
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING
Int. J. Numer. Meth. Engng 2005; 63:197–217
Published online 15 February 2005 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/nme.1276

Insight into the flow-condition-based interpolation finite element
approach: solution of steady-state advection–diffusion problems
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SUMMARY

The flow-condition-based interpolation (FCBI) finite element approach is studied in the solution of
advection–diffusion problems. Two FCBI procedures are developed and tested with the original FCBI
method: in the first scheme, a general solution of the advection–diffusion equation is embedded into the
interpolation, and in the second scheme, the link-cutting bubbles approach is used in the interpolation.
In both procedures, as in the original FCBI method, no artificial parameters are included to reach
stability for high Péclet number flows. The procedures have been implemented for two-dimensional
analysis and the results of some test problems are presented. These results indicate good stability
and accuracy characteristics and the potential of the FCBI solution approach. Copyright � 2005
John Wiley & Sons, Ltd.
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1. INTRODUCTION

The numerical solution of high Péclet and high Reynolds number flows is of great importance in
research and industry. For this reason and because the development presents a great challenge,
a very large research effort has been focused on improving the methods of solution over the
last decades, and this effort is still continuing very widely.

The finite element method is clearly the most effective numerical solution technique for the
analysis of solids and structures [1, 2]. However, considering fluid flows, while much research
has been focused on the development of finite element methods (see, e.g. References [1–7]),
finite difference, finite volume and spectral methods are still considerably more effective in
most practical applications. Indeed, almost all fluid flow problems in industry are still solved
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using finite volume techniques. On the other hand, if a finite element method were available
that is clearly more effective, then such a method would find wide usage.

We have focused our research on the development of the flow-condition-based interpolation
(FCBI) procedure [8–10] for the finite element solution of incompressible fluid flows, including
fluid–structure interactions. This method might be referred to as a hybrid of the traditional finite
element and finite volume methods. The key aspects of the FCBI procedure are that, firstly,
finite element interpolations considering flow conditions are used which lead to stability and,
secondly, local flux equilibrium (that is, mass and momentum conservation) is satisfied. Our
objective in this development is to reach a method that is more effective in stability, accuracy
and computational effort than the traditional finite element and finite volume techniques.

Specifically, the basic aim in our development is to reach a numerical scheme that is stable
with optimal accuracy characteristics, for low and high Péclet and Reynolds number flows
[8–11]. In particular, considering a high Reynolds number flow, the scheme should give a
reasonable solution, even when using a rather coarse mesh and without the use of artificial
solution parameters. The global flow characteristics should be correctly displayed, and in fluid–
structure interactions, the tractions on the structural surfaces should be reasonable. As the fluid
mesh is then refined, more details of the flow should be revealed, and ideally the numerical
solution would converge with optimum rate to the ‘exact’ solution of the mathematical model.
In practice, of course, the solution of the Navier–Stokes equations at high Reynolds number
would not be obtained with high accuracy. The mesh would have to be too fine. Instead, a
turbulence model would be used at some stage of mesh refinement. However, the solution
property that stability is preserved at high Reynolds and Péclet number flows with coarse
meshes and optimal accuracy is of much value in practical analysis.

The possible use of coarse meshes without artificial solution parameters implies that an
analyst does not need to spend undue effort on meshing the domain and experimenting with
numerical parameters merely to obtain a first reasonable flow solution. Also, if a discretization
scheme is employed with goal-oriented error measures [12], then it is assumed that solutions
can directly be obtained for all meshes used. The goal-oriented discretization approach is
particularly valuable in the solution of fluid–structure interactions where the fluid mesh only
needs to be fine enough to solve accurately for the pressure/tractions on the structure.

