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In this paper we focus on the L-stable b1=b2-Bathe time integrationmethod to obtain new insights for tran-
sient and wave propagation solutions. The method is a specific case of the q1- Bathe scheme but deserves
special attention because it can be used directly as a first-order and second-order scheme effective in cer-
tain analyses. We show how the parameters b1 and b2 can be used to introduce appropriate numerical
damping and illustrate the theoretical findings through the solution of some wave propagation problems.
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1. Introduction

Direct time integration methods are widely used to solve time
dependent finite element equations. These methods are divided
into two main categories: implicit and explicit techniques. Implicit
methods can be conditionally and unconditionally stable, whereas
the explicit methods are only conditionally stable [1]. Of particular
interest are the unconditionally stable implicit methods because
when using such a scheme the time step size is only governed by
accuracy considerations. The disadvantage is that the computa-
tions per time step are significantly larger than when using an
explicit scheme. Both types of methods are employed for solving
problems of wave propagation and structural dynamics. While
explicit schemes are mostly employed in the solution of wave
propagations, the use of an effective unconditionally stable implicit
scheme is very attractive because of the stability of the scheme [1].
The key for use of an implicit time integration method is that an
accurate solution of the physical problem needs to be obtained
with a coarser mesh and less time steps (than when using explicit
time integration) with a resulting smaller total solution cost.

Numerical damping is an important feature of direct time inte-
gration methods (implicit or explicit) and its importance has been
much researched, see for example Refs. [1–24]. The use of numeri-
cal damping can prevent the participation of spurious high frequen-
cies (only present due to the mesh used) in a finite element system
and many methods can be employed with numerical damping. The
superiority of one method over another is established when a
method can be used with a larger time step and less ‘‘total compu-
tational effort” for a given solution accuracy of physical problems.

The stability of a method is measured based on its spectral
radius qðAÞ, a method can be A-stable or L-stable. A method is A-
stable if qðAÞ 6 1 whereas a method is L-stable if it is A-stable
and qðAÞ ! 0 as ðDt=TÞ ! 1, where, considering a generic single
degree of freedom system, T is its natural period of vibration, Dt
is the time step used. When a large finite element system is consid-
ered T is the smallest period in the system [1,5,6].

The generality of a method is reflected when the magnitude of
the spectral radius for a given Dt=T , including when ðDt=TÞ ! 1,
can be adjusted. However, of much interest for the solution of
many physical problems are L-stable techniques, and in such a
scheme we desire an ‘‘effective amplitude decay together with
small period elongation errors”.

The numerical amplitude decay is governed by the value of the
spectral radius. As long as qðAÞ ¼ 1, the method does not display
numerical damping, like for the Trapezoidal Rule for any Dt=T
and for other methods as long as Dt=T is small. But when
qðAÞ < 1 numerical damping is present, the amount is given by
the magnitude of qðAÞ, and ideally the decrease of qðAÞ from 1 is
rapid at a large value of Dt=T. We shall call the value of Dt=T at
which the ‘‘fall” of qðAÞ from qðAÞ ¼ 1 occurs, the ‘‘fall-value”
(see Fig. 1a for an example).

Among the well-known methods that are L-stable, we have the
Houbolt method [1,2], the Newmark method when used with
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appropriate parameters [1,3], the Wilson method [1,4,5], the HHT
method [7], the 3-parameter [8] and the Bathe methods [1,9,10]
(see Section 2). The Houbolt, Newmark, Wilson, HHT and 3-
parameter schemes are one-step methods, while the Bathe meth-
ods split the time step and consider an additional solution for
the sub-step. Hence, the Bathe methods may be considered two
step schemes, although the calculations ‘‘internal” to the full step
are better regarded as part of the calculations per step. A particular
attractive feature of the Bathe methods is that the spectral radius
can, be changed quite effectively.

The ‘‘standard Bathe method” [9,10] is L-stable and second
order accurate for all values of the time step splitting ratio, called
c. By changing c, we can change the fall-value and obtain different
solution characteristics of the scheme. Initially, focus was on the
value c ¼ 0:5 for simplicity and because overall good solution
accuracy was obtained [10].

In addition, we introduced the b1=b2-Bathe method [21], in
which the first sub-step is as in the standard Bathe scheme and
the second sub-step uses a weighted assumption on velocities
and accelerations for the complete step. This method uses three
control parameters including the time step splitting ratio. We
assumed in Ref. [21] that the time step splitting ratio is constant,
c ¼ 0:5.

As a generalization of the above schemes, the q1-Bathe method
was presented [22,23], which we discuss briefly below. The q1-
Bathe method contains as special cases the standard Bathe method
and the b1=b2-Bathe scheme. However, normally the q1-Bathe
scheme is used as a second-order method whereas the b1=b2–
Bathe method can be of first order. In Ref. [24], both, the b1=b2-
Bathe and q1-Bathe methods were used in solving wave propaga-
tion problems achieving good results but demonstrating also that
the use of a first order method may be valuable for wave propaga-
tion problems. This observation spurred our further research into
the b1=b2-Bathe scheme, in particular also considering the cases
when the splitting ratio c–0:5.

