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The accurate solution of wave propagations in general two- and three-dimensional solids is still difficult
and frequently impossible to achieve with the current computational schemes and computers available.
We present in this paper a solution scheme that has much promise for the accurate solution of wave
propagations in general solids. The procedure is based on the use of ‘‘overlapping finite elements” and
direct time integration. The overlapping finite elements are effective because the spatial dispersion error
is relatively small and can be monotonically reduced using a finer mesh. Similarly, the time integration
dispersion errors can also be reduced monotonically as the time step becomes smaller. Hence the key
property of the solution scheme is that the total dispersion error in the simulation of multiple waves
traveling through solids is monotonically reduced as the spatial discretization and time stepping become
finer. We summarize the ingredients of the solution scheme and illustrate the characteristics in the
solution of some wave propagation problems that are difficult to solve accurately. These solutions may
be benchmark solutions to use in the evaluations of other computational schemes.

� 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Although much research has been expended on the solution of
wave propagations in solids, the accurate solution of multiple
waves traveling through complex domains of solids is still very
difficult and may be impossible. Nevertheless, such solutions are
much needed in various important areas of engineering and
scientific endeavors. In engineering, for example, the accurate pre-
diction of seismic waves is important in damage predictions, and
also, for non-destructive evaluation, the accurate solution of waves
would strengthen the developments of techniques. Both fields of
engineering are very large and have become increasingly
important. In the sciences, for example, wave propagations in
medical applications and research are ubiquitous.

For the solutions of wave propagations, finite difference, finite
element, spectral techniques, meshless methods, and discontinu-
ous Galerkin schemes have been much researched and are used,
see for the methods and some applications for example [1–16],
and recently ‘‘overlapping” finite element methods have been
proposed [17–21]. Finite difference methods can be used for
general analyses of solids but there are difficulties in the dis-
cretization of complex domains and the solution errors can be
large. Finite element methods exhibit much better generality in
representing complex domains but the solution errors can also
be large. The use of spectral techniques results in better solution
accuracy but the representation of complex domains is difficult
and may not be possible. Meshless techniques have more recently
been proposed and can yield accurate solutions but the solution
cost can be very high. Discontinuous finite element or Galerkin
methods can be used quite generally to represent complex
domains but these entail the use of penalty factors that are unde-
sirable in engineering practice. In all these solution schemes, direct
time integration is used most generally [4].

A good overall solution scheme for the numerical solution of
wave propagations would be one, for which the following property
holds: as the spatial discretization is increasingly refined and the
time discretization is also refined, the solution should become
increasingly more accurate. This requirement should hold for
problems with multiple waves, irregular spatial meshes, and with
no specific relationship to hold between the ‘‘size” of the spatial
discretization and the ‘‘time step” of the time integration. Such a
scheme would be attractive for use in practice because it would
exhibit the same convergence property as effective spatial
discretizations for static analyses [4]. However, the scheme would
have to be also computationally efficient.

We recently proposed the use of ‘‘overlapping finite elements”
[17–23] and the Bathe implicit direct time integration for the solu-
tion of wave propagations [20,21]. This solution approach provided
accurate solutions to some illustrative problems and in particular
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exhibited in the solution of the problems the good property of con-
vergence mentioned above.

We shall only consider the Bathe method of time integration in
this paper, studies comparing the Bathe scheme with other meth-
ods have been amply published before [24–32].

Our objective in this paper is to summarize the complete solu-
tion scheme, give novel important insights with illustrations, and
present the solutions of some difficult to solve wave propagations
in elasticity. While we consider only the solution of two-
dimensional problems, the solution scheme can in principle also
be applied in three-dimensional analyses – however, for such
applications a detailed assessment of the computational effort
need still be conducted.

2. The problem considered

For a displacement field u x; y; tð Þ in a two-dimensional domain,
the equations of motion for elastic wave propagations are, in linear
analysis,

q€u ¼ div sþ f B ð1Þ
in which q, s and f B are the mass density, stress tensor and body
force vector, respectively. The governing equation is subjected to
two types of boundary conditions, the Dirichlet boundary condition
on Su

u ¼ uSu ð2Þ
and the Neumann boundary condition on Sf

s � n ¼ f Sf ð3Þ
where n denotes the unit normal vector on the boundary Sf . Using
the principle of virtual work, we obtain [4]Z
V
e
�T
sdVþ

Z
V
qu

�T
€udV ¼

Z
V
u
�T
f BdVþ

Z
Sf

u
�T
f Sf dSf ð4Þ

in which u
�
and e

�
indicate the virtual displacement and the corre-

sponding virtual strain, respectively, and V is the body volume
considered.