The basic philosophy of our developments was presented earlier [8–10], and the FCBI
approach is already quite widely used [10]. However, we are of course aiming to further
study the solution properties and increase the effectiveness of the original procedure. Since
the method is a hybrid of the finite element and finite volume techniques, the FCBI scheme
is naturally also related to the much researched streamline upwind/Petrov–Galerkin (SUPG)
method [3], the Galerkin/least-squares (GLS) method [4], the use of bubble functions [6], and
other schemes [1, 2, 7]. However, a distinguishing feature is that an analytical solution of the
one-dimensional advection–diffusion equation (to stabilize the convective terms in the Galerkin
formulation) is used over a control volume, and hence the FCBI method is also related to the
cubic interpolated pseudoparticle/propagation (CIP) method [13].

The objective of this paper is to study the spatial solution accuracy of the original FCBI
scheme [9] and two variations thereof for advection–diffusion problems in order to obtain
further insight into the solution approach. Whereas in the original FCBI scheme one-dimensional
analytical flow conditions are used in two- and three-dimensional interpolations, we consider
here, in an additional FCBI scheme, a general two-dimensional solution. Furthermore, in a third
scheme we embed the interpolations of the link-cutting bubbles proposed by Brezzi et al. [14]
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into the FCBI approach. In the paper, we first present the numerical procedures used and then
give the solutions of various test problems. The numerical experiments indicate the stability
and accuracy of the FCBI procedures and also show that the FCBI approach has significant
further potential to reach improved solution methods.

2. FCBI METHODS FOR ADVECTION–DIFFUSION PROBLEMS

In this section we review the original FCBI method and introduce two additional FCBI proce-
dures. We consider an incompressible flow advection–diffusion problem in a two-dimensional
domain in which the velocity is prescribed. A steady-state analysis is carried out with Dirichlet
boundary conditions. We assume that the problem is well-posed in the Hilbert space �. The
non-dimensional governing equation in conservative form is:

Find the temperature �(x) ∈ � such that

∇·
(

v� − 1

Pe
∇�

)
= 0, x ∈ � (1)

where v is the prescribed velocity and � ∈ �2 is a domain with boundary S = S̄�. The Péclet
number is defined as Pe = UL/�; U , L and � are the representative velocity, the representative
length and the thermal diffusivity, respectively. The above equation is subject to the following
boundary condition:

� = �s , x ∈ S̄� (2)

where �s is the prescribed temperature on the boundary S̄�.

2.1. The original method

For the finite element solution, we use a Petrov–Galerkin variational formulation with subspaces
�h, �h and Wh of � of the problem in Equations (1) and (2). The formulation for the numerical
solution is

Find � ∈ �h, � ∈ �h such that for all w ∈ Wh∫
�

w

{
∇·
(

v� − 1

Pe
∇�

)}
d� = 0 (3)

Figure 1(a) shows a mesh of elements in the natural co-ordinate system. Here, both velocity
and temperature are defined at each node of the 4-node elements.

The weight functions in the space Wh are step functions. For example, we have at node 1
in Figure 1(b),

hw
1 =

{
1 (�, �) ∈ [0, 1

2

]× [0, 1
2

]
0 else

(4)

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 63:197–217



200 H. KOHNO AND K. J. BATHE

Control volume 1

4

a 

bc 

ξ

η

1 2

1x∆

2x∆

4 3 

2 

3 

(a) (b)

Figure 1. Control volume on the 4-node elements and evaluation of functions in �h for flux through
ab: (a) 4-node elements; and (b) flux through ab.

This corresponds to the finite volume discretization, in which the flux is evaluated on the sides
of the control volumes. The use of the control volumes enforces the local conservation of flux
and helps to provide stability and accuracy in the numerical solution.