In this paper, the b1=b2-Bathe time integration method is fur-
ther studied when the value of c is changed, thus having three con-
trol parameters. However, for practical use, we reduce these
parameters to two and even one, and show how to apply desired
numerical damping in the L-stable state of the method. In addition,
we compare the b1=b2-Bathe scheme with the standard Bathe
scheme using different values of c (which is the q1-Bathe method
in the L-stable state) by spectral radii, amplitude decays and period
elongations, and provide some recommendations for use of the
schemes. We also give illustrative example solutions to show the
performance of the methods.
Fig. 1a. Spectral radius of second order accurate case for various b1. The ‘‘fall-value”
for the case b1 ¼ 0:4999 is about 1.0.

2

We should point out that throughout the paper we assume that
traditional spatial finite element discretizations are used [1]. How-
ever, the findings presented here are also of value when using
‘‘overlapping finite elements” [25,26].
2. The Bathe time integration schemes

The Bathe time integration schemes are based on the original
method proposed in refs. [9,10]. In this approach the time step is
divided into two sub-steps, cDt and ð1� cÞDt. For the first sub-
step the Trapezoidal Rule is used and for the second sub-step the
three-point Euler backward method is employed. Here the time
step splitting ratio c is a variable although it was found that using
the ‘‘simple” value c = 0.5 was quite effective, in linear and nonlin-
ear analyses [10,27].

The use of more than two sub-steps per full time step was also
briefly explored in ref. [9], but then not focused on.

The basic idea of combining the trapezoidal rule and Euler back-
ward method in two sub-steps for one full time step is simple: to
obtain a method which is unconditionally stable with some, but
not too severe, amplitude decay. Of course, the Trapezoidal Rule
and Euler method are unconditionally stable, the Trapezoidal Rule
does not give amplitude decay whereas the Euler method shows
too much amplitude decay. Hence the prospect of using the two
techniques in one scheme was promising. However, researchers
in finite element analyses had prior focused only on single-step
methods, see for example Refs. [7,8].

This scheme was termed the ‘‘standard Bathe method”, it is L-
stable for all values of the time step splitting ratio, called c. By
changing c , we can change the fall-value. The method is second
order accurate for all values of c and was very successfully used
to solve problems in industry that were difficult to solve accurately
using other schemes [28,29]

New insights into the standard Bathe method were presented in
refs. [11,17,22] where the behavior of the scheme was shown for
varying values of c, resulting into different spectral radii. In these
studies also values of c > 1 were considered, with the studies
showing that numerical damping could be introduced with appro-
priate values of c.

Recently, we introduced the b1=b2-Bathe method [21], in which
the Trapezoidal Rule is employed in the first sub-step and the same
weighted assumption for velocities (to calculate the new displace-
ments) and accelerations (to calculate the new velocities) twice
using the three time points for the second sub-step. This method
uses in principle three control parameters: two are the b1=b2

parameters used for the second sub-step, and the third is the time
step splitting ratio. We assumed in Ref. [21] the time step splitting
ratio to be constant, c ¼ 0:5, and the method then contains the
standard Bathe method (using c ¼ 0:5). We considered two cases
of changing b1 and b2. The first case (b2 ¼ 1� b1) is A-stable and
second order accurate, and the second case (b2 ¼ 2b1) is L-stable,
and first or second order accurate depending on the values chosen.
In the first case, we can adjust the amount of numerical damping,
and in the second case, we can change the fall-value of the spectral
radius.

As a generalization of the above schemes, the q1-Bathe method
was presented [22]. In the first sub-step, the Trapezoidal Rule is
used for the equilibrium at time t þ cDt,

M tþcDt €U þ C tþcDt _Uþ K tþcDtU ¼ tþcDt R ð1Þ

tþcDtU ¼ tUþ cDt
2

ðt _Uþ tþcDt _UÞ ð2Þ

tþcDt _U ¼ t _Uþ cDt
2

ðt €Uþ tþcDt €UÞ ð3Þ
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and in the second sub-step, the following relations for the equi-
librium at time t þ Dt are employed

M tþDt €U þ C tþDt _Uþ K tþDtU ¼ tþDt R ð4Þ

tþDtU ¼ tUþ Dt ðq0
t _Uþ qtþcDt

1
_Uþ q2

tþDt _UÞ ð5Þ

tþDt _U ¼ t _Uþ Dt ð s0t €Uþ s1 tþcDt €Uþ s2 tþDt €UÞ ð6Þ

where s0; s1; s2; q0; q1; q2 are parameters. In principle, these parame-
ters can be determined in various ways to achieve unconditional
stability and good accuracy. The accuracy is measured by the ampli-
tude decay and period elongation.