Discretizing Eq. (4), we arrive at the following matrix form of
the governing equations [4]

M €U þ C _U þ KU ¼ R ð5Þ
whereM, C and K are the mass, damping and stiffness matrices, R is
the load vector, U is the nodal displacement vector, and an over-dot
denotes a time derivative. In our wave propagation solutions we
assume that no physical damping effects are present, hence C = 0.
3. The overlapping finite element scheme

We consider the 3-node triangular overlapping elements
enriched for 2D wave propagation problems [20]. The same con-
cepts described here can be directly extended for the formulation
of 4-node quadrilateral overlapping elements and the correspond-
ing 3D elements [22,23], and these elements can be used in con-
junction with AMORE, the scheme of Automatic Meshing with
Overlapping and Regular Elements [18].

In the overlapping finite element method, the displacement
variable u ¼ u1;u2½ �T is for element Kwith nodes I, L, M interpolated
as

uh xð Þ ¼ hIwI xð Þ þ hLwL xð Þ þ hMwM xð Þ ð6Þ
where x ¼ x; y½ �T , and the hI; hL;hM are the shape functions of the
traditional 3-node element. The function wI is defined as
2

wI xð Þ ¼
X

J¼I; L;M

/I
JuJ; uJ ¼ pn aJn ð7Þ

where /I
J is a partition of unity function approximated by a quadra-

tic polynomial (see Refs. [18,19] for details), pn is a set of local basis
functions and the aJn are the corresponding unknown coefficients.

For the solution of 2D wave propagation problems, the bi-linear
polynomial functions and trigonometric functions are employed
for the local basis, namely, we use, with a local Cartesian coordi-
nate system x; yð Þ,

p1 ;p2 ; � � �½ �¼

1;x;y;xy;

cos 2px
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;
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26666666666664
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ð8Þ

where kx and ky are the fundamental wavelengths in the x- and y-
directions, respectively, and, for example, the order of the
trigonometric function used for the x-axis direction in the basis is
the coefficient multiplying 2px

kx
. The use of the bi-linear polynomial

function ensures the linear consistency (reproducing the linear
fields like rigid body modes and constant strain states), and the
trigonometric polynomial basis enhances the solution accuracy for
the Helmholtz equation (the time-independent form of the wave
equation).

An important point for the overlapping finite elements with
the bi-linear polynomial and the trigonometric functions up to
order n (we shall refer to them as OFE-TRIn) is that the
dispersion error caused by the OFE-TRIn discretization is
negligible and almost independent of the propagation direction,
for wave modes with khh=p < n where kh is the numerical wave
number and h is the typical size of overlap region. This implies
that when used with the implicit direct time integration meth-
ods, the OFE-TRIn exhibits the monotonic convergence of the
solution with refining the spatial discretization and/or the time
discretization.

4. The Bathe time integration scheme

The Bathe time integration scheme was originally published for
nonlinear analyses [24,25] but then further researched and also
proposed for linear structural and wave propagation solutions
[26–31]; and it is now in essence a family of schemes. All tech-
niques provide implicit time integrations and use two sub-steps
for the integration over the time step Dt. We shall use in this paper
the standard Bathe time integration scheme (also referred to as the
c-Bathe scheme, because c can be a variable) [25,26] and the b1=b2-
Bathe scheme in which c, b1 and b2 are variables but b2 is usually
set by the choice of b1 [28,31]. All these schemes can be derived
from the q1-Bathe method [29]. An explicit scheme using the same
approach has been presented in Ref. [32].