The trial functions in �h are the bilinear interpolation functions defined as
 h�

1 h�
4

h�
2 h�

3


= h(�)hT(�) (5)

where hT(y) = [1−y, y] (y = �, � with 0 � �, � � 1). In order to reach a stable solution, the trial
functions in �h are defined considering the flow conditions along each side of the elements.
The functions are for the flux through ab in Figure 1(b),

 h
�
1 h

�
4

h
�
2 h

�
3


= [h (x1), h

(
x2)]h(�)hT(�) (6)

with

xk = eqk� − 1

eqk − 1
, qk = Pe(v̄k ·�xk)

v̄1 = 1
2(v1 + v2), v̄2 = 1

2(v3 + v4)

�x1 = x2 − x1, �x2 = x3 − x4

(7)

where v̄k is the average velocity evaluated at the centre of the sides considered (� = 1/2 and
� = 0, 1 for k = 1, 2, respectively) and is calculated using the nodal velocity variables vi ; xi are
the position vectors at the nodes. Similarly, the functions for the flux through bc are obtained
by using the flow conditions on the corresponding sides. When the Péclet number is small
enough, the variable xk approaches the natural co-ordinate value �. This is easily confirmed
by substituting the following approximation into Equation (7), eqk ∼= 1 + qk .
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Using Equations (5)–(7) the temperatures � and � are, respectively, calculated with the trial
functions in �h and �h as follows:

� = h
�
i �i (8)

� = h�
i �i (9)

where �i are the nodal temperature variables. The trial functions used here satisfy the require-
ment �hi = 1. The flux is calculated with the interpolated values at the centre of the sides of
the control volumes. For example, the flux through ab is obtained as follows:∫ b

a

n · f ds = (n · f)|�=1/2,�=1/4�sab (10)

with

f(�, �) = v� − 1

Pe
gj ��

��j
(11)

where n, �sab and gj are the unit normal vector pointing to the outside of the control volume,
the length of ab and the contravariant base vector, respectively. In Equation (10), the velocity
is interpolated with the trial functions in �h; v = h�

i vi .
This approach of solution was first introduced into the Navier–Stokes equations with the

primary aim to have stability of the solution [9, 15], because in practice a stable and reason-
able solution is ideally obtained at any Reynolds (and Péclet) number flow. Of course, we
also endeavour to have a solution as accurate as possible, and this aim motivates the further
development of the scheme.

2.2. Using a general solution

In the advection-dominated regime, an effective stabilizing scheme is required in order to
obtain reliable results with a reasonable mesh. This requirement is fulfilled in the original
FCBI method in a physically based manner by introducing the one-dimensional exact solution
of the advection–diffusion equation into the trial functions in �h as shown in Equations (6)
and (7). However, since the flow conditions are estimated on the sides of the elements and
then linearly interpolated in the elements, fine grids are necessary to obtain accurate results
when very high Péclet number flows are analysed in multi-dimensional domains. For this
reason, possibly more efficient trial functions in �h, which are based on two-dimensional flow
conditions, are considered in this section.

In two-dimensional analysis, it is not possible to obtain the exact solution of the advection–
diffusion equation in an element since the exact boundary conditions on the sides are unknown
as long as the temperatures are defined only at the nodes. Hence, the following trial functions are
created by multiplying the one-dimensional exact-solution-based interpolation in the � direction
by that in the � direction, which are in an analogous form with Equation (5):

 h
�
1 h

�
4

h
�
2 h

�
3


= h(�)hT(�) (12)
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Figure 2. Illustration of the projections of velocity and the element lengths in the � and � directions.

with

� = ePee
�� − 1

ePee
� − 1

, � = ePee
�� − 1

ePee
� − 1

Pee
� = Pe

(
v̄ · e�

)
h� = Pe v̄�h�, Pee

� = Pe
(
v̄ · e�

)
h� = Pe v̄�h�

h� =
∥∥�x1 + �x2

∥∥
2

, h� =
∥∥�y1 + �y2

∥∥
2

(13)

�y1 = x4 − x1, �y2 = x3 − x2

where Pee
� and Pee

� are the element Péclet numbers corresponding to the projections of the
velocity vector v̄ evaluated at the centre of the element onto the � and � directions, see
Figure 2.