To obtain the final equations used in the q1-Bathe method,
we use Eqs. (5) and (6), impose that second order accuracy be
obtained and thus establish all constants. With this approach
all parameters are set, except the time step splitting ratio c
and the spectral radius q1. These determine the characteristics
of the time integration scheme. While c and q1 are independent
parameters, it is effective to use the optimal value of c for a
given q1

For q1 2 0;1½ �, the scheme provides identical effective stiffness
matrices for the two sub-steps, a local maximum of amplitude
decay within the range of c 2 0; 1ð Þ and the global minimum of
the period elongation with the following c:

c0 ¼ 2� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 2q1

p
1� q1

; c0 ¼ 0:5 if q1 ¼ 1 ð7Þ

With the relation in Eq. (7), the method is a ‘‘one-parameter
scheme”. In the method, we can adjust the fall-value of the spectral
radius and the value of q1. The method is A-stable for all values of
c, and L-stable for q1 ¼ 0 and all values of c. The method is the
standard Bathe scheme when using q1 = 0 and with specific values
of the constants s0; s1; s2; q0; q1; q2, the q1-Bathe method also
reduces to the b1=b2-Bathe method [23].

In the initial study [22], the method was introduced as a second
order accurate method for q1 2 ½0; 1�, then in Ref. [23], a first order
accurate scheme of the q1-Bathe was introduced and the use of
q1 2 ½�1; 0� was investigated. To obtain further insight, the
q1-Bathe method was compared with the Newmark method
[23], where it was shown that the commonly used time integration
scheme of the Newmark method is also contained in the q1-Bathe
procedure.

3. The b1=b2-Bathe time integration method

In this section we first present the basic equations of the b1=b2-
Bathe scheme including the splitting ratio c as a parameter and
then give the stability analysis.

3.1. The basic equations

In the b1=b2-Bathe time integration method, we use the two
sub-steps of size cDt and ð1� cÞDt [21]. For the first sub-step we
use

tþcDt _U ¼ � 2
ðcDtÞ

tU� t _Uþ 2
ðcDtÞ

tþcDtU ð8Þ

tþcDt €U ¼ � 4

ðcDtÞ2
tU� 4

ðcDtÞ
t _U� t €Uþ 4

ðcDtÞ2
tþcDtU ð9Þ

and

M tþcDt €Uþ C tþcDt _Uþ K tþcDtU ¼ tþcDt R ð10Þ
3

Substituting from Eqs. (8) and (9) into Eq. (10), we obtain

K̂1
tþcDtU ¼ tþcDt R̂1 ð11Þ

where

K̂1 ¼ 4

ðcDtÞ2
Mþ 2

ðcDtÞCþ K ð12Þ

tþcDtR̂1 ¼ tþcDt RþM
4

ðcDtÞ2
tUþ 4

cDt
t _Uþ t €U

" #
þC

2
cDt

tUþ t _U
� �

ð13Þ
and we use our usual notation for displacements, velocities, acceler-
ation, stiffness, mass and damping matrices, and time stepping [1].

For the second sub-step, the governing equations are

tþDt _U ¼ � 1
b2ð1� cÞDt

tU� cð1� b1Þ
b2ð1� cÞ

t _U

� cb1 þ ð1� b2Þð1� cÞ
b2ð1� cÞ

tþcDt _Uþ 1
b2ð1� cÞDt

tþDtU ð14Þ

tþDt €U ¼ 1

b2ð1� cÞDtð Þ2
tU� cð1� b1Þ þ b2ð1� cÞ

b2ð1� cÞð Þ2Dt
t _U� cð1� b1Þ

b2ð1� cÞ
t €U

� cb1 þ ð1� b2Þð1� cÞ
b2ð1� cÞð Þ2Dt

tþcDt _U� cb1 þ ð1� b2Þð1� cÞ
b2ð1� cÞ

tþcDt €U

þ 1

ðb2ð1� cÞDtÞ2
tþDtU ð15Þ

M tþDt €Uþ C tþDt _Uþ K tþDtU ¼ tþDt R ð16Þ
Substituting from Eqs. (14) and (15) into Eq. (16) we obtain

K̂2
tþDtU ¼ tþDt R̂2 ð17Þ

where

K̂2 ¼ 1

b2ð1� cÞDtð Þ2
Mþ 1

b2ð1� cÞDt Cþ K ð18Þ

tþDtR̂2 ¼ tþDt R þM
1

b2ð1� cÞDtð Þ2
tUþ cð1� b1Þ þ b2ð1� cÞ

b2ð1� cÞð Þ2Dt
t _U

"