4.1. The standard implicit c-Bathe scheme

In the Bathe method, well-known integration schemes are used
for each sub-step [4]. In the first sub-step, we utilize the trape-
zoidal rule, or more generally, the Newmark method

tþcDt _U ¼ t _U þ 1� dð Þ t €U þ d tþcDt €U
h i

cDt ð9Þ

tþcDtU ¼ tU þ t _UcDt þ 1
2
� a

� �
t €U þ atþcDt €U

� �
c2Dt2 ð10Þ
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and in the second sub-step, we utilize the Euler 3-point backward
rule

tþDt _U ¼ c1 tU þ c2 tþcDtU þ c3 tþDtU ð11Þ

tþDt €U ¼ c1 t _U þ c tþcDt
2

_U þ c3 tþDt _U ð12Þ
where

c1 ¼ 1� c
cDt

; c2 ¼ �1
1� cð ÞcDt ; c3 ¼ 2� c

1� cð ÞDt ð13Þ

Considering linear analysis, the equilibrium equations applied
at time t þ cDt and time t þ Dt are

M tþcDt €U þ C tþcDt _U þ K tþcDtU ¼ tþcDtR ð14Þ

M tþDt €U þ C tþDt _U þ K tþDtU ¼ tþDt R ð15Þ
Using the relations in Eqs. (9)–(13) with the equilibrium equa-

tions at the two time points, Eqs. (14) and (15), we construct the
time-stepping equations as

bK tþcDt
1 U ¼ bR1 ð16Þ

bK tþDt
2 U ¼ bR2 ð17Þ

where

bK 1 ¼ 1
ac2Dt2

M þ d
acDt

C þ K ð18Þ

bK 2 ¼ c23M þ c3C þ K ð19Þ

bR1 ¼ tþcDtRþM
1
2a

� 1
� �

t €U þ 1
acDt

t _U þ 1
ac2Dt2

tU
� �

þ C
d� 2að ÞcDt

2a
t €U þ d

a
� 1

� �
t _U þ d

acDt
tU

� �
ð20Þ

bR2 ¼ tþDtR�M c1c t
3 U þ c2c

tþcDt
3 U þ c t

1
_U þ c tþcDt

2
_U

� �
� C c1 tU þ c2 tþcDtU

� 	 ð21Þ
In general, the trapezoidal rule (a ¼ 1=4, d ¼ 1=2) is used in the

first sub-step and we shall always do so in this paper. For the time
step subdivision, mostly c ¼ 1=2 or c ¼ 2�

ffiffiffi
2

p
(because then in

linear analysis bK 1 ¼ bK 2 ), have been used but c can vary and then
different accuracy properties are reached [26,32].

4.2. The b1=b2-Bathe implicit time integration method

We now use for the first sub-step

tþcDt _U ¼ � 2
cDtð Þ

tU� t _Uþ 2
cDtð Þ

tþcDtU ð22Þ

tþcDt €U ¼ � 4

cDtð Þ2
tU� 4

cDtð Þ
t _U� t €Uþ 4

cDtð Þ2
tþcDtU ð23Þ

Substituting from Eqs. (22) and (23) into Eq. (14), we obtain

bK tþcDt
1 U ¼ tþcDt bR1 ð24Þ

where

bK1 ¼ 4

cDtð Þ2
Mþ 2

cDtð ÞCþ K ð25Þ
3

tþcDt bR1 ¼ tþcDt R þM
4

cDtð Þ2
tUþ 4

cDt
t _Uþ t €U

" #

þ C
2
cDt

tUþ t _U
� �

ð26Þ

For the second sub-step, the governing equations are

tþDt _U ¼ � 1
b2 1� cð ÞDt

tU� c 1� b1ð Þ
b2 1� cð Þ

t _U

� cb1 þ 1� b2ð Þ 1� cð Þ
b2 1� cð Þ

tþcDt _Uþ 1
b2 1� cð ÞDt

tþDtU ð27Þ
tþDt €U ¼ � 1

b2 1� cð ÞDtð Þ2
tU� c 1� b1ð Þ þ b2 1� cð Þ

b2 1� cð Þð Þ2Dt
t _U

� c 1� b1ð Þ
b2 1� cð Þ

t €U� cb1 þ 1� b2ð Þ 1� cð Þ
b2 1� cð Þð Þ2Dt

tþcDt _U

� cb1 þ 1� b2ð Þ 1� cð Þ
b2 1� cð Þ

tþcDt €U

þ 1

b2 1� cð ÞDtð Þ2
tþDtU ð28Þ

Substituting from Eqs. (27) and (28) into Eq. (15) we obtain

bK tþDt

2 U ¼ tþDtbR2 ð29Þ

where

bK2 ¼ 1

b2 1� cð ÞDtð Þ2
Mþ 1

b2 1� cð ÞDt Cþ K ð30Þ

and

tþDt bR2 ¼ tþDtR þM
1

b2 1� cð ÞDtð Þ2
tUþ c 1� b1ð Þ þ b2 1� cð Þ

b2 1� cð Þð Þ2Dt
t _U

"