It should be emphasized that in a rectangular element the above trial functions correspond
to the two-dimensional general solution which consists of four independent basic solutions
connected linearly as follows:

� =
[
1, ePee

��, ePee
��, ePee

��+Pee
��
]



C1

C2

C3

C4


 (14)

Equations (8), (12) and (13) are obtained by substituting the following boundary condi-
tions into Equation (14): �1 = �(0, 0), �2 = �(1, 0), �3 = �(1, 1), �4 = �(0, 1). Note that these
trial functions also meet the requirement �hi = 1 regardless of the element Péclet
numbers.
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Figure 3. Trial functions in �h for node A in two elements: (a) problem
definition; (b) Pee = 1; and (c) Pee = 10.

Figure 3 shows the profiles of the trial functions for Pee = Pee
� = Pee

� = 1, 10 in two ele-
ments in case a 45◦ advective velocity is prescribed. When the element Péclet numbers are
small enough, the trial functions in Equation (12) approach the bilinear interpolation func-
tions in Equation (5) since ePee

� ∼= 1 + Pee
�, ePee

� ∼= 1 + Pee
�. Of course, using the same pro-

cedure, the proposed trial functions can, also, be developed directly for three-dimensional
solutions.

2.3. Using link-cutting bubbles

Another approach to stabilize the solution can be established by adopting an augmented strategy,
in which the finite element space is enriched by bubble functions. In this section, we propose
a scheme that introduces the link-cutting bubbles [14], suitably located in the augmented space
considering flow conditions, into the FCBI procedure.

Consider a one-dimensional advection–diffusion problem solved with 2-node equal length
elements. Here, the element Péclet number is positive and we define it to be qk/2. In this
case, the exponential scheme [16], which gives the exact solution at each node, can be written
as follows:

−eqk/2�j−1 +
(

eqk/2 + 1
)

�j − �j+1 = 0 (15)

where �j−1, �j and �j+1 are the temperature variables at the consecutive nodes. Then the
variable �j is obtained in terms of �j−1 and �j+1 as follows:

�j = eqk − eqk/2

eqk − 1
�j−1 + eqk/2 − 1

eqk − 1
�j+1 = hT(xk(1/2)

) [ �j−1

�j+1

]
(16)

Note that Equation (16) contains the same vector h
(
xk
)

that is used in Equation (6), when
� = 1/2. Similarly, the following equation is obtained in the Galerkin method coupled with the
link-cutting bubbles:(

−qk

4
− 1 − qk

2
U

)
�j−1 + 2

(
1 + qk

2
U

)
�j +

(
qk

4
− 1 − qk

2
U

)
�j+1 = 0 (17)
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Figure 4. Evaluation of the trial functions based on link-cutting bubbles in �h for flux through ab.

where the term qkU/2 represents the stabilizing effect. Then the variable �j is obtained as
follows:

�j = qk + 4 + 2qkU

8 + 4qkU
�j−1 + −qk + 4 + 2qkU

8 + 4qkU
�j+1 = hT(bk

) [ �j−1

�j+1

]
(18)

with

bk = −qk + 4 + 2qkU

8 + 4qkU
(19)

Therefore, this bubble stabilization technique can be naturally introduced into the original FCBI
method by replacing xk in Equation (7) with bk . When the link-cutting bubbles are set on the
vectors �x1 and �x2 as shown in Figure 4, at � = 1/2 the trial functions in �h are for the
flux through ab,


 h

�
1 h

�
4

h
�
2 h

�
3


= [h (b1), h

(
b2)]h(�)hT(�) (20)

if uk � 0 then bk = − ∣∣qk
∣∣+ 4 + 2

∣∣qk
∣∣U

8 + 4
∣∣qk
∣∣U (21)

if uk<0 then bk =
∣∣qk
∣∣+ 4 + 2

∣∣qk
∣∣U

8 + 4
∣∣qk
∣∣U (22)

with

U = d1
(
d1S2,2 − d2S1,2

)− d2
(
d1S2,1 − d2S1,1

)
S1,1S2,2 − S1,2S2,1

|uk|
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d1 = 1

lk

(
�k

2
+ �k

2

)
, d2 = 1

lk

(
�k

2
+ 	k

2

)