þ cb1 þ ð1� b2Þð1� cÞ
b2ð1� cÞð Þ2Dt

tþcDt _U þ cð1� b1Þ
b2ð1� cÞ

t €U

þ cb1 þ ð1� b2Þð1� cÞ
b2ð1� cÞ

tþcDt €U

#
þ C

1
b2ð1� cÞDt

tU
�

þ cð1� b1Þ
b2ð1� cÞ

t _Uþ cb1 þ ð1� b2Þð1� cÞ
b2ð1� cÞ

tþcDt _U
�

ð19Þ
3.2. Stability analysis

To study the stability and accuracy of the b1=b2-Bathe method,
we use the procedure given, for example, in refs. [1,5,6] and estab-
lish the following recursive formula

tþDtu
tþDt _u
tþDt€u

2
64

3
75 ¼ A

tu
t _u
t€u

2
64

3
75þ L tþcDt

a r þ L tþDtr ð20Þ

where A, La and L are the amplification matrix and load operators.
The amplification matrix contains as variables Dt=T; n; b1; b2; c,
where n is the damping ratio [1].

For the analysis of the method, the spectral radius of the matrix
A defined as

qðAÞ ¼ max
i

kiðAÞj j ð21Þ
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is used where ki are the eigenvalues of the matrix. A method is L-
stable if qðAÞ 6 1 and qðAÞ ! 0 as ðDt=TÞ ! 1. The accuracy of a
direct time integration method is measured by establishing the
amplitude decay and period elongation [1].

3.3. L-Stability

In this paper we only focus on the case of L-stability of the
methods.

Assuming no physical damping (that is, the damping ratio
n ¼ 0)ðDt=TÞ ! 1, the three eigenvalues (ki) of A are

lim
Dt
T !1

k1;2 ¼ �ð2b1c� 2c� b2 þ b2cþ 1Þ
b2ðc� 1Þ ! k11;2 ¼ �ð2b1c� 2c� b2 þ b2cþ 1Þ

b2ðc� 1Þ
lim
Dt
T !1

k3 ¼ 0 ! k13 ¼ 0

ð22Þ

and for ðDt=TÞ ! 1, we have

q1ðAÞ ¼ max
i

k1i ðAÞ�� �� ¼ �ð2b1c� 2c� b2 þ b2cþ 1Þ
b2ðc� 1Þ

����
���� ð23Þ

Hence for L-stability we need to have

2b1c� 2c� b2 þ b2cþ 1 ¼ 0 ð24Þ

which gives c in terms of b1 and b2

c ¼ ðb2 � 1Þ
ð2b1 � 2þ b2Þ

ð25Þ

We want to use values of the splitting ratio satisfying 0 < c < 1
and obtain with some arithmetic that for L-stability we should use
(see also Section 3.4)

if 0< b1 < 0:5 ! 2ð1�b1Þ�0:5ð16b2
1 �24b1 þ8Þ0:5

h i
6 b2 < 1

if b1 > 0:5 ! b2 > 1
ð26Þ

This method is a two-parameter scheme, not using b1 ¼ 0:5
because then c ¼ 1 (see Eq. (25)). Valuable properties are that con-
sidering a given value of b1 in the range 0 < b1 < 0:5, the method
can be second order or first order accurate (see Section 3.4), and
the spectral radius fall-value decreases as we move from

2ð1� b1Þ � 0:5ð16b2
1 � 24b1 þ 8Þ0:5

h i
to 1.

If we choose b1 > 0:5, b2 can be any value satisfying b2 > 1, we
have only first order accuracy, and the closer b2 is to 1, the smaller
the fall-value.

3.4. Order of accuracy

In the b1=b2-Bathe method, the local truncation errors of dis-
placement, velocity and acceleration are

e tþDtU ¼ � ðb1 þ b2 � 1Þc2 þ ð1� 2b2Þcþ ðb1 � 1
2Þ

� �
t €UDt2 þ oðDt3Þ

e tþDt _U ¼ � ðb1 þ b2 � 1Þc2 þ ð1� 2b2Þcþ ðb1 � 1
2Þ

� �
t
:::
UDt2 þ oðDt3Þ

e tþDt €U ¼ � ðb1 þ b2 � 1Þc2 þ ð1� 2b2Þcþ ðb1 � 1
2Þ

� �
M�1

Cðt
:::
UÞ þ Kðt €UÞ

h i
Dt2 þ oðDt3Þ

ð27Þ
As seen in Eq. (27), the presence or absence of physical damping

has no effect on the order of accuracy. We also see that second-
order accuracy is obtained when satisfying

ðb1 þ b2 � 1Þc2 þ ð1� 2b2Þcþ ðb1 �
1
2
Þ ¼ 0 ð28Þ
4

Using c ¼ ðb2 � 1Þ=ð2b1 � 2þ b2Þ (from Eq. (25)) in Eq. (28), we
have
ðb1 þ b2 � 1Þ ðb2 � 1Þ
ð2b1 � 2þ b2Þ