þ cb1 þ 1� b2ð Þ 1� cð Þ
b2 1� cð Þð Þ2Dt

tþcDt _Uþ c 1� b1ð Þ
b2 1� cð Þ

t €U

þ cb1 þ 1� b2ð Þ 1� cð Þ
b2 1� cð Þ

tþcDt €U
�
þ C

1
b2 1� cð ÞDt

tU
�

þ c 1� b1ð Þ
b2 1� cð Þ

t _Uþ cb1 þ 1� b2ð Þ 1� cð Þ
b2 1� cð Þ

tþcDt _U
�

ð31Þ

In this paper, we shall use c ¼ 0:5 and b1 ¼ 0:35 with b2 ¼ 2b1.
For detailed studies of the effect of the values of these control

parameters on the stability and accuracy, we refer to Refs.
[28,31]. The chosen values are only slightly different to those
which give the standard Bathe method obtained when c ¼ 0:5
and b1 ¼ 1=3 with b2 ¼ 2b1.

The parameters and values corresponding to c ¼ 0:5 and
b1 ¼ 0:35, b2 ¼ 2b1 in the b1=b2-Bathe scheme are in the q1-
Bathe method c ¼ 0:5 , s0 ¼ s1 ¼ q0 ¼ q1 ¼ 1� b1ð Þ=2 ¼ 0:325 and
s2 ¼ q2 ¼ b1 ¼ 0:35 [29].

Our objective in the next sections is to present the numerical
solutions of some challenging elastic wave propagation problems
using the above solution schemes. The computed solutions provide
insight into the important characteristics and limitations of the
methods.

However, in addition, the problems may also serve as bench-
mark problems to evaluate the predictive capabilities of other
numerical schemes for wave propagations.



Fig. 2. Axial stress histories at the point A predicted by using the linear finite
element with the standard Bathe method (c ¼ 0:5). (a) Uniform meshes of 190
elements and 600 elements (N = 790 in total) are used for the first and second
materials, respectively, such thatDx2=Dx1 � c2=c1 and the time step size is set as
Dt ¼ CFL Dx1=c1 with CFL = 1. (b) A non-uniform mesh of N = 800 elements (400
elements in each material) is used and the time step size is set as
Dt ¼ CFL 2h= c1 þ c2ð Þ with h = L/N and CFL = 1. The non-uniform mesh is con-
structed by randomly distributing the nodes under the condition that the size of
each element is 0 < Dx < 2L=N.
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5. Illustrative solutions: A one-dimensional wave propagation
problem

We consider a clamped-free elastic bi-material bar, with zero
initial conditions, subjected to a unit step load H tð Þ at its free
end, as described in Fig. 1. The bar has length L ¼ 4 m and consists
of two segments, each of the same length but with different mate-
rials for which the wave speeds are c1 ¼ 40

ffiffiffi
5

p
m/s and c2 ¼ 20

ffiffiffi
2

p

m/s, respectively. In what follows, we report on the time history of
axial stress at the interface of the materials, point A; see Fig. 1.

This problem was studied using the linear finite elements with
the standard and b1=b2 Bathe methods in Ref. [31] where it was
demonstrated that the solutions reveal spurious oscillations and
these oscillations can be suppressed to some extent by choosing
good values of the parameters in the Bathe time integration meth-
ods. However, also, an accurate solution can be obtained in this
case using the linear finite elements with the standard Bathe
method when different uniform meshes are used in each material
such that every element has the optimal CFL number (the CFL
number is defined as CFL ¼ cDt=h, where c is the wave propagation
velocity). We recall that for accurate solutions, the scheme using
the linear finite elements and the standard Bathe method requires
the optimal CFL number, CFL = 1. For this problem, we can easily
achieve CFL = 1 throughout by setting Dx2=Dx1 ¼ c2=c1 where Dx1

and Dx2 are the element lengths for the first and second materials,
respectively and by choosing Dt ¼ CFL Dx1=c1 with CFL = 1. Fig. 2
(a) shows the solution obtained using this approach with 190 ele-
ments and 600 elements for the first and second materials,
respectively.