S1,1 = 1

Pe

(
1

�k
+ 1

�k

)
, S1,2 = − 1

Pe�k
+
∣∣uk
∣∣

2

S2,1 = − 1

Pe�k
−
∣∣uk
∣∣

2
, S2,2 = 1

Pe

(
1

�k
+ 1

	k

)

lk =
∥∥�xk

∥∥
2

, uk = v̄k ·�xk∥∥�xk
∥∥ (23)

The two-bubble subgrid is determined by putting two points, zk
1, zk

2, in the half length of each
side as follows:

if
6

Pe
� |uk|lk then �k = 	k = �k = lk

3
(24)

if
6

Pe
< |uk|lk then �k = lk − 4∣∣uk

∣∣Pe
, 	k = �k = 2∣∣uk

∣∣Pe
(25)

with

�1 = ∥∥z1
1 − x1

∥∥, 	1 =
∥∥∥∥x1 + x2

2
− z1

2

∥∥∥∥, �1 = ∥∥z1
2 − z1

1

∥∥
�2 = ∥∥z2

1 − x4
∥∥, 	2 =

∥∥∥∥x3 + x4

2
− z2

2

∥∥∥∥, �2 = ∥∥z2
2 − z2

1

∥∥ (26)

when uk � 0, while the roles of these points are exchanged when uk<0. Equations (24) and
(25) are based on the work of Brezzi et al. [14].

Since Equation (12) is obtained by multiplying the one-dimensional exact-solution-based in-
terpolations in the � and � directions, the same strategy can also be applied to the FCBI
procedure with link-cutting bubbles. By using the one-dimensional interpolation functions
including link-cutting bubbles, which are evaluated on the element lengths h� and h� de-
fined in Equation (13), the following trial functions in �h can be established in analogy
to Equations (12) and (13): 

 h
�
1 h

�
4

h
�
2 h

�
3


 = h

(
�′)hT (�′) (27)

if v̄� � 0 then �′ =
�


−

∣∣∣Pee
�

∣∣∣
2

(1 − �) + 1 +
∣∣∣Pee

�

∣∣∣ (1 − �)U2�




1 +
∣∣∣Pee

�

∣∣∣ �(1 − �)
(
U1� + U2�

) (28)
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if v̄�<0 then �′ =
�



∣∣∣Pee

�

∣∣∣
2

(1 − �) + 1 +
∣∣∣Pee

�

∣∣∣ (1 − �)U1�




1 +
∣∣∣Pee

�

∣∣∣ �(1 − �)
(
U1� + U2�

) (29)

if v̄� � 0 then �′ =
�


−

∣∣∣Pee
�

∣∣∣
2

(1 − �) + 1 +
∣∣∣Pee

�

∣∣∣ (1 − �)U2�




1 +
∣∣∣Pee

�

∣∣∣ �(1 − �)
(
U1� + U2�

) (30)

if v̄�<0 then �′ =
�



∣∣∣Pee

�

∣∣∣
2

(1 − �) + 1 +
∣∣∣Pee

�

∣∣∣ (1 − �)U1�




1 +
∣∣∣Pee

�

∣∣∣ �(1 − �)
(
U1� + U2�

) (31)

with

Uir = d1
(
d1S2,2 − d2S1,2

)− d2
(
d1S2,1 − d2S1,1

)
S1,1S2,2 − S1,2S2,1

∣∣∣∣∣
ir

|v̄r |

(d1)ir = 1

lir

(
�ir

2
+ �ir

2

)
, (d2)ir = 1

lir

(
�ir

2
+ 	ir

2

)

(
S1,1

)
ir

= 1

Pe

(
1

�ir

+ 1

�ir

)
,
(
S1,2

)
ir

=− 1

Pe�ir

+ |v̄r |
2

(
S2,1

)
ir

= − 1

Pe�ir

− |v̄r |
2

,
(
S2,2

)
ir

= 1

Pe

(
1

�ir

+ 1

	ir

)

l1� = h��, l2� = h� (1 − �)

l1� = h��, l2� = h�(1 − �)