� 	2

þ ð1� 2b2Þ
ðb2 � 1Þ

ð2b1 � 2þ b2Þ
� 	

þ ðb1 �
1
2
Þ ¼ 0 ð29Þ

To satisfy the stability requirements in Eq. (26), the following
condition is obtained
if 0< b1 < 0:5 ! b2 ¼
�ð4b2

1 �6b1 þ2Þþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2b1 �1Þ3ðb1 �1Þ

q
2ðb1 �0:5Þ

ð30Þ
where if 0 < b1 < 0:5
�ð4b2
1 � 6b1 þ 2Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2b1 � 1Þ3ðb1 � 1Þ

q
2ðb1 � 1

2Þ
¼ 2ð1� b1Þ � 0:5ð16b2

1 � 24b1 þ 8Þ0:5
h i

ð31Þ

Hence to have second order accuracy and L-stability with one
parameter, the following equation can be used
if 0 < b1 < 0:5 ! b2 ¼ 2ð1� b1Þ � 0:5ð16b2
1 � 24b1 þ 8Þ0:5

h i
ð32Þ

Figs. 1a–1c shows the spectral radius, amplitude decay and per-
iod elongation for some values of b1 with 0:41 < b1 < 0:5. These
values may be effective for use in solutions. Fig. 1a also points
out a fall-value, as an example.

Hence in summary, considering Eqs. (26) and (32), if 0 < b1 <

0:5, for 2ð1� b1Þ � 0:5ð16b2
1 � 24b1 þ 8Þ0:5

h i
6 b2 < 1 the method

is L-stable and for b2 ¼ 2ð1� b1Þ � 0:5ð16b2
1 � 24b1 þ 8Þ0:5

h i
the

method is second order accurate. Then, as we use b2 slightly

greater than 2ð1� b1Þ � 0:5ð16b2
1 � 24b1 þ 8Þ0:5

h i
and increase b2

towards 1, the method is first order accurate and the fall-value of
the spectral radius decreases. This characteristic is shown in
Figs. 2a-2c, which also demonstrates that the amplitude decay
increases which we shall use in solving wave propagation prob-
lems to try to obtain more accuracy in the solutions.
Fig. 1b. Percentage amplitude decay of second order accurate case for various b1.



Fig. 1c. Percentage period elongation of second order accurate case for various b1.

Fig. 2a. Spectral radius for b1 = 0.4 and 2ð1� b1Þ � 0:5ð16b2
1�

�
24b1 þ 8Þ0:5� 6 b2 < 1.

Fig. 2b. Percentage amplitude decay for b1 = 0.4 and 2ð1� b1Þ � 0:5ð16b2
1�

�
24b1 þ 8Þ0:5� 6 b2 < 1.

Fig. 2c. Percentage period elongation for b1 = 0.4 and 2ð1� b1Þ � 0:5ð16b2
1�

�
24b1 þ 8Þ0:5� 6 b2 < 1.
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3.5. Using the splitting ratio c ¼ 0:5

The case b2 ¼ 2b1 is important and has been introduced and
analyzed earlier using c ¼ 0:5 [21]. The scheme is then L-stable
using Eq. (25)
5

c ¼ 0:5 ! ðb2 � 1Þ
ð2b1 � 2þ b2Þ

¼ 0:5 ! b2 ¼ 2b1 ð33Þ

and Eq. (26)

if 1
3 6 b1 < 0:5 ! b2 ¼ 2b1

if b1 > 0:5 ! b2 ¼ 2b1

ð34Þ

The case b1 ¼ 1=3 is the standard Bathe scheme using c ¼ 0:5
and is second order accurate. For other values of b1 the method
is first order accurate. This scheme is also a one-parameter method
which when increasing b1 leads to more numerical damping.
3.6. Using the same effective stiffness matrix in both sub-steps

Using the same stiffness matrix in both sub-steps in linear anal-
ysis leads to a reduction of numerical operations. According to Eqs.
(12) and (17), the same effective stiffness matrix is obtained if

2b2ð1� cÞ � c ¼ 0 ð35Þ
With c ¼ ðb2 � 1Þ=ð2b1 � 2þ b2Þ we have

ð4b1b2 � 3b2 þ 1Þ
ð2b1 þ b2 � 2Þ ¼ 0 ð36Þ

To satisfy Eq. (36) and keep the L-stability (see Eq. (26)), the fol-
lowing conditions need to hold

if ð0:75� 0:25
ffiffiffi
2

p
Þ 6 b1 < 0:5 ! b2 ¼ 1

3�4b1

if 0:5 < b1 < 3
4 ! b2 ¼ 1

3�4b1

ð37Þ

If we want to have L-stability, satisfy 0 < c < 1, second order
accuracy and the same effective stiffness matrix in both sub-
steps, Eqs. (32) and (37) have to be satisfied leading to the use of

b1 ¼ 0:75� 0:25
ffiffiffi
2

p
! b2 ¼ 1

ð3� 4b1Þ
ð38Þ

We summarize the various cases considered above in Table 1,
where we should emphasize that in each case c is given by Eq.
(25). We mentioned earlier that in principle all constants for the
b1=b2- Bathe scheme could be calculated for the q1-Bathe method
using q1 ¼ 0. The table shows that for some cases, the correspond-
ing use of the q1-Bathe method is direct, because both constants
b1 and b2 are simple. However, in other cases b2 is shown by an
expression and it is best to use b2 directly as given in Table 1.