In general two- and three-dimensional problems, however, this
optimality is impossible to achieve because waves propagating in
different directions travel in essence through different element
‘‘lengths”. The use of non-uniform meshes presents the same diffi-
culty, as illustrated in Fig. 2(b) where a non-uniform mesh of N =
800 elements (400 elements for each material), each element with
a different size (the size of each element is randomly chosen with
0 < Dx < 2L=N), is used and an average wave speed and an average
element length are employed to select the time step size Dt with
CFL = 1. This difficulty limits the general use of the linear finite
elements with the standard Bathe method.

The main attractive feature of the OFE-TRIn discretization is
that the wave modes with khh=p < n have practically no dispersion
error regardless of the propagation direction [20]. Of course, the
high-wavenumber wave modes with khh=p > n need to be sup-
pressed if they are excited, and one way is to exploit the numerical
dissipation (the amplitude decay) property of implicit time inte-
gration methods. It should be, however, noted that the use of
implicit time integration methods introduces additional dispersion
errors caused by period elongation [20,26,27], and such waves
need to be properly eliminated.

The use of the standard Bathe method with the OFE-TRIn
discretization has shown to be desirable for some wave propaga-
tion problems [20]. However, for the problems in which many
high-frequency waves are excited, like in the problems considered
in this paper (propagations of discontinuous waves), the
Fig. 1. An elastic bi-material bar impacted by a unit step axial pressure.

4

attenuation of high-frequency waves by the standard Bathe
method is not sufficient to obtain an acceptable result. We present
in Fig. 3(a) the solution of the bi-material bar problem calculated
using the OFE-TRI3 and the standard Bathe method using a
Fig. 3. Axial stress histories at the point A predicted by using the OFE-TRI3 with the
standard Bathe method (c ¼ 0:5). A uniformmesh of N = 160 elements (80 elements
in each material) is used and the time step size is set using (a) the wave speed of the
second material (the smaller wave speed) and (b) that of the first material (the
larger wave speed) both with CFL = 0.125. (c) A more refined uniform mesh of N =
640 elements (320 elements in each material) is used and the time step size is set
using the larger wave speed with CFL = 0.125.
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uniform mesh of 160 elements (80 elements in each material). We
employed the wave speed of the second material to select the time
step size with CFL = 0.125, and see that significant oscillations near
the wave fronts occur. When the wave speed of the first material is
adopted to choose the time step size, these oscillations slightly
decrease, but additional oscillations arise ahead of the wave, as
depicted in Fig. 3(b). These oscillations arise because while the
wave modes with khh=p < n are more accurately computed, those
with khh=p > n are not sufficiently suppressed. To alleviate these
spurious oscillations, we may refine the mesh as shown in Fig. 3
(c) where 640 uniform elements are used (320 elements in each
region), but the solution becomes computationally expensive.

The b1=b2-Bathe method enables to adjust the amount of
numerical damping while introducing less error in the period
elongation by choosing the parameters b1; b2 and c. The best values
of the parameters depend on the problem considered. We choose
the values c ¼ 0:5 and b1 ¼ 0:35 with b2 ¼ 2b1, because with these
values the method exhibits sufficient numerical dissipation to sup-
press the spurious oscillations while keeping the dispersion error
acceptably small. Fig. 4 shows the solutions of the bi-material
bar problem using the OFE-TRI3 discretization with the b1=b2-
Bathe method. Fig. 4(a) represents the solution when a uniform
mesh of 160 elements (80 elements in each material) is used and
the time step size Dt is set by the smaller wave speed with CFL
= 0.125, where it is clearly seen that spurious oscillations are
almost not present. An even more accurate solution can be
obtained if the larger wave speed is used to select the time step
size; see Fig. 4(b). It is also important to note that an accurate
solution can be achieved even using non-uniform meshes, which
Fig. 4. Axial stress histories at the point A predicted by using the OFE-TRI3 with the
b1=b2-Bathe method (c ¼ 0:5 and b1 ¼ 0:35 with b2 ¼ 2b1), A uniform mesh of N =
160 elements (80 elements in each material) is used and the time step size is set
using (a) the wave speed of the second material (the smaller wave speed) and (b)
that of the first material (the larger wave speed) both with CFL = 0.125. (c) A non-
uniform mesh of N = 160 elements (80 elements for each material) is used and the
time step size is set as the larger wave speed with h = L/N and CFL = 0.125. The non-
uniformmesh is constructed by randomly distributing the nodes with the condition
that the size of each element is 0 < Dx < 2L=N.