(32)

where i = 1, 2 and r = �, �. The two-bubble subgrid in each direction is determined as follows:

if
6

Pe
� |v̄r | lir then �ir = 	ir = �ir = lir

3
(33)

if
6

Pe
< |v̄r | lir then �ir = lir − 4

|v̄r | Pe
, 	ir = �ir = 2

|v̄r | Pe
(34)

Figure 5 gives an illustration of the trial functions in �h, as per Equation (27). In this figure,
for simplicity, a rectangular element is considered. We use the scheme defined by Equation (27)
in the numerical example solutions.
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Figure 5. Illustration of the trial functions based on link-cutting bubbles in �h, as per Equation (27).

3. SIMILARITIES BETWEEN THE FORMULATIONS

The direct use of the link-cutting bubbles in the FCBI procedure (see Section 2.3) is based upon
the similarities between the original FCBI method and the bubble stabilization. We demonstrate
these similarities in the one-dimensional analysis below.

Consider a one-dimensional advection–diffusion problem for which the velocity u and the
element length �x are positive constants. If we use the original FCBI method described in
Section 2.1, the following equation is obtained:

(
−ePee−ePee/2

ePee−1
− 1

Pee

)
�j−1+

(
ePee−2ePee/2+1

ePee−1
+ 2

Pee

)
�j+

(
ePee/2−1

ePee−1
− 1

Pee

)
�j+1 = 0

(35)

where the element Péclet number is Pee = Pe u�x. In Equation (35), the temperature in the
advection term is interpolated considering the flow condition, while the temperature in the
diffusion term is interpolated linearly. Equation (35) can be rewritten in the same form as
Equation (17):(

−Pee

2
− 1 − PeeU

)
�j−1 + 2

(
1 + PeeU

)
�j +

(
Pee

2
− 1 − PeeU

)
�j+1 = 0 (36)
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with

U = 1 − e−Pee/2

2
(
1 + e−Pee/2

) (37)

Therefore, Equation (36) can also be the basis of using link-cutting bubbles by substituting for
U in Equation (36):

U = d1
(
d1S2,2 − d2S1,2

)− d2
(
d1S2,1 − d2S1,1

)
S1,1S2,2 − S1,2S2,1

u (38)

where uk and lk used in Equation (23) are, respectively, replaced by u and �x, and Equation (17)
is obtained when Pee = qk/2.

In the advection-dominated regime, we see that in the two-bubble subgrid considered in
Equation (25) Pe→∞, �→�x, 	 = �→0, uPe� = uPe	 = 2. Consequently, we have

d1→ 1
2 , d2→0, (39)

so that Equation (38) becomes

U = d1
(
d1S2,2 − d2S1,2

)− d2
(
d1S2,1 − d2S1,1

)
S1,1S2,2 − S1,2S2,1

u→
1
4
1
2

= 1

2
(40)

As a result, Equation (36) then corresponds to ‘full upwinding.’ The same can be easily proved
using Equation (37); as Pee→∞, U→1/2. On the other hand, these stabilizing variables
approach zero in the diffusion-dominated regime; Pee→0, U→0 in Equations (37) and (38).
As a result, Equation (36) then corresponds to the formulation of the standard Galerkin method
in which linear shape functions are used.

Figure 6 shows a comparison of temperature distributions obtained using the exponential
scheme, the FCBI method (Equation (35)) and the link-cutting bubbles scheme (Equations (36)
and (38)) for the conditions Pe = 10, 100 and 106. The boundary conditions are

� = 1 at x = 0

� = 0 at x = 1
(41)

The solution is obtained with 30 2-node equal-length elements. As shown, good agreement is
obtained in the solution for a wide range of Péclet number problems. The small error in the
FCBI temperature solution near x = 1 when Pe = 100 is due to using the linear temperature
interpolation in the diffusion term.

4. NUMERICAL EXAMPLES

In this section we present some solution results that we use to study the stability and accuracy
of the FCBI schemes.
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Figure 6. Comparison of temperature values in the one-dimensional advection–diffusion problem:
(a) Pe = 10; (b) Pe = 100; and (c) Pe = 106.