Table 1
Various cases of the b1=b2 – Bathe scheme when L-stable, c ¼ ðb2 � 1Þ=ð2b1 � 2þ b2Þ.

Accuracy b1 b2

second order accuracy, 0 < c < 1 0 < b1 < 0:5 b2 ¼ 2ð1� b1Þ � 0:5ð16b21 � 24b1 þ 8Þ0:5
h i

first order accuracy, 0 < c < 1 0 < b1 < 0:5 2ð1� b1Þ � 0:5ð16b21 � 24b1 þ 8Þ0:5
h i

< b2 < 1

first order accuracy, 0 < c < 1 b1 > 0:5 b2 > 1
first order accuracy, c ¼ 0:5 1

3 < b1 < 0:5 ; b1 > 0:5 b2 ¼ 2b1
first order accuracy, 0 < c < 1, same effective stiffness matrix ð0:75� 0:25

ffiffiffi
2

p
Þ < b1 < 0:5

0:5 < b1 < 3
4

b2 ¼ 1
3�4b1

second order accuracy, 0 < c < 1, same effective stiffness matrix b1 ¼ 0:75� 0:25
ffiffiffi
2

p
b2 ¼ 1

3�4b1

Fig. 3b. Percentage amplitude decay of standard Bathe scheme for various c.
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4. The b1=b2-Bathe scheme versus the standard Bathe scheme

As mentioned already, the q1-Bathe method using q1 ¼ 0 is
the standard Bathe method and is L-stable for all values of c, in par-
ticular we can use 0 < c < 2, c– 1.

Considering the values 1:17 < c < 2 we find that the fall-value
of the spectral radius of the standard Bathe method decreases from
the value for c ¼ 0:5 which may be useful in the solution of wave
propagation problems. Figs. 3a–3c gives the spectral radii, ampli-
tude decays and period elongations of the standard Bathe method
for 1:17 < c < 2 in comparison to the values with c ¼ 0:5. As seen
in Figs. 3a–3c, the period elongation increases greatly as more
numerical damping is used. Figs. 4a–4c shows the same informa-
tion for the b1=b2- Bathe method using b1 ¼ 0:43 and

2ð1� b1Þ � 0:5ð16b2
1 � 24b1 þ 8Þ0:5

h i
6 b2 < 1 (with Eqs. (25) and

(26)) and gives a comparison with the standard Bathe method.
We see that the b1=b2- Bathe scheme period elongation error is
much less than when using the standard scheme. Hence we can
expect that the b1=b2- Bathe scheme will perform better, give more
accuracy, in some solutions. On the other hand, when the desired
amplitude decay is huge, any errors in the period may not have sig-
nificant consequences.
5. Recommendations for using the Bathe integration schemes: a
recipe

With the choice of parameters available in the Bathe schemes,
the question might be how to best tackle in practice the solution
of a structural vibration or wave propagation problem using the
methods. Our aim is here to give some guidelines, in effect suggest
‘‘a recipe” for use.
Fig. 3a. Spectral radius of standard Bathe scheme for various c.

Fig. 3c. Percentage period elongation of standard Bathe scheme for various c.

6

The standard Bathe method with c ¼ 0:5 has been widely
employed for nonlinear analysis and is effective in many such
applications, and in linear analysis. This scheme is equal to the
b1=b2-Bathe method for b1 ¼ 1=3 and b2 ¼ 2=3, and is also equal
to the q1-Bathe method when q1 ¼ 0 and c ¼ 0:5. The advantage
of its use is that no parameters need be set and only an appropriate
size of time step needs to be selected – as it is always the case
when using a direct integration method [1,10,11]. In structural
dynamics solutions, the time step Dt is selected to accurately inte-
grate all excited – and well represented – frequencies and mode
shapes in the finite element model.

However in linear analysis it is of advantage to use the standard
Bathe scheme method with c ¼ 2�

ffiffiffi
2

p
because only one effective

stiffness matrix is employed. In essence, the time integration
scheme is used as, and performs like, a mode superposition solu-



Fig. 4a. Spectral radius of the b1=b2- Bathe scheme with b1 ¼ 0:43 vs. standard
Bathe scheme in L-stable state.