5

may need to be employed in practical analysis; see Fig. 4(c). The
predicted response in Fig. 4 shows excellent results obtained.

6. The solution of wave propagations through two-dimensional
solids

In the previous section, several methods were used to solve a
one-dimensional problem and it was discussed that the scheme
using the OFE-TRIn and the b1=b2-Bathe time integration exhibited
very attractive features: monotonic convergence with decreasing
time step size and effective suppression of spurious high-
frequency oscillations. In this section, the scheme is further applied
to solve some computationally challenging problems, to obtain
more insight but also to provide benchmark solutions for the eval-
uation of other computational procedures.

We solve the Lamb’s problem [33], namely two-dimensional
waves propagating in a semi-infinite elastic medium in plane
strain conditions, as shown in Fig. 5. The isotropic elastic medium
has mass density q ¼ 2200 kg=m3, Young’s modulus
E ¼ 1:8773� 1010 Pa, and Poisson’s ratio m ¼ 0:25, giving the P-
wave velocity cP ¼ 3200 m/s, the S-wave velocity cS ¼ 1847:5 m/
s, and the Rayleigh wave velocity cR ¼ 1698:6 m/s. The medium
initially at rest is subjected to a line load concentrated at a point
on the free surface, and the domain V ¼ 3200;0½ � � 0;3200½ � is con-
sidered for the computation. We consider two types of loading, a
Ricker wavelet and a set of step loadings, and always use the
OFE-TRI2 element.

The time step size is based on the P-wave velocity with
CFL = 0.125 and the element size is calculated as

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � 32002=N

q
where N is the number of elements. The

displacements at two receivers located at x ¼ 640; 0ð Þ and
x ¼ 1280;0ð Þ are computed and compared to the analytical
solutions given in Ref. [34].

6.1. The analysis of Lamb’s problem subjected to a Ricker wavelet

We first consider a Ricker wavelet as the concentrated load,
given by

Fc tð Þ ¼ A 1� 2p2fp
2 t� tsð Þ2

h i
e�p

2fp
2 t�tsð Þ2 ð32Þ

where we use A ¼ 2� 106, f p ¼ 10 Hz, and ts ¼ 0:1 s.
We solve the problem using a uniform mesh of

N ¼ 64� 64� 2 ¼ 8;192 elements (64 elements along each side
of the computational domain), and a non-uniform mesh of
N ¼ 5;000 elements. The meshes are shown in Fig. 6. The
results for the displacements at the two receivers are given in
Fig. 7.

The modes of the elastic waves stimulated by the Ricker
wavelet correspond to relatively low frequencies (compared to
Fig. 5. A semi-infinite elastic medium in plane strain conditions subjected to a
concentrated line force on the free surface.



Fig. 6. A uniform mesh (left) and a non-uniform mesh (right) used for the Lamb’s problem subjected to the Ricker wavelet. The numbers of elements are
N ¼ 64� 64� 2 ¼ 8;192 and N ¼ 5;000 in the uniform and the non-uniform meshes, respectively. In the non-uniform mesh, the element distribution is increasingly
denser toward the free surface (two times denser than the distribution on the opposite boundary).
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the wave modes from the step loadings considered in the
following section). Hence, in this problem the standard Bathe
method gives an accurate response prediction, and the numerical
damping introduced by use of the b1=b2-Bathe method leads to a
small amplitude decay in the solution, see Figs. 7 and 8.
Fig. 7. Horizontal and vertical displacements of the elastic medium subjected to the Rick
(left) and at x = (1280,0) (right) are shown. The OFE-TRI2 with uniform and non-uniform
method (c ¼ 0:5Þ with CFL = 0.125 are used. The analytical reference solution is based o
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6.2. The analysis of Lamb’s problem subjected to step loadings

We next consider a concentrated line load consisting of three
step functions, defined as

Fc tð Þ ¼ 2� 106 H 0:15� tð Þ � 3H 0:1� tð Þ þ 3H 0:05� tð Þ½ � ð33Þ
er wavelet on the free surface. The time histories of the displacements at x = (640,0)
meshes (8,192 elements and 5,000 elements, respectively) and the standard Bathe
n Ref. [34].



