element interpolation 
should be independent of the shell thickness and 
reflect an optimal convergence behaviour for any 
stress situation (membrane- or bending-dominated) 
encountered. 

However, mathematical analyses of the available 
finite elements regarding these requirements are at 
present hardly available. Therefore, it is prudent to 
use effective numerical tests that identify in how far 
a specific finite element fulfills the requirements and 
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Fig. 1. Finite element analysis of shell problems. 
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thus represents a valuable general tool for the 
analysis of she11 structures. In this paper we discuss, 
using basic theoretical considerations, earlier pro- 
posed numerical tests, and propose additional new 
test cases. 

Figure 1 summarizes the finite element solution 
process of a shell structure. The first step is to 
choose a shell mathematical model. Frequently used 
models are based on the Reissner-Mindlin approxi- 
mations but lower- and higher-order shell math- 
ematical models can also be employed and indeed, 
a fully three-dimensional solution of the thin struc- 
ture may be sought. The selected mathematical 
mode1 is then in the second step solved using finite 
element procedures, and here we require the use of 
effective finite elements that for any shell geometry, 
thickness and boundary conditions yield an accu- 
rate solution. This finite element solution is to be 
performed quite automatically and should also give 
error measures that indicate how accurately the 
mathematical model was solved [l]. In the discus- 
sion to follow, we should keep in mind the distinc- 
tion between the she11 mathematical mode1 (whose 
exact solution we seek), and the numerical solution 
of that mode1 using finite element procedures [ 11. 

While we consider in this paper two-dimensional 
shell models, as mentioned in Fig. 1, the analysis 
and conclusions are also applicable, to a large 
extent, to the degenerate three-dimensional isopara- 
metric finite element formulations for general shell 
analyses. In these isoparametric formulations, the 
kinematic and stress assumptions used in shell the- 

ories are directly incorporated into interpolations to 
provide the finite element procedure [ 11. 

2. ASYMPTOTIC BEHAVIOUR OF SHELL 
MATHEMATICAL MODELS 

While, in principle, we proceed in the finite el- 
ement analysis of a she11 structure as we do in the 
analysis of a solid, there are specific difficulties due 
to the thinness of the shell. These difficulties 
become apparent when studying the asymptotic 
behaviour of a shell mathematical model when the 
thickness becomes very small (and in the limit 
approaches zero). The purpose of this section is to 
review some fundamental facts regarding shell 
mathematical models in order to establish a frame- 
work for studying the finite element solution of 
these models. 

2.1. General framework 

We consider a shell to be a solid medium geome- 
trically defined by a mid-surface immersed in the 
three-dimensional space, and a parameter represent- 
ing the thickness of the medium lying around this 
surface. For simplicity of discussion, we henceforth 
consider shells of constant thickness, but the same 
considerations are also applicable to varying thick- 
ness shell structures, and indeed also to composite 
shells. The behaviours of the shell models are gov- 
erned by a system of equations involving unknowns 
that are defined on the mid-surface (namely displa- 
cements and rotations). These shell models are con- 
sidered as given prior to the analysis performed 
here and we therefore do not discuss their justifica- 
tions. For mathematical justifications of some shell 
models obtained by asymptotic analysis techniques 
where the starting point is the continuous medium 
subjected to laws of three-dimensional elasticity, 
refer for example to Refs [5-81. As is usual, for each 
formulation that we consider here we refer to 
authors who established the models earlier and used 
mechanical arguments. Also, we restrict our investi- 
gation to linear models. These indeed already suffer 
from the numerical difficulties which motivate our 
approach, and attempting to treat them first in this 
simplified framework seems to be a natural strat- 

egy. 
In what follows, we assume that the shell mid- 

surface, S, is defined by a single chart , which is a 
one-to-one smooth mapping from n into R3, where 
Q denotes an open domain of R2 called “reference 
domain” and thus S = (@ ), see Fig. 2 (0 denotes 
the closure of 0, i.e. the union of Q and its bound- 
ary 3Q). We now briefly recall the classical defi- 
nitions and notation of differential geometry that 
we need for our purposes, see Refs [9, lo] for more 
details. We use the Einstein convention on the sum- 
mation of repeated indices, their values ranging in 
{ 1, 2). Let the covariant base of the tangential 
plane be defined by 
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Fig. 2. Definition of the shell surface by a chart. 

with the contravariant base given 
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The first fundamental form of the surface is given 

by 

or alternatively in contravariant form by 

aaP d&r a” as 

The second fundamental form is defined by 

def 
bp = a3 . h.p, 

and the third fundamental form by 

cUs dAf br;bAs, 

where we recall that 

fi def PA ba=a bha. 

The following symbol appears in surface measures: 

ad5’(Jai x a21j2 = alla22 - (a12)2, 

and indeed we denote 

dSdsf fid{,dc2. 

Finally, we denote the covariant differentiation by a 

vertical bar (like in ?,I~“. see Ref. 1101). 

2.2. Shell mathematical models considered 

The generic form for the variational formulations 
of the shell mathematical models that we consider 
is 

t3A(U; V)+tD(U; V)=G(V), VVEU, (1) 

where U is the unknown solution field which we 
call “displacements” even though some components 
may be of a different nature (namely rotations), and 
U is the set of “admissible displacements” taking 
into account the appropriate functional spaces and 
the boundary conditions. The symbol t denotes the 
shell thickness. In the sequel we study how the 
properties of the model change when t varies, and 
particularly when t becomes very small compared 
to the other characteristic dimensions of the system. 
A and D are bilinear forms whose expressions 
depend on the model considered, but not on the 
parameter t. Finally, the right-hand side G(V) rep- 
resents the work of external forces for the virtual 
displacement V. 

The models that we examine here fall into two 
main categories: models of the Kirchhoff-Love 
type, and models of the Reissner-Mindlin type, so- 
called by analogy with plate models. 

In Reissner-Mindlin type models, the unknowns 
are the displacement of the mid-surface (a vector in 
R3 denoted by u), and the rotation of the vector or- 
thogonal to the mid-surface (a surface tensor of 
order 1 which we denote by 0J [l 11. The Naghdi for- 
mulation can be written as [9]: 

Find (u,c) in URM such that 

t3ARM(u, e; v, 2) + rDRM(u, @; v, 1> = G(v), 

V(v, q) E URM. (2) 

Here 

which can be internreted as the internal work of the 
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bending stresses. The bending strain operator 2 is 
expressed as 

def 1 
XA/L(V? ‘I) = - hu + %4A - A 2 

b”v ulw - b;v,lAl + cruv3. 

The above fourth-order tensor is 

where E and v, respectively, denote Young’s mod- 
ulus and Poisson’s ratio for the material. The sec- 
ond bilinear form DRM can be written as the sum 
of a membrane term D” and a shear term D’: 

Dm(u, v) dAf 
s 

-@.*“Y~~(U)Y&WS 
n 

D’(u, 6’; v, 3) ef 
s 

J”B~&, @(pa(v, q)dS 
s-2 

with 

def 1 
n,(v) = z#'Alj~ + v/~iA) - bA,v3, 

v~(K'I)~~~~~,~ + +A + 'IS> 

y d&f IS@ 
2(1 + v) 

Finally, the effect of external forces appears 
through 

G(v) dAf 
s 

p . vdS 
n 

where p is the distributed force over the mid-surface 
S. 