Fig. 4b. Percentage amplitude decay of the b1=b2- Bathe scheme with b1 ¼ 0:43 vs.
standard Bathe scheme in L-stable state.

Fig. 4c. Percentage period elongation of the b1=b2- Bathe scheme with b1 ¼ 0:43 vs.
standard Bathe scheme in L-stable state.

Fig. 5. A bi-material rod subjected to a unit step traction [30].
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tion in linear analysis [1]. The use of only one effective stiffness
matrix is also available for the b1=b2-Bathe method, see Section 3.6.

In some special cases, it may be of value to use the q1-Bathe
method with a non-zero value for q1, that is 0 < q1 6 1:0 because
7

a large fraction of the finite element model frequencies is well rep-
resenting the ‘‘exact” frequencies and is excited; we refer to Refs.
[11,21,22] since we consider in the present paper only L-stable
schemes of the Bathe methods. The Trapezoidal Rule corresponds
to using q1 ¼ 1:0.

In the solution of wave propagation problems, accurate solu-
tions can be more difficult to obtain because many frequencies
are excited and the CFL number, defined as CFL = Dt=Dtcr plays a
crucial role, where Dtcr is the critical time step for stability
(typically of the Central Difference method [1]). The advantage of
using an unconditionally stable scheme is of course that the CFL
number is only used for accuracy considerations.

When using the standard Bathe method with c ¼ 0:5, or
c ¼ 2�

ffiffiffi
2

p
, in the solution of wave propagation problems, it is fre-

quently best to employ the time step given by CFL = 1 , see Refs.
[12,24]. This use usually leads to acceptable answers. A smaller
or larger CFL will not lead to an unstable solution but may give less
accurate response predictions. Some solutions are given in Refs.
[12,24] and below. The reason for a ‘‘good or optimal CFL” is that
the dispersion errors due to the mesh (using traditional finite ele-
ment discretizations) and the dispersion errors due to the time
integration can cancel each other out to a high degree [26].

However, to reach more accuracy in the solutions, it can be of
value to introduce more numerical damping and then the b1=b2-
Bathe method may be effective because strong amplitude decay
can be imposed while keeping the period elongation acceptable.
This is, in particular, achieved using Eq. (26) and based on some
limited numerical experimentation we found that reasonable val-
ues to use may be CFL = 1 with

b1 ¼ 0:43; b2 ¼ 2ð1� b1Þ � 0:5ð16b2
1 � 24b1 þ 8Þ0:5

h i
� 0:741

To then possibly achieve better accuracy we may try
0:741 6 b2 < 1 where we recall that as we choose b2 from 0.741
closer to 1, more numerical damping is applied.

However, we also found that the accuracy using the scheme to
predict response is quite sensitive to the values used for the
parameters. Only small changes can affect the solution accuracy
of a specific problem, as we shall also see in the illustrative solu-
tions presented next.

More experience with the values of parameters is needed in
order to be able to give more focused recommendations.

6. Illustrative example solutions

In this section we present the solution of two example problems
of wave propagations to illustrate our theoretical findings given
above. We only use the Bathe schemes in these solutions, compar-
isons with other methods have been published in our earlier
papers, see e.g. [11,22–24].

6.1. Wave propagations in a bi-material rod

We consider a bi-material rod created of two pieces with differ-
ent material properties, see Fig. 5 [30]. The Young’s moduli of the
two pieces are E1 ¼ 8� 103 Pa and E2 ¼ 8� 102 Pa. The same Pois-

son’s ratio = 0.0 and density = 1 kg=m3 are assumed for each piece.



Fig. 6b. Predicted horizontal stress at point A using standard Bathe scheme.

Fig. 6c. Predicted horizontal stress at point A using standard Bathe scheme.

Fig. 6d. Predicted horizontal stress at point A using b1=b2- Bathe scheme.

Fig. 6e. Predicted horizontal stress at point A using b1=b2- Bathe scheme.
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Hence the wave speeds are c1 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
E1=q1

p
= 40

ffiffiffi
5

p
and c2 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

E2=q2

p
=

20
ffiffiffi
2

p
, respectively.

The rod is fixed at its left end, and a uniform constant step trac-
tion of unit value is applied at its right end. The resulting wave is
reflected and refracted at the boundary of the materials.

We use a mesh of 800 traditional linearly interpolated elements
to represent the rod, with each piece modeled by 400 equal-size
elements, and use the time steps

Dt1 ¼ CFL� Dx
c1

¼ CFL� 0:005
40

ffiffiffi
5

p

Dt2 ¼ CFL� Dx
c2

¼ CFL� 0:005
20

ffiffiffi
2

p

with CFL = 1 for either the softer or the stiffer material. Hence we
use either Dt1 ¼ 5:59� 10�5 or Dt2 ¼ 1:767� 10�4 for the entire
structure, which means that CFL –1 for the entire structure in a
solution obtained with the consistent mass matrix.