Fig. 6. A uniform mesh (left) and a non-uniform mesh (right) used for the Lamb’s problem subjected to the Ricker wavelet. The numbers of elements are
N ¼ 64� 64� 2 ¼ 8;192 and N ¼ 5;000 in the uniform and the non-uniform meshes, respectively. In the non-uniform mesh, the element distribution is increasingly
denser toward the free surface (two times denser than the distribution on the opposite boundary). We use symmetry of the problem with respect to the y-axis and solve for
the response using the meshes described in the text and this figure. N always refers to the number of elements in the computational domain (like shown here).

Fig. 9. Horizontal and vertical displacements of the elastic medium subjected to the step loading on the free surface. The time histories of the displacements at x = (640,0)
(left) and at x = (1280,0) (right) are shown. The OFE-TRI2 with uniform and non-uniform meshes (51,200 elements and 30,446 elements, respectively) and the b1=b2-Bathe
method (c ¼ 0:5 and b1 ¼ 0:35 with b2 ¼ 2b1) with CFL = 0.125 are used. The analytical reference solution is based on Ref. [34].
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Fig. 10. A semi-infinite medium consisting of two elastic layers with a crack in
plane strain conditions; a concentrated line force is applied on the free surface.
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This discontinuous loading causes high-frequency wave modes,
rendering the problem more difficult to solve. Hence we use finer
meshes than in Section 6.1.

We use a uniform mesh of N ¼ 160� 160� 2 ¼ 51;200 ele-
ments and a non-uniform mesh of N = 30,446 elements where
the nodes are increasingly denser toward the free surface; like in
Fig. 6 for the coarse mesh used earlier. The calculated displace-
ments at the two receivers are shown in Fig. 9, where it is seen that
all the elastic waves are well predicted using the OFE-TRI2 with the
b1=b2-Bathe method.
Fig. 12. Horizontal and vertical displacements of the two-layered elastic medium
with a crack subjected to the Ricker wavelet on the free surface. The computed time
histories of the displacements at x ¼ 640;0ð Þ are shown. The OFE-TRI2 with non-
uniform meshes of 1,548 elements, 5,972 elements, and 23,608 elements and the
standard Bathe method (c ¼ 0:5Þ with CFL = 0.125 are used.
6.3. The solution of wave propagations through two media with a
crack on the interface

Finally, we solve a wave propagation problem for which an ana-
lytical solution is not available. For this reason we use in each case
three meshes (a coarse, finer and finest mesh).

The problem is described in Fig. 10: simulating multiple waves,
triggered by a concentrated line force, traveling through a
semi-infinite elastic medium in plane strain conditions, which
consists of two elastic layers with a small crack between them.
The first layer has the same material properties as before, i.e., the
P-wave velocity cP1 ¼ 3200 m/s and the S-wave velocity
Fig. 11. The coarse meshes used for the two-media with a crack problem; the left is for the Ricker wavelet (1,548 elements) and the right is for the step loading (9,186
elements). The element distributions are increasingly denser toward the free surface (two times denser than on the opposite boundary).
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Fig. 13. Snapshots of von Mises stress distributions of the two-layered elastic medium with a crack at various observation times; the Ricker wavelet is applied on the free
surface. The OFE-TRI2 with a non-uniform mesh of 5,972 elements and the standard Bathe method (c ¼ 0:5Þ with CFL = 0.125 are used.
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cS1 ¼ 1847:5 m/s, but the second layer has a smaller Young’s mod-
ulus E2 ¼ 0:25E1, giving the P-wave velocity cP2 ¼ 1600 m/s and
the S-wave velocity cS2 ¼ 923:75 m/s. The depth of the first layer
and the length of the crack are both 640 m; see Fig. 10.
9

As before, we consider the Ricker wavelet and the step loading
as the concentrated line force applied on the free surface. For the
Ricker wavelet, we use the standard Bathe method since there
are a limited number of wave modes excited; for the step loading,



Fig. 14. Horizontal and vertical displacements of the two-layered elastic medium
with a crack subjected to the step loading on the free surface. The time histories of
the displacements at x ¼ 640;0ð Þ are shown. The OFE-TRI2 with non-uniform
meshes of 9,186 elements, 36,272 elements, and 144,336 elements and the b1=b2 -
Bathe method (c ¼ 0:5 and b1 ¼ 0:35 with b2 ¼ 2b1) with CFL = 0.125 are used.
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the b1=b2-Bathe method is employed to eliminate spurious high-
frequency wave modes.