In Kirchhoff-Love type models, the only 
unknown is the displacement vector u. These 
models are based on stronger kinematic assump- 
tions than the Reissner-Mindlin type models, in 
that the rotation is inferred from the displacement, 
typically by assuming that normal vectors remain 
orthogonal to the mid-surface in the deformed con- 
figuration. Consequently, shear terms are not 
included in the formulation. As an example, we use 
Koiter’s model [12], whose expression in the linear 
framework is: 

Find u in UK such that 

t3AK(u; v) + tDK(u; v) = G(v), Vv E UK, (3) 

with 

where 

PA&) dgf v3lAp - cA~v3 + b;f,,va + @,I, + b;qA. 

Again, AK can be interpreted as a bending term. 
DK is identical to the membrane part of the 
previous formulation: 

DK(u; v)Ef Dm(u; v), 

and the right-hand side is as before.We know that 
both formulations (2) and (3) are well-posed math- 
ematical problems, provided we specify the appro- 
priate functional framework: 

URMEf{f( = (v, ‘I) I v E [H’(sq3, rJ E [H’(G$) l-l CL, 

UKdAf( v = v 1 (VI, v2) E [H’(sq2, v3 E H*(a)) l-l cc, 

where CL: symbolically denotes the essential bound- 
ary conditions imposed on the admissible displace- 
ments. Of course, these boundary conditions are 
supposed to be compatible with the nature of each 
functional space, and sufficient to prevent rigid 
body motions. Then these formulations can be 
shown to satisfy the proper continuity and ellipti- 
city properties [ 13,141, viz. 

(4) 

where ]I . JIu denotes the norm used for U, according 
to the nature of the Sobolev spaces involved. Thus, 
recalling the definition of the L2, H’ and Hz norms: 

l1711L2 Ef 1 ( 7* dQ-I”*, 

the norms used for the two models described above 
are 

1 I 
112 

IIV, ~II~RM gf C Ilvill$ + C ll%llfl 
k1.2.3 u=1,2 

and 

i I 
112 

llVIIU~~f c llv&, + llv3l& 
a=1.2 

Equation (4) guarantees the well-posedness of the 
variational problem. Note, however, that the ellipti- 
city and continuity constants (ct and C,, respect- 
ively) are t-dependent. 

2.3. Shell geometries considered 

In the sequel, we often categorize surface geome- 
tries according to the nature of their curvature ten- 
sor. We recall that a surface is called elliptic, 
parabolic or hyperbolic according to whether the 
Gaussian curvature K, given by 

Kd&f hlbzz - (h2)2 

a (5) 

is positive, zero or negative, respectively. For 
example, a part of an ellipsoid is an elliptic surface; 
a cylinder, a cone, and developable surfaces in gen- 



Finite element analysis of shell structures 23 

Fig. 3. Hyperbolic paraboloid and its asymptotic lines. 

era1 are all parabolic surfaces; a hyperbolic parabo- 
loid of equation z == xy (see Fig. 3) is a hyperbolic 
surface. 

Of course, general surfaces need not be of uni- 
form nature in this respect, but this distinction can 
always be made pointwise. It is a fundamental dis- 
tinction because, as we show in Section 2.5, shells 
of different geometric nature behave very differently 
when their thickness becomes small. For this 
reason, surfaces of uniform geometric nature (i.e. 
everywhere elliptic, or parabolic, or hyperbolic), 
such as most examples that we consider in the dis- 
cussions to follow, should not be thought of as 
restrictive cases but, on the contrary, as essential 
ingredients that determine the behaviour of more 
general structures obtained by assembling surfaces 
of various types. 

2.4. Asymptotic behaviour 

Implicit in the concept of a “shell” is the idea 
that the thickness is “small” compared to the other 
two dimensions. In practice, it is not unusual to 
deal with structures whose thickness is smaller by 
several orders of magnitude, in which case the shell 
is said to be “thin” (consider, for example, the shell 
body of a motor car). Considering the role of t in 
Equation (1) with ,weights varying from 1 to t* in 
front of the different terms on the left-hand side, it 
is reasonable to wonder in what way the properties 
of the model are affected when this parameter 
becomes small. Likewise, it is important to know 
whether the model converges, in some sense, 
towards a “limit model” when t tends to zero, so 
that this possibly simpler model can be used and 
analysed instead of the original one when t is suffi- 
ciently small. As already mentioned, our ultimate 
goal is to investigate the influence of the thickness 
on the convergence of numerical methods, in order 
to be able to detect difficulties such as numerical 
locking. We first concentrate on the asymptotic 
behaviour of the mathematical models, whereas the 
issues arising in the finite element solutions are 
specifically dealt witlh in Section 3. 

In an asymptotic: analysis, one particular sub- 
space of U takes on a crucial role (see for example 
Refs [5,7, 15, 161, namely 

For the model in Equation (3), this space is 

and thus 242 is the subspace of displacements with 
vanishing membrane strains. For the model in 
Equation (2), we have 

uRM dgf 6’9 3) E URM 1 
0 

1 

&fib’) = 0, c&p= 1,2 
&(v,fJ) = 0, o! = 1,2 I ’ 

and both membrane and shear strains must vanish. 
In both cases 240 contains the displacements for 
which only the bending strains are non-zero, and 
hence it is the subspace of pure bending displace- 
ments. Note that, for the Reissner-Mindlin model, 
the condition of vanishing shear strains is equival- 
ent to the following relations 

rl, = 4v3.a + b&h (6) 

which provide an explicit expression of r~ as a func- 
tion of v. Therefore, the governing conditions for 
URM are also those of vanishing membrane strains, 0 

like for Uf. For this reason, UO is also called, in 
general, the subspace of inextensional displace- 
ments. 

Unlike what happens for simpler structures such 
as beams and plates, we observe that the conditions 
which define UO make up an exactly determined set 
of equations (i.e. we have as many equations as 
unknowns). This reveals an essential specificity of 
shells, which is that a situation where 

uo = 10) (7) 

is possible. Such a situation is designated to be a 
case of “inhibited pure bending”. We proceed to 
show that the asymptotic behaviour of a shell 
model is highly dependent on whether or not pure 
bending is inhibited. Examples of shells for which 
Equation (7) is and is not applicable are given and 
discussed in Section 2.5. 

2.4.1. The case of non-inhibited pure bending. The 
case of non-inhibited pure bending is of course, for 
example, encountered in the analysis of tlat shells, 
that is, in plate formulations. However, we consider 
the more general case of a shell. We know that, for 
the solution of Equation (1) to remain both 
bounded and non-vanishing, it must be assumed 
that the right-hand side is of the form 

G( I’) = t3F( I’), (8) 

where F is a linear form independent of t, see for 
example Refs [15,17,18]. In other words, we can 
say that the stiffness of the structure varies like t3. 
For each value of t, the problem to be solved is 
then: 



24 D. Chapelle and K. J. Bathe 

Find U, E U such that 

A(Ut; V)+$D(Q: V)=F(V), VVEU. (9) 

When t is very small, this problem can be inter- 
preted as a penalized form of the following problem 
of optimization under constraints: 

Find Ue E UO such that 

A(&; V) = F(V), VV E L/o. (IO) 

This new problem is well posed since it is the 
restriction to a closed subspace of the elliptic optim- 
ization problem, Equation (9). Furthermore, the 
following convergence result can be established [19] 
(see also Refs [20,21]). 