4.1. Temperature solution in flow between parallel plates

In order to test the proposed FCBI schemes, a temperature-flow problem between parallel plates
is analysed. Figure 7 shows the analytical model with the boundary conditions and two meshes
of 30 × 30 elements. The regular mesh and the distorted mesh are used to solve the problem
at various Péclet number conditions. When a unit velocity is prescribed in the x direction over
the whole domain as shown in Figure 7(a), the exact steady-state solution is

�(x, y) = cos 
y

ea − eb

(
ea+bx − eb+ax

)
(42)

where

a = 1
2

(
Pe +

√
Pe2 + 4
2

)
, b = 1

2

(
Pe −

√
Pe2 + 4
2

)
(43)

Figures 8 and 9 show the comparison of temperature values on the centre line and temperature
profiles on vertical lines, respectively, obtained using the regular mesh. As shown, all of the
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(b)

(a)

(c)

x

y 

0                                                         1

θ

θ

θ

yπθ (0,y) = cos (1,y) = 0

1=v

-0.5 

 0.5 

(x,−0.5) = 0

(x,0.5) = 0

Figure 7. The flow problem between parallel plates and meshes used: (a) problem definition;
(b) regular mesh; and (c) distorted mesh.

numerical results calculated with the three FCBI schemes are in good agreement with the
exact solutions; the temperature values are only slightly different from the exact solution near
the boundary in Figure 8(b) due to the effect of the bilinear interpolation in the diffusion
term.

Figures 10 and 11 show the comparison of temperature solutions obtained with the dis-
torted mesh for Pe = 100 and 106, respectively. The isotherms are distributed at intervals of
(�max − �min) /25. The results calculated with the three FCBI schemes are in good agreement
with the exact solution for Pe = 100. Good agreement can also be seen in case Pe = 106 when
using the FCBI schemes based on the general solution and the link-cutting bubbles and these
schemes give, for the distorted mesh used, clearly more accurate solutions than the original
FCBI scheme which predicts a smaller advection effect. The accuracy of the FCBI schemes is
also illustrated in Figure 12.
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Figure 8. Comparison of temperature values on the centre line obtained with the regular mesh:
(a) Pe = 10; (b) Pe = 100; and (c) Pe = 106.

4.2. Temperature solutions in flow across a square domain

In the test problem of Section 4.1, the temperature is distributed rather smoothly in the y di-
rection since the temperature boundary condition is given by a cosine function and the velocity
component in the y direction is zero. We consider next solutions that are more difficult to obtain
when considering high Péclet number conditions due to the discontinuous temperature distri-
butions and a skew advective velocity. The problems are defined in Figure 13. In this analysis,
the Dirichlet boundary condition is imposed with the high temperature (� = 1) and the low tem-
perature (� = 0). The 45◦ skew advective velocity, whose magnitude is 1, is prescribed over the
whole domain. Therefore, the problem becomes symmetrical with respect to the diagonal line
in Case 1, while it is asymmetrical in Case 2. A rather coarse mesh of 12 × 12 square elements
is used for these flow problems, and this mesh is too coarse to reach an accurate solution using
the original FCBI scheme when the Péclet number is high. While analytical solutions to the

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 63:197–217



212 H. KOHNO AND K. J. BATHE

-0.50

-0.25

0.00

0.25

0.50

0.00 0.30 0.60 0.90

x

y

-0.50

-0.25

0.00

0.25

0.50

0.00 0.30 0.60 0.90

x

y

-0.50

-0.25

0.00

0.25

0.50

0.00 0.30 0.60 0.90

x

y

Exact solution Original FCBI

FCBI based on a general solution

FCBI based on link-cutting bubbles

Exact solution Original FCBI

FCBI based on a general solution

FCBI based on link-cutting bubbles

(a) (b)

(c)