In this example, only non-uniform meshes are used. As in the
previous examples, the meshes are gradually refined toward the
free surface; see Fig. 11 for the coarse mesh case.

Fig. 12 shows the computed displacements at x ¼ 640; 0ð Þwhen
the Ricker wavelet is applied, for which we use non-uniform
meshes of 1,548, 5,972, and 13,378 elements. We observe that
quite accurate solutions (measured on the finest mesh solutions)
are obtained even with the coarse mesh. We also provide in
Fig. 13 snapshots of the von Mises stress distributions at various
observation times calculated using the mesh of 5,972 elements.

The free surface waves caused by the step loading are computed
using non-uniformmeshes of 9,186, 36,272, and 144,366 elements,
and the results at x ¼ 640;0ð Þ are displayed in Fig. 14. While a
more accurate solution is achieved as the mesh is refined, using
10
the coarse mesh of 9,186 elements gives already reasonably accu-
rate results (measured on the finest mesh solutions). Fig. 15 shows
snapshots of the von Mises stress at selected time points.
7. Concluding remarks

In this paper, we elucidated and highlighted the features of
using the overlapping finite elements and the Bathe time integra-
tion method in the analysis of elastic wave propagation problems.
We focused on the effective use of the scheme to tackle some wave
propagation problems that are difficult to solve accurately. Several
challenging benchmark problems were solved to demonstrate the
strengths of the procedures.

The crucial property of the scheme is that the solution accuracy
increases monotonically as the time step size decreases and is
independent of the propagation direction. Another important
aspect is that the high-frequency wave modes that are not accu-
rately calculated can be effectively removed by adjusting the
parameters used in the Bathe time integration method. These fea-
tures render the scheme suitable and desirable for the accurate
simulation of wave propagations in general two- and three-
dimensional solids with complex geometries.

The amount of the numerical dissipation to suppress the spuri-
ous oscillations in the solution should be appropriately adjusted
depending on the problem considered. The overlapping finite ele-
ments with the standard Bathe method can perform well on prob-
lems where the solution is well approximated by low-frequency
wave modes. However, if many high-frequency wave modes are
excited, like by a discontinuous loading, it is very hard or perhaps
even impossible to accurately represent the waves by just refining
the spatial discretization and the time step size. In such cases, the
spurious high-frequency waves need to be suppressed numerically
without loss of solution accuracy in the waves that need to be well
integrated, that is, the period elongation error should be small in
these waves. The use of the b1=b2-Bathe method (or the q1-
Bathe method) can be effective in this case.

In this paper, the parameter values for the b1=b2-Bathe method
were chosen and kept at c ¼ 0:5 and b1 ¼ 0:35 with b2 ¼ 2b1, for all
problem solutions when the b1=b2-Bathe method was used. The
values are only slightly different to those used in the standard
Bathe method (for which c ¼ 0:5 and b1 ¼ 1

3 with b2 ¼ 2b1) and
were chosen based on some numerical experiments and insight
from the dispersion analysis given in Ref. [28]. While the values
used here lead to accurate results in these problem solutions, we
cannot say yet how good these values are for all solutions that
may be considered.

Regarding the efficiency, we evaluated the computational cost
involved in the scheme to some extent in Ref. [20]. However, a
more exhaustive study solving various representative cases
encountered in engineering practice would be of value.

Although we only considered one- and two-dimensional wave
propagations, the analysis procedures used can be directly
extended to three-dimensional solutions but the computational
cost needs to be studied.



Fig. 15. Snapshots of von Mises stress distributions of the two-layered elastic medium with a crack at various observation times; the step loading is applied on the free
surface. The OFE-TRI2 with a non-uniform mesh of 36,272 elements and the b1=b2 -Bathe method (c ¼ 0:5 and b1 ¼ 0:35 with b2 ¼ 2b1) with CFL = 0.125 are used.
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