Proposition I. When t tends to zero, the solution 
U, of Equation (9) converges to the solution U. of 
Equation (10) for the norm of U. Additionally, we 
have 

lii+(u~: U,) = 0. (11) 

Equation (11) means that in the Reissner- 
Mindlin type models the membrane and shear ener- 
gies tend to zero with t, and in the Kirchhoff-Love 
type models, of course, only the membrane energy 
tends to zero since the shear energy is always zero. 
This explains why shells with non-inhibited pure 
bending are sometimes also called “bending domi- 
nated” structures. 

2.4.2. The case of inhibited pure bending. We 
recall that, in the case of inhibited pure bending, 
Us = {0) and therefore 

D(V; V) > 0, vv E u \ (0). 

Hence, D(V;v)“’ provides a norm on U. In fact, 
this norm can be defined on a space larger than U, 
denoted by V, which consists of all possible displa- 
cements V for which D( V,v) is bounded. Namely, 
we only enforce in V the regularity requirements 
corresponding to the membrane part of the total 
energy. V is of course less regular than U, and its 
exact nature depends on the shell considered and 
on the boundary conditions imposed. For Koiter’s 
model, for instance, if the surface is uniformly ellip- 
tic, sufficiently smooth, and clamped along its 
whole boundary, we can show that pure bending is 
inhibited and that V is [Z-Z&)]2~~2(n) [22,23]. 

A proper scaling for the right-hand side is then 

G(v) = tF( 0 (12) 

i.e. the stiffness is now of the order of t, see for 
example Refs [7,16]. The problem sequence 
becomes: 

Find U, E U such that 

D(Ut; V) + t*A(U,; V) = F(V), VV E U. (13) 

This is a classical singular perturbation of an elliptic 
problem [24]. We can define the limit problem: 

Find Ul E V such that 

D(U,; V) = F(V), VV E V. (14) 

This problem is well posed provided the right-hand 
side can be made sense of, that is F must be in the 
dual space of V. An equivalent condition for that is 

1 F(V) 15 CD(V; I/)“*, VV E U, (1% 

where C is a constant. Note that F being in the 
dual space of V is not at all guaranteed since, V 
being larger than U, V is smaller than U’. If the 
condition holds, then the singularly-perturbed pro- 
blem converges, as expressed in the following 
proposition [24, 161. 

Proposition 2. If F E V’, the solution U, of 
Equation (13) converges to the solution U, of 
Equation (14) when t tends to zero for the norm 
D(V;V)‘j2. Furthermore, it holds that 

lipid t*A(U,; U,) = 0. (16) 

Hence, Equation (16) shows that the bending 
energy in this case becomes negligible compared to 
the other terms when t tends to zero, as opposed to 
what happens for non-inhibited shells. Another sig- 
nificant difference between the two asymptotic 
behaviours is that, for an inhibited shell, a loss of 
regularity occurs in the transition from U to V, 
unlike for non-inhibited shells from U to UO. In cer- 
tain cases, this loss of regularity is not without 
serious consequences. For instance, for a uniformly 
elliptic she11 described by the Koiter model with dis- 
placements fixed on part of the boundary only, 
pure bending can be shown to be inhibited but the 
space V is not, mathematically speaking, a distri- 
bution space [25]. This implies that there exist some 
indefinitely differentiable functions that do not 
belong to the dual of V, and hence lead to ill-posed 
membrane problems when used as loadings. As a 
matter of fact, it is well known in engineering prac- 
tice that any reasonable loading applied on such a 
structure gives a “physically unstable” membrane 
problem. 

2.5. Analysis of the subspace of pure bending displa- 
cements 

We have already emphasized the critical role of 
the subspace of pure bending displacements, 
depending on whether or not it is restricted to (0). 
We also observed that the governing conditions 
which characterize this subspace are the zero mem- 
brane strains, viz. 

&r(v) = 0, a!, B = 132. (17) 

A remarkable property of this system of differential 
equations, proved in Ref. [16], is that the nature of 
the differential equations (elliptic, parabolic or 
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hyperbolic) is the same as the geometric nature of 
the surface at the point in consideration. This 
allows us to non-exhaustively review several 
instances for which it is possible to tell whether or 
not pure bending is inhibited. Obviously this prop- 
erty also depends on the boundary conditions 
which we therefore need to take into consideration, 
We now examine shells whose mid-surface is of uni- 
form nature (everywhere elliptic, or parabolic, or 
hyperbolic). 

2.5.1. Elliptic surfaces. For a sufficiently smooth 
uniformly elliptic surface, for instance part of an 
ellipsoid, imposing zero displacements on a part of 
the boundary of non-zero measure is sufficient to 
inhibit pure bending displacements [25]. As already 
mentioned, if this part extends to the whole bound- 
ary, then there is a limit problem which retains suf- 
ficient regularity for the solution. However, with 
less support on the structure, the problem is always 
ill-posed. By contrast, if no boundary condition is 
imposed except for preventing rigid body motions, 
then there exists pure bending displacements [26]. 

2.5.2. Hyperbolic surfaces. For a hyperbolic sur- 
face (see for instance the hyperbolic paraboloid in 
Fig. 3 with the lattice of straight asymptotic lines), 
we infer that system (17) is itself of hyperbolic 
nature. Moreover, its characteristics are the asymp- 
totic lines of the surface [25]. Therefore, the sub- 
space of pure bending displacements is highly 
dependent on the boundary conditions which 
together with Equation (17) define a Cauchy pro- 
blem that in general is well posed. 

In order to make the analysis of the problem sim- 
pler, it is valuable to use the coordinate system 
defined by the asymptotic lines of the surface. This 
is always possible when the surface is sufficiently 
smooth. System (17) then becomes: 

Vlll = 0 

V2l2 = 0 

fh,;: + ~211) = h2v3 I (18) 

with b12>0, and therefore the third equation gives 
~3 explicitly in terms of vI and v2. 

As an example, we display in Fig. 4 the reference 
domain of a hyperbolic surface in this particular 
coordinate system. Suppose that vi and v2 are fixed 
on the part (AB) of the boundary. Then the Cauchy 
problem is well posed in the triangle (ABC) where 
therefore all displacements are zero. However, out- 
side of this region there exist non-zero displace- 
ments which satisfy Equation (18). For instance, we 
can arbitrarily set vi on the line (CE) and v2 on the 
line (CD), and this determines the value of the fields 
over the whole domain. 

Thus, unlike with elliptic surfaces, hyperbolic sur- 
faces appear to easily lead to non-inhibited situ- 
ations, provided that boundary conditions are 
imposed on a sufficiently restricted part of the 
boundary. 

2.5.3. Parabolic surfaces. Parabolic surfaces, i.e. 
surfaces of zero Gaussian curvature (cylinders, 
cones, etc.), can be thought of as a narrow category 
between the two above-mentioned major types. In 
practice, however, these geometric shapes are by far 
the most employed. Therefore, the analysis of their 
mechanical behaviour is of particular importance. 