Figure 9. Comparison of temperature profiles on vertical lines obtained with the regular mesh:
(a) Pe = 10; (b) Pe = 100; and (c) Pe = 106.

problems for intermediate Péclet numbers are not available, of course the solutions for Pe = 106

are known.
In this case, it is interesting to also obtain the solution using the SUPG scheme. The SUPG

formulation is given by the equation

∫
�

(
hi + k�

‖v‖2 v·∇hi

)
v·∇hj d��j + 1

Pe

∫
�

∇hi ·∇hj d��j = 0 (44)

with hi the usual isoparametric interpolation functions [16], and

k� = �

2Pe
F(�)

F (�) = coth
( �

2

)
− 2

�
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(a) (b)

(c) (d)

Figure 10. Comparison of temperature solutions obtained with the distorted mesh for Pe = 100:
(a) exact solution; (b) original FCBI scheme; (c) FCBI scheme based on a general solution; and

(d) FCBI scheme based on link-cutting bubbles.

� = Pe
√(

v̄�h�
)2 + (v̄�h�

)2 (45)

where the subscripts i and j denote the global node numbers.
The temperature solutions for Pe = 100 calculated with the two proposed FCBI and the

SUPG schemes are given in Figure 14. As shown, all the numerical results are similar and the
temperature distribution is symmetrical with respect to the diagonal line in Figures 14(a)–(c).
The results obtained with the two FCBI schemes are more stable than those obtained with the
SUPG scheme since unrealistic behaviour is seen close to the low temperature boundary in
Figures 14(c) and (f).

Figure 15 shows the temperature solutions for Pe = 106. In this case, the temperature changes
sharply, indeed discontinuously, on the boundary of the high temperature band due to the very
high Péclet number flow. In both cases, the results obtained with the proposed FCBI proce-
dures can be considered accurate in contrast to the results obtained using the SUPG scheme.
Of course, further studies of these problems with different meshes and boundary conditions
might be pursued and would be valuable.
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(a) (b)

(c) (d)

Figure 11. Comparison of temperature solutions obtained with the distorted mesh for Pe = 106:
(a) exact solution; (b) original FCBI scheme; (c) FCBI scheme based on a general solution; and

(d) FCBI scheme based on link-cutting bubbles.
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Figure 12. Comparison of temperature values on the centre line obtained
with the distorted mesh for Pe = 106.
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Figure 13. The flow problems with skew advective velocity in a cavity: (a) Case 1; and (b) Case 2.
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Figure 14. Comparison of temperature solutions for Pe = 100: (a) FCBI scheme based on a general
solution in Case 1; (b) FCBI scheme based on link-cutting bubbles in Case 1; (c) SUPG scheme
in Case 1; (d) FCBI scheme based on a general solution in Case 2; (e) FCBI scheme based on

link-cutting bubbles in Case 2; and (f) SUPG scheme in Case 2.
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(a) (b) (c)

(d) (e) (f)

Figure 15. Comparison of temperature solutions for Pe = 106: (a) FCBI scheme based on a general
solution in Case 1; (b) FCBI scheme based on link-cutting bubbles in Case 1; (c) SUPG scheme
in Case 1; (d) FCBI scheme based on a general solution in Case 2; (e) FCBI scheme based on

link-cutting bubbles in Case 2; and (f) SUPG scheme in Case 2.

5. CONCLUSIONS

We presented in this paper some developments and insight into the FCBI approach for the
solution of steady-state advection–diffusion problems. The original FCBI scheme and two ad-
ditional FCBI procedures were considered. The first additional technique is based on the use
of a general solution, and the second additional method is based on the use of the link-cutting
bubbles of Brezzi et al. The schemes worked quite well in two-dimensional numerical test
solutions, in which flows up to the Péclet number 106 were considered and also distorted grids
were used.

While already used in practice, the FCBI solution approach shows much further potential.
Hence additional numerical studies and analytical investigations of FCBI procedures might be
pursued, including further developments for complex flow problems. In these developments also
ideas used in other techniques should of course be explored.
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