For the sake of simplicity, we focus on the 
cylindrical case (the analysis for a cone would be 
similar). We use the natural coordinate system 
(defined by the rulings and the cross-sections, see 
Fig. 5) in which all Christoffel symbols are zero and 
the covariant base is orthonormal. System (17) then 
reads 

VI,1 = 0 

~2.2 = b22e 

VI.2 + V2.I = 0 (19) 

As is easily seen, if we prescribe the displacements 
on some part of a cross-section, the entire corre- 
sponding band gets inhibited (see Fig. 5 where the 
section is fixed on part (AB)). By contrast, if 
boundary conditions are only imposed along rulings 
(i.e. straight lines parallel to the axis of the cylin- 
der), pure bending displacements remain possible: 

Fig. 4. Hyperbolic surface in the asymptotic coordinates. 
Fig. 5. Natural coordinates and inhibited region for a 

cylinder. 
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vi and v2 can in fact be set arbitrarily along any 
cross-section (subject to satisfying the boundary 
conditions) and a complete field of pure bending 
displacements is thus fully determined. For instance 
arch-like displacements, i.e. those in which all cross- 
sections undergo identical displacements in their 
own planes and according to a pure bending arch 
mode belong to the pure bending subspace. 

2.6. Injluence of the loading 

In the previous discussion, the governing factor 
in the analysis of the asymptotic behaviour of a 
shell model was the content of the subspace of pure 
bending displacements, L/c, which depends on the 
geometry of the surface and the boundary con- 
ditions only. As regards the loading, we only men- 
tioned the regularity issues that determine whether 
or not a membrane problem is well posed (through 
Condition (15)). Such a minor influence of the load- 
ing may seem surprising, in particular when recal- 
ling that certain load distributions can be found 
that do not activate the pure bending displace- 
ments, and hence cannot possibly give rise to bend- 
ing-dominated asymptotic behaviour. However, an 
analysis shows that even small perturbations to 
such load distributions result in significant displace- 
ments when t is small, and hence, in practice, the 
load distribution (apart from the regularity issues) 
need not be considered. In this section, we present 
this analysis and an illuminating example for which 
a closed form solution can be obtained. 

26.1. Effect of loadings that do not activate the 
pure bending displacements. We consider for 
Equation (1) a right-hand side of the form 

G( I’) = tpF( I’), (20) 

where p is a scaling exponent to be determined, and 
F is such that 

F(V) = 0, VI’ E U,,. (21) 

Of course, we suppose that L/O # {0}, i.e. that pure 
bending is not inhibited. Thus, the loading con- 
sidered here does not activate the (non-trivial) pure 
bending displacements. 

The general philosophy of an asymptotic analysis 
consists in finding the right exponent p such that a 
limit problem can be defined when t tends to zero, 
the solution of this limit problem being non-zero. 
In this specific case, if we choose the scaling p = 3 
as indicated in Section 2.4.1, Proposition 1 ensures 
that convergence occurs to the solution of 
Equation (lo), which is zero because of 
Equation (21). Therefore this scaling is unable to 
capture the relevant asymptotic behaviour. In the 
next proposition, we show that, assuming that 
Equation (1.5) is satisfied (note that this is possible 
here because Equation (21) holds, even though pure 
bending is non-inhibited), the asymptotic behaviour 

is of the membrane type. The problem sequence in 
consideration is thus: 

Find fi, E U such that 

D(&; I’) + tz&,; I’) = F(V), VI’ E U. (22) 

We first need a 
lowing lemma. 

Lemma I. U 
sum 

preliminary result, stated in the fol- 

can be decomposed into the direct 

U=Uo$U,, (23) 

where U, is the subspace of U uniquely defined by 

A(U; V) = 0, V(U, v) E us x u,. (24) 

Proof: for any fixed t>O, Equation (4) expresses 
that (tD( V, v) + t3A( V; v))“’ defines a norm that is 
equivalent to the norm 11 I’ll,. Define U, as the sub- 
space orthogonal to UO for the dot product associ- 
ated with this new norm. We have 

tD(U; V) + t3A(U; V) = 0, V(U, I’) E U. x UC. 

(25) 

Note that 

D(U, W) = 0, w, w) E uo x U, (26) 

since, by the Cauchy-Schwarz inequality, (D( Q W)I 
< D( U;U)‘i2D( W, W)1/2 = 0. Hence, Equation (25) is 
equivalent to Equation (24), which shows that U, is 
defined independently of t. n 

We observe that, since 2-40 n Z-4, = [O}, D(V;V)‘12 
defines a norm on UC, and we can consider a space 
U,, defined as the extension of 24, for this norm 
exactly as U was defined from U in Section 2.4.2. 
We now state the convergence result. 

Proposition 3. For any t>O, the solution o* of 
Problem (22) is in 24,. Moreover, assuming that 
Equation (15) holds, when t tends to zero, i’, con- 
verges, for the norm D(V,V)“‘, to t?, defined as the 
unique element of V, that satisfies 

D(&; V) = F(V), VV E V,. (27) 

In addition, we have 

f;; t2A(U,; tit) = 0. (28) 

Proof: for any t > 0, decompose 0, into 
_ I _ 

u, = uo, + UC,, (29) 

with 00~ EUO and oCcr~U,, Then, choosing V E L/O 
in Equation (22) and using Equations (21), (24) and 
(26), we obtain 

A(Uo,; V) = 0, VV E Uo. (30) 

hence &,=O, since A is coercive on Z-40 (take 
V E UO in Equation (4)). Therefore ot:,= oCcl~U,. 
Taking now V E U, in Equation (22), we get 
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D(ti,; V)+ t2A(i;,; V) = F(V), VI’ E U,, (31) 

and this problem is of the exact same type as 
Equation (13). Since Equation (15) holds, the 
above properties are a direct application of 
Proposition 2. n 

Therefore, when the loading does not activate the 
pure bending dislplacements, as expressed by 
Equation (21), the asymptotic behaviour of the sol- 
ution is formally similar to that in the case of inhib- 
ited pure bending. Namely, assuming that 
Equation (15) is satisfied, the solution of the shell 
problem converges to the solution of a membrane 
problem, provided that the loading is scaled accord- 
ing to Equation (12) (i.e. the membrane type 
scaling). 

However, to understand the general behaviour of 
a shell structure we of course need to consider var- 
ious loading distributions, and in particular also the 
effect of perturbations on the loading used above. 
Such perturbed loading can be represented by sub- 
stituting F+E for F in Equation (22), assuming 
that P satisfies Equation (21) but not E, and that 
the amplitude of P is “small” compared to that of 
F. Note that E, although activating the bending de- 
formations, is assumed to correspond to a value of 
p = 1 in Equation (20). Then, due to the linearity 
of the problem, the new solution is ot+ uit/t2, 
where 0, is the solution of Equation (22) and rsi, 
the solution of: 

A(&; V) +;D(‘i,; V) = F(V), VV EU, (32) 

which is a penalized problem similar to 
Equation (9). Here, both o* and a, are convergent, 
according to Prop. 3 and Prop. 1, respectively. 
These convergence behaviours correspond to two 
different norms, therefore we cannot directly com- 
pare the terms 0, and 0*/t’. We can, however, com- 
pare the asymptotic orders of their respective 
energies, i.e. 

E( I’) %f tD( I’; V) + t3A( V; V), 

for V= oz and for V= ii,/t2. For I?<,, according to 
Prop. 3, the dominant part of the energy is 
tD(rjl;O,), and D( o,,oJ converges to a finite value. 
By contrast, for C;/t2, Prop. 1 implies that the 
dominant term is tf ‘A( ul’,;o,), where A( ii,;o,) con- 
verges to a finite value. Thus, even though the 
amplitude of the perturbation is small, the effect of 
this perturbation becomes dominant when t is suffi- 
ciently small, with a relative amplification factor 
proportional to I/t’. 

We proceed to illustrate this discussion by an 
example. 

2.62. A demonstrative solution: the case of an inji- 
nitely long cylinder loaded by internal pressure. We 
consider an infinitely long circular cylinder of radius 
R, with the natural. coordinate system defined in 

Section 2.5.3. We use the Naghdi shell formulation, 
Equation (2). The cylinder is loaded by a (non-con- 
stant) internal pressure independent of the 51 coor- 
dinate. Therefore, the solution is independent of cl 
and, for symmetry reasons, 

ui = 81 = 0. (33) 

For certain choices of the pressure distribution, we 
can derive closed-form solutions of the problem by 
solving simple systems of linear equations. This will 
allow us to illustrate our above discussions. We first 
define a non-dimensional parameter characteristic 
of the thickness: 

def f, 

and three constants: 

1 
B1%f 12(1 _$), /92gf A, B35&. 

If a constant pressure is applied on the cylinder, 
pure bending displacements are ‘obviously not acti- 
vated. We therefore consider the following right- 
hand side: 

G(V) = d 
s 

fv3 dS, 
o 

where-f is a constant. Note that this is consistent 
with the membrane type scaling. We obtain the fol- 
lowing values for the displacements: 

u2 = e2 = 0, (34) 

.fR 1 
U3=-Ep2+p,d2 

(35) 

For a slice of unit length, the energy values corre- 
sponding to the bending and membrane parts are, 
respectively, 

(36) 

(37) 

and the shear energy is zero. 
Suppose now that the constant pressure above is 

perturbed by the term 

G(V) = d 
s 

~COS (%2/R)~3 dS, 
Cl 

wheref is a constant much smaller thanf. We can 
compute the solution corresponding to this pertur- 
bation analytically. We get, for the displacements 

fR 
ii2 =-x 

1 _ 
-d * + &+$ 188* sin(2.$/R), (38) 

cos(2hlR), (39) 
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> 
sin(262/R), (40) 

and for the bending, membrane and shear energies, 
respectively, 

& _ n fzR2d-’ 
188, E ’ 

E =~f2RZd 
m 982 E ’ 

(41) 

(42) 

Of course, these results are completely consistent 
with the earlier given theoretical discussions. Here, 
even though f is much smaller than f, the effect of 
the perturbation is dominant in the displacements 
themselves when t is smaller than m, and in 
the energy also when t is smaller than Rf /J 

3. ASYMPTOTIC ANALYSIS OF FINITE ELEMENT 
METHODS FOR THIN SHELLS 

Considering a shell with a fixed, known a priori 
thickness, ellipticity results show that any conform- 
ing finite element method applied to Equation (1) 
admits an error estimate which is bounded by the 
interpolation estimate and a constant that depends 
on the shell thickness [13,14]. For a thin shell, this 
constant is large and the error in the solution can 
be unacceptable. Supposing that the exact solution 
of the model retains “reasonable properties” (e.g. 
bounded and regular), it is natural to seek a finite 
element scheme that provides optimal results for all 
values of t (and indeed independent of 1). Such a 
finite element scheme is difficult to develop as testi- 
fied by numerous famous examples of numerical 
locking exhibited in the finite element solution of 
thin structures. Thus, an asymptotic analysis of the 
finite element methods themselves is necessary. We 
now consider this analysis separately for the inhib- 
ited and non-inhibited cases. 

3.1. Non-inhibited shells 

We mentioned that, in the case of non-inhibited 
shells, the sequence of problems (9) can be inter- 
preted as a penalized form of an optimization pro- 
blem under constraints. It is precisely in this 
context that numerical locking can arise; namely 
this phenomenon appears when the discrete displa- 
cements, of the space denoted by Uh, are unable to 
properly satisfy the constraint [l]. In the most 
serious instances, we indeed have 

uh n u. = IO). W) 

Let us denote by Uf the finite element solution, i.e. 
the element of Uh such that 

A#‘; V)+fD(Uf; V) =F(V), VV cUh. (45) 

We then infer from Proposition 1, in this particular 
case of a finite dimensional space, that 

hil u: = 0. (46) 

By contrast 

uo = hi u, # 0. (47) 

Here, the meaning of the term “numerical locking” 
becomes clear: when t tends to zero the numerical 
scheme provides results that approach zero displa- 
cements, whereas the exact solution itself remains 
non-vanishing. 

For non-inhibited shells, we proceed to show 
that, with conforming finite element discretizations 
and certain shell structures, Equation (44) in fact 
holds. We consider the case of a hyperbolic surface 
for which, as seen above, a non-inhibited situation 
is common. 

Proposition 4. Consider a regular hyperbolic shell 
fixed on some part of its boundary, and a finite el- 
ement scheme, in the framework of Equation (4.5) 
in which the displacement components vi, v2 and v3 
are approximated by continuous piecewise-poly- 
nomial functions. Assume that no edge of the el- 
ements in the mesh is part of an asymptotic line. 
Then Equation (44) holds. 

Proof: we will show that, for any 
(~l,~2,~3) eUh nUo, if vi and v2 equal zero on an 
edge of any element of the mesh, then vl, v2 and v3 
are identically zero over the whole element. This 
being granted, the result is immediately obtained by 
“propagating” the zero displacements from the 
boundary conditions to cover the whole domain. 

Consider an arbitrary element of the mesh, with 
v1 and v2 set to zero on any of its edges, then we 
have two possibilities: 

(a) Either the lattice of characteristic curves orig- 
inating from this edge covers the element comple- 
tely (like in Fig. 6a) and the property directly 
follows. 

(b) Or the element is only partially covered 
(Fig. 6b), but in this case we still have 
vi = vz= v3 =0 on a part of non-zero area of the 
28 element. Recalling that the displacements are 

4 ‘4 

Fig. 6. Characteristics and inhibited region for an element. 
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given by polynomial functions, they necessarily 
equal zero over the whole element. n 

To make the statement of this property simpler, 
we assumed that no single element edge corresponds 
to an asymptotic curve. It is obvious, however, that 
this result carries over to any case in which the 
propagation technique can be applied. By contrast, 
if a mesh happens to be entirely supported by 
asymptotic curves, one should of course not deduce 
that locking is overcome. This simply means that 
locking cannot be mathematically proven to arise 
by the same arguments. 

Note further that this result reveals a significant 
difference between numerical methods for shells and 
for other structures. For beams and plates, it is 
indeed always possible to avoid Equation (44) by 
raising the polynomial degrees of the discretization 
spaces [27,28]. Here our argument is independent of 
the polynomial degree, hence locking always occurs 
using pure displacement-based finite element formu- 
lations. But of course, for a given thickness, the 
errors in the solution may be acceptably small if the 
order of the polynomials is sufficiently high and the 
mesh is sufficiently fine. 

Much research has been performed to obtain 
locking-free finite element methods for shells, but 
only limited success has been achieved. For the sim- 
pler plate problem, mixed finite element methods 
are providing very efficient numerical schemes, lead- 
ing to formulations of the type 

A#; ?‘) ++Dn(U;; ?‘) = F(V), Vi’ E Uh, (48) 

where Dh is a perturbed form of D (see Ref. [17] 
and the MITC ellements in Refs [l, 291). In these 
methods, the locking-free behaviour is achieved as a 
consequence of thle relaxation of the original con- 
straint implied by the substitution of Dh for D. The 
rigorous construction of the specific form of Dh as 
well as the mathematical analysis of the finite el- 
ement discretizations are based on a mathematical 
condition, known as the “inf-sup condition”, which 
guarantees that the method is stable and 
optimal [17,30]. However, mixed finite element dis- 
cretizations for shells are much more difficult to 
construct and analyse and so far the relevant inf- 
sup condition could not be proven to be satisfied by 
any discretization without resorting to over-simpli- 
fying assumptions on the geometry [31]. It seems 
that only more elaborate methods, known as mixed 
stabilized methods, which in fact circumvent the 
inf-sup condition, have allowed a complete math- 
ematical analysis showing that locking is 
neutralized [32], but these procedures are more com- 
plex and, more seriously, lack generality of appli- 
cation (see next section). 

3.2. Inhibited shell:? 

In the inhibited case, we already mentioned the 
loss of regularity (occurring in the asymptotic beha- 

CAS 6611-B 

viour. Obviously, we cannot expect reasonable nu- 
merical results when t tends to zero unless the exact 
solution retains some degree of regularity. We 
therefore exclude from our consideration cases with 
critically ill-posed limit problems, such as an elliptic 
shell clamped on only part of its boundary. In such 
cases, we must probably accept to restrict the nu- 
merical computations to “reasonably small” values 
of t. 

Assuming therefore that the solution retains some 
reasonable properties in the asymptotic limit, like in 
the example of an elliptic shell clamped along the 
whole boundary in the Koiter model, we can show 
that, under rather unrestrictive assumptions, any 
conforming finite element method satisfies a prop- 
erty of uniform convergence. Let U!’ be the finite el- 
ement solution for the shell thickness t, i.e. fl 
satisfies 

D(U;; V) + t2A(U;; v) = F(V), VI/ E Uh. (49) 

We denote by 11 . IIu the norm used for U and define 

11 Vll$D(V; V)“2, VP’ E V. 

Let t, be an upper bound for the shell thickness to 
be considered, then we have the following prop- 
osition (which, considering practical experience, 
does not represent a surprise). 

Proposition 5. We assume that F E V and that 
there exist two interpolation operators Zh and Jh, 
defined respectively on V and U, both with values 
in &, which satisfy the following properties: 

VVEII, llZhJ% I Cl II mv 
VVEU, llZh w.4 I C2ll Vllu 
VVEV, Fy ll v - ZhVllV = 0 + I (50) 

VVEU, llJhVllu I C~llvllu 
VVEV, f?. II V - Jh Uu 

I 
(51) 

Then it holds that 

lim sup IllU, - Ufllv + tll& - UfIlu] = 0. 
h+e IEIO,~,] 

(52) 

We give the proof in Appendix A. 
This result ensures that the numerical approxi- 

mations of Equation (13) remain uniformly conver- 
gent when t tends to zero, which rules out any 
problem of the same type as locking. In order to 
obtain a more accurate estimate, for instance an 
order of uniform convergence (in h), we would need 
some properties of uniform regularity that are 
beyond our reach in the framework of the present 
paper. 

We further point out that Equations (SO) and (51) 
are rather unrestrictive assumptions. For instance, 
in the case of the uniformly elliptic Koiter shell 
clamped along the whole boundary, where we have 
U = [fZ,j(sZ)]’ x fZ,$(sZ) and V = [ZTZ,#Z)]~ x L2(S2), 
we can choose for both Zh and Jh the Clement in- 
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terpolation operator [33] to fulfill the required ations (specifically that the element must not con- 
assumptions. tain a spurious energy mode) [l]. 

3.3. The general case 

In engineering practice, it is usually not expedient 
to determine to which category a particular shell 
belongs. Typically, a shell is defined as a thin three- 
dimensional solid by a computer-aided design pro- 
gram and is not of uniform geometric nature. The 
structure may also contain some folds which are 
known to dramatically change the behaviour of a 
shell by increasing its stiffness. General finite el- 
ement schemes that behave equally well for both 
inhibited and non-inhibited shells would therefore 
be of utmost value. 

For inhibited shells, we have seen that a direct 
conforming method is very likely to yield good 
results. For non-inhibited shells, however, these 
conforming methods are subject to locking and 
resorting to mixed methods is necessary. It is there- 
fore interesting to study how these methods behave 
when applied to the inhibited case. We then solve a 
problem of the general form 

Since the mathematical analysis of most shell 
finite element discretizations used in practice is 
(still) out of reach, recourse must be taken to a nu- 
merical assessment of the convergence behaviour 
(which of course is also valuable even if a math- 
ematical analysis is available). This assessment 
requires a study of the finite element scheme in judi- 
ciously selected test problems. The objective of the 
numerical tests is to precisely show whether a finite 
element scheme is a general procedure, i.e. is appli- 
cable to both categories of shell behaviours-the 
inhibited and non-inhibited cases-, and in how far 
the convergence rate is independent of the shell 
thickness. As previously mentioned, ideally the con- 
vergence rate for any shell geometry and boundary 
conditions is independent of the thickness t and 
always optimal for the interpolations used. This 
objective is similar to the objective in almost incom- 
pressible analysis, where the convergence rate of a 
finite element scheme should be independent of the 
bulk modulus and optimal [ 11. 

Dh(@; V) + t*Ah(U:; V) = Fh(V), VV E Uh. (53) 

where Dh, Ah and # are perturbed forms of D, A 
and F due to mixed interpolations. Note that, in 
the above discussions, we concentrated on the effect 
of the mixed interpolation on the D form, so we 
assumed that Ah = A and p= F. But this assump- 
tion is not necessary to observe that, whereas in the 
non-inhibited case the modification of D can be 
interpreted as a relaxation of the constraint, in the 
inhibited case it perturbs the leading part of the 
variational formulation, as shown by the conver- 
gence result of Proposition 2. The key point is then 
whether or not this perturbation allows sufficient 
consistency between Dh and D. If this consistency is 
not available, difficulties occur such as spurious 
modes or more generally speaking non-convergent 
solutions. For mixed stabilized methods, this ques- 
tion is even more acute as D is more seriously per- 
turbed than for a standard mixed method [32]. In 
the case Ah and ?’ are not equal to A and F, re- 
spectively, we of course also require consistency 
between p and F, and (in the general case) between 
Ah and A. 

Of course, many test problems have been 
employed in shell finite element developments. In 
the following sections, we comment upon some 
widely-used problems and propose a sequence of 
test problems that we consider to be particularly 
suitable for the evaluation of shell finite elements. 

4.1. Remarks on some widely used benchmark pro- 
blems 

The three problems discussed below have been 
amply used as benchmark problems. While we 
point out some deficiencies in these problems, our 
remarks should, of course, not be interpreted as 
completely rejecting them as test problems. 

4.1.1. The Scordelis-Lo roof. This problem is 
described in Fig. 7. The structure is subjected to its 
self-weight. Considering the boundary conditions, 
we directly infer from Section 2.5.3 that pure bend- 
ing is inhibited. We show in Appendix B that the 
corresponding limit membrane problem is ill-posed 
due to the loading applied here. 

4. NUMERICAL EVALUATION OF SHELL ANALYSIS 
PROCEDURES 

As we discussed in the previous sections, a par- 
ticular difficulty in designing general finite element 
methods for shell structures lies in that an effective 
method should be equally well applicable to the 
bending-dominated situations in non-inhibited cases 
and the membrane-dominated situations in inhib- 
ited cases. Of course, the design of an effective shell 
element requires also a number of other consider- 

clamped boundaries 

‘q (Y = 40 

Fig. 7. Scordelis-Lo roof. 
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4.1.2. The pinched cylinder. Figure 8 displays the 
reduced problem that results from symmetry con- 
siderations. The boundary conditions prescribed on 
the ends of the cylinder are u2= u3 =0 (and 0, =0 
for Reissner-Mindlin models). In this case, 
Equation (19) implies that pure bending is again 
inhibited. As regards the loading, whether or not 
the variational problem for t finite is well-posed 
depends on the shell model used because a trans- 
verse concentrated load is associated with a point- 
wise transverse displacement through the 
variational principle. For a Kirchhoff-Love type 
model the admiss,ible space for the transverse dis- 
placement is H2 so that pointwise values can be 
considered. By contrast, for a Reissner-Mindlin 
type model, the 1:ransverse displacements are con- 
trolled in H’ only, therefore pointwise values can- 
not be defined. Considering now the limit 
membrane problem, it is obviously ill-posed for 
both types of models since, as can be seen from the 
expression of the membrane strains, the transverse 
displacement can ;at most be measured in L2. 

4.1.3. The hemispherical shell. We consider the 
full hemispherica:l shell subjected to the concen- 
trated loads shown in Fig. 9. The prescribed bound- 
ary conditions are the minimum required to prevent 
rigid body motions. Then pure bending is not 
inhibited [26], therefore the asymptotic behaviour is 
bending-dominated. Using the above argument, for 
t finite the variatl.onal problem is well-posed for a 
Kirchhoff-Love type model, but ill-posed for a 
Reissner-Mindlin type model. The limit problem, 
however, is now posed in the subspace of inexten- 
sional displacements UO which is more regular than 
U. Hence the bending limit problem is well-posed 
for both types OF models since, in the Reissner- 
Mindlin case, Equation (6) implies that a transverse 
displacement in U) is also in H2. 

This problem may thus be used to test the beha- 
viour of a finitle element method for locking. 
However, as we mentioned in Section 2.5.1, the 
situation of a totally free boundary is the only way 
to obtain a bendl.ng-dominated behaviour with an 

Fig. 9. Hemispherical shell. 

elliptic surface, and any other boundary condition 
leads to membrane-dominated or strongly ill-posed 
problems. Because of the extreme sensitivity with 
respect to changes in the boundary conditions, we 
do not consider it a very suitable test problem for 
locking. 

4.2. Recommendations for a numerical evaluation 
strategy and suitable test problems 

It is clear from the conclusions of Section 3 that 
the design of a general finite element procedure for 
shell analysis must aim at overcoming two major 
difficulties: locking (in bending-dominated cases) 
must not occur and consistency in all terms must 
not be lost. In particular, there is a danger that, 
when removing membrane and shear locking, con- 
sistency is lost in the membrane term. 

This suggests a natural strategy to numerically 
assess the reliability of a shell finite element pro- 
cedure. A suitable sequence of test problems should 
fulfill the following requirements: 

1. The test sequence should contain cases of both 
categories of asymptotic behaviours, namely 
bending-dominated and membrane-dominated 
cases. 

+ 
F 

symmetry @F - F 

Fig. 8. Pinched cylinder and symmetry-reduced problem. 
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Test cases corresponding to well-posed vari- 
ational problems with well-posed limit problems 
should be preferably employed. Indeed, only 
well-posed problems allow a straightforward in- 
terpretation of any numerical difficulties. 
For each category of asymptotic behaviour, sev- 
eral types of surface geometries-according to 
the elliptic/parabolic/hyperbolic classification- 
should be considered. Since asymptotic beha- 
viours are highly sensitive to the geometry, this 
general testing is necessary in order to assure 
that a finite element scheme is a general pro- 
cedure, and not one tuned to one particular type 
of test case. 

Now that we defined a general evaluation strategy, 
we given some further recommendations on how 
the evaluation should be performed in order to 
allow a valuable interpretation of the solution 
results: 

l Since we are primarily concerned with the detec- 
tion of a possible deterioration of convergence of 
a given finite element procedure when the par- 
ameter t decreases, it is crucial to compare con- 
vergence behaviours of the same discretization 
method for several values of t, for instance by 
measuring the errors obtained for a rather thick 
shell and a very thin one (t typically two orders 
of magnitude smaller). 

l For membrane-dominated cases, an observed de- 
terioration of convergence may be due to a loss 
of regularity of the exact solution rather than a 
loss of consistency of the finite element scheme. 

This can be easily determined by comparing the 
results using the finite element procedure with the 
results obtained from a conforming displacement- 
based scheme. The conforming scheme, which 
should perform well according to Proposition 5, 
would only reflect the loss of regularity. Of 
course, all errors should be measured in a norm 
compatible with the membrane energy norm, 
since it is only in this norm that uniform conver- 
gence can be expected. 
In the construction of a finite element mesh, we 
should carefully avoid aligning the edges of the 
elements along curves featuring any particular 
geometric properties, such as asymptotic lines. 
Such alignment may alleviate locking in some 
instances [20], but would not be a general remedy 
for the analysis of shells with complex geometries 
(i.e. in industrial applications). These consider- 
ations are particularly important when using 
cylindrical shells in benchmark problems. Here, 
the natural tendency to align the mesh on the 
axis should be resisted. 

We proceed to propose a sequence of suitable test 
cases which we divide according to their asymptotic 
behaviours. 

4.2.1. Bending-dominated test problems. As bend- 
ing-dominated test problems, we propose the fol- 
lowing test cases: 

l Full cylinder with free ends. The cylinder is 
loaded by a periodic pressure as shown in Fig. 10. 
No boundary conditions are prescribed, and rigid 
body modes are discarded by imposing appropri- 

Fig. 10. Cylinder loaded by periodic pressure. 
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ate symmetry conditions. Pure bending is clearly 
non-inhibited. This example was already pro- 
posed in Ref. 11341, which also presented a pro- 
cedure to obtain numerical solutions of arbitrary 
precision. In our experience it is an excellent test 
as regards lockl.ng [32]. 

l Partly-clamped hyperbolic paraboloid. The shell 
shown in Fig. 3 is clamped on one side and 
loaded by self weight. According to Section 2.5.2, 
pure bending is globally non-inhibited. We do 
not have an analytical solution for this problem 
but, for each value of t, the numerical solution 
obtained with the finest mesh can be used as a 
reference to pilot error graphs. Of course, if the 
finite element method considered suffers from 
locking, this reference solution may not be accu- 
rate. However, a shift in the convergence plot 
thus-obtained <as t decreases indicates that the 
convergence is not uniform in t and that there- 
fore some locking is present, the severity of it 
depending on the amount of the shift. We advo- 
cate this test problem to detect locking because 
the geometry is more general than a surface of 
zero Gaussian curvature, and the problem is 
more realistic than the problem of an elliptic sur- 
face with free ends. 

4.2.2. Membrane-dominated test problems. As 
membrane-dominated test problems, we propose 
the following test cases: 

Full cylinder with clamped ends. The geometric 
definition of this problem and the loading are the 
same as for the first proposed test above, but we 
now consider fally-clamped ends. The problem is 
also analysed in Ref. [34], where it is shown that 
pure bending is8 inhibited and that the membrane 
limit problem is well-posed. Here again, numeri- 
cal solutions of arbitrary precision can be com- 
puted. 
Clamped hemispherical cap. We know from 
Section 2.4.2 that the space V, on which the 
membrane problem is posed, is rather regular so 
that any reasonable distributed loading (in L*, 

say) will provide a well-posed limit problem. If 
we choose an axisymmetric loading such as the 
one described in Fig. 11, we can compare the nu- 
merical results of the shell analysis procedure 
with the results of some reliable axisymmetric 
analysis scheme. 

5. CONCLUDING REMARKS 

The objective in this paper was to present and 
explain fundamental theoretical considerations 
regarding the analysis of shells, and discuss how to 
make use of these considerations for the develop- 
ment of improved general finite element analysis 
procedures. We review that shells, when the thick- 

Fig. 11. Hemispherical shell under axisymmetric loading. 

ness becomes small, fall into two dramatically 
different categories, namely bending-dominated and 
membrane-dominated structures. The design of a 
finite element procedure that is general and optimal 
for both cases is very difficult, and mathematical 
analyses of available finite element schemes hardly 
exist. Therefore, it is crucial to have available 
appropriate numerical test problems, and use these 
in a judicious manner to evaluate the capability of 
a finite element scheme. The theoretical presentation 
in this paper leads us to propose a test method- 
ology and test problems that we believe to be valu- 
able in the search for improved finite element 
procedures for shell structures. 
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APPENDIX A 

Proof of Proposition 5 
In what follows, symbols c and C denote generic strictly 

positive constants, independent of both t and h, which can 
have different values at different occurrences except when 
they appear with indices. We recall that formulation (13) 
is supposed to be elliptic for any r > 0. In particular 

c]]V]]; i D(V; V) + t;A(V; V) 5 C]] VI];, VV E U. (Al) 

Hence, using 

D(V; V) = llvll;, 

we infer that, for any f E [O,t,], for any V E U, 

c{llVllv + [II VII,)z 5 D(V; v) + *AU’; V) 

5 CIII VII, + Ill Ud2. WI 

Therefore, standard properties of conforming approxi- 
mations entail 

IIU, - qYv+ 4lUr - qYlu 5 c4 ~$;hW, - WJ 

+ 41 ur - Uul. (A3) 

Furthermore, we also obtain from eqn (Al) that 

211 VII: 5 Ct2W’: V) + A(V; V)], VV E U, (‘44) 

so that, using Equation (16) and the fact (inferred from 
Proposition 2) that II U,]]y remains bounded, we get 

~~ylIm4 = 0. (A5) 

Consider now an arbitrary number s>O. To prove 
Equation (52), we need to show that there exists h, > 0 
such that, V he]O, hd, 

SUP IIIU, - u:llv + au, - u:Ilul 5 E. 
rc10.rs1 

(A@ 

From eqn (A5), there exists ts > 0, Vto]O, cc], 

C4(1 + c*Mlu,llu 5 ;, 

which, combined with eqns (A3) and (50b), yields 

(A7) 

sup IIIQ-u~llv+tllu,- u:ll(.J 
rslo.r.1 Mathematik, 1981, 37, 405-421. 
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~,~~~~c4~llu,-~~U,ll~+rllU,-z~U,II~~ 
.I 

5 sup C4(l’V, - fwly + (1 + c2)tllff,llul 
rrJO.r,l 

& 
5c4 sup ]]~U,-1~U,IIV+~. 

rtP. r.1 
(Ag) 

The mapping t -+ tJ, is clearly continuous from ]O,t,] into 
U, hence into V, and Proposition 2 shows that this extends 
to [O,rJ for V, provided that we let 

U,(f = 0) d&f u,. 

Therefore, Equation (50a) implies that the family of func- 
tions (Us-lhU,) h is equicontinuous from [O,rJ into V. But 
for any t > 0, we have from Equation (50~) 

lim I] U, - Zh Ul [IV = 0, 
h-+0 

(A9) 

so we can invoke the Ascoli theorem to obtain 

lim sup \lU, - IhU,I(, = 0. 
h-0 r~[o.r,] 

NO) 

It follows that there exists /I$‘) > 0 such that, V ho]O, Jr!“], 

c4 sup IIU,-lhU,llv 5;. 
tr]O,r,] 

hence, from eqn (Al%) 

(Al 1) 

Then, using eqn (A:)) we get 

sup (IIU, - U:ilv + rlIU, - U:Ilu] 
rtlr.&l 

5 SUP GUIU, - JhU,llv + tllu, - JhUtIIul 
=lGJ,l 

(A121 

From Equation (5la), we infer that the family (U,-JhU,) h 
is equicontinuous from [r&l into U. Therefore, 
Equation (51 b) and the Ascoli theorem imply 

lim sup IIU, - JhU,Ilu = 0 
h-to x[rr,trl 

(.413) 

so that there exists /h2’ > 0 such that, V he]O,@‘], 

Cs sup IIU, - JhW, 5 E. 
K[I,,I,] 

hence 

SUP UIU, - WV + rIIU, - U:Ilu) 5 8. 
=l~..Gl 

(A14) 

Now letting 

h, dAf min (hi”, hi2)), (A15) 

we get eqn (A6). 

APPENDIX B 

Limit problem for the Scordelis-Lo roof 
In this appendix, we prove that the test case known as 

“Scordelis-Lo roof’ is associated with an ill-posed mem- 
brane-dominated limit problem, by showing that 
Equation (15) does not hold. To this end, we construct a 
sequence of displacements ( V,) such that D( Y,; Fe) remains 
bounded, while F(l’,) tends to infinity when E tends to 
zero. For simplicity of computations, we assume that the 
structure is loaded by a uniform pressure denoted by p, 

Fig. Bl. Graphic definition of p. 

but the same technique can be applied for a roof loaded 
with its self-weight and similar conclusions are reached. 
Thus we use 

F(Y) = 
s 

pv3 dS. (Bl) 
s 

We recall that we consider clamped boundary conditions 
on the two extreme cross-sections (see Fig. 7). 

We again use the natural coordinate system of the cylinder 
such as displayed in Fig. 5. We start by noting that, for 
an arbitrary smooth function JI, a displacement field v($) 
defined by 

VI(@) = 0 
v2(+) = tic2z) 

v3(1/1) = -W(h) I WI 

gives zero membrane strains according to System (19). Of 
course, except if II, is identically zero, this displacement 
field does not satisfy the clamped boundary conditions (we 
recall that Us = (01). We then define 

w(JI) dAf &Q)v(*). 

where p is a smooth function of the type described in 
Fig. Bl. This new displacement field satisfies the pre- 
scribed boundary conditions, and gives the following 
membrane strains 

M I (w(+N = 0 
Y22MIc’)) = 0 

YIZ(WH(!w = fd(hMh) I (B3) 

We now consider a sequence of functions ($E) defined as 
follows (see also Fig. B2) 

=o for E 5 cz (B4) 

and we construct a displacement sequence (V,) associated 
with (w(+J). If the model considered is of the Reissner- 
Mindlin type, we choose the rotations so that the shear 
strains are zero (cf. Equation (6)). This is allowed since 
w($,)) is sufficiently smooth (in particular, $, is twice con- 
tinuously differentiable at 52 = E). Then we have 

%4 Kz) 
1 

7 

i 

<Z = 0,2aR: free edges 

01 Q 20;R & 

Fig. B2. Plot of (I,. 
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Therefore, Condition (15) is violated and Problem (14) is 
ill-posed. In other words, the membrane deformation 
energy is unable to appropriately control some specific dis- 
placement fields that are excited by the loading, such as 
the sequence of displacements that we constructed. This 
suggests that strong singularities will appear near the free 
boundary when the thickness tends to zero. 

whereas, from Equation (69) 