For solving this problem, we use the standard Bathe method for
different values of c (which is the L-stable state of the q1- Bathe
scheme) and the b1=b2- Bathe method. The solutions obtained
using these methods are compared with one another and with
the reference solution given in ref. [30].

The solutions for Dt ¼ Dt1 are shown in Figs. 6a–6f. For this time
step the solution using the standard Bathe method with c ¼ 0:5
shows significant spurious oscillations. To suppress these oscilla-
tions, we have to apply numerical damping with a smaller fall-
value for q1ðAÞ. Using the method, we first use c ¼ 1:7(Fig. 6b).
Then we increase the value of c to decrease the fall-value even fur-
ther (Fig. 6c). Using the b1=b2- Bathe method, we employ b1 ¼ 0:43
and b2 ¼ 0:741; 0:83; 0:86 (Figs. 6d–6f). For this time step, the per-
formance of the two methods to suppress the spurious oscillations
is acceptable, but the b1=b2- Bathe scheme performs here slightly
better.

When using Dt ¼ Dt2 the spurious oscillations in the solution
using the standard Bathe method with c ¼ 0:5 are much less than
when using Dt ¼ Dt1 (Fig. 7a). To suppress these small spurious
oscillations, we used the parameters given in Figs. 7a–7f and we
see that the b1=b2- Bathe method worked well giving a better pre-
diction for the parameters used.

Of course, we only employed a certain set of parameter values
for the standard and b1=b2-Bathe methods to illustrate how their
choice affects the solutions and acceptable results may be
obtained. Different values of parameters will yield different
response predictions, but an important observation is that while
the numerical damping can help to suppress spurious oscillations,
it may also lead to a loss of accuracy.

6.2. Analysis of a prestressed square membrane

We consider a square prestressed membrane subjected to a
constant initial velocity prescribed over its central domain, the
Fig. 6a. Predicted horizontal stress at point A using standard Bathe scheme. Fig. 6f. Predicted horizontal stress at point A using b1=b2- Bathe scheme.
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Fig. 7a. Predicted stress at point A using the standard Bathe scheme.

Fig. 7b. Predicted stress at point A using the standard Bathe scheme.

Fig. 7c. Predicted stress at point A using the standard Bathe scheme.

Fig. 7d. Predicted stress at point A using the b1=b2- Bathe scheme.

Fig. 7e. Predicted stress at point A using the b1=b2- Bathe scheme.

Fig. 7f. Predicted stress at point A using the b1=b2- Bathe scheme.

Fig. 8. A square membrane, L = 10 m and l = 7 m.

Fig. 9a. Predicted velocity at center point using standard Bathe scheme, c ¼ 0:5 and
CFL = 1.

Fig. 9b. Predicted velocity at center point using b1=b2- Bathe scheme, CFL = 1.
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9

gray area in Fig. 8 [15,31]. The wave velocity and mass density of
the membrane are c ¼ 10 m=s and q ¼ 1 kg=m3, respectively. Due
to symmetry, we only discretize a quarter of the membrane and
use a mesh of 120 � 120 = 14,400 4-node square elements with
the consistent mass matrix.



Fig. 10a. Predicted velocity at center point using standard Bathe scheme, c ¼ 0:5
and CFL = 1.5.

Fig.10b. Predicted velocity at center point using standard Bathe scheme, c ¼ 1:3
and CFL = 1.5.

Fig. 10c. Predicted velocity at center point using b1=b2- Bathe scheme, CFL = 1.5.
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The size of time step is given by

Dt ¼ CFL� Dx
c

¼ CFL
240

In this problem solution the material conditions are uniform
and hence we expect reasonable results using the standard Bathe
method with c ¼ 0:5, CFL = 1. This is indeed the case. Figs. 9a-9c
show that reasonable results compared to the reference solution
[31] are obtained and also show a good response solution using
the b1=b2- Bathe scheme. However, when using CFL = 1.5, because
the use of a larger time step is of interest, the standard Bathe
method with c ¼ 0:5 does not give accurate results, and the use
of c ¼ 1:3 does not improve the accuracy of the response predic-
tion, see Figs. 10a-10b. On the other hand, when using the b1=b2-
Bathe scheme with the selected values of parameters the results
are better and quite reasonable, see Fig.10c.
7. Concluding remarks

Our objective in this paper was to further investigate the b1=b2-
Bathe method and provide some new insights. We focused on the
stability and accuracy of the b1=b2-Bathe method in the L-stable
state. The time step splitting ratio c was calculated as a function
of b1 and b2 to ensure L-stability for 0 < c < 1. The scheme is then
10
a two-parameter method and if the parameter b2 is selected judi-
ciously as a function of b1 we have a one-parameter scheme. We
showed the spectral radii, amplitude decays and period elonga-
tions for various values of the parameters b1 and b2.

The key point is that for an accurate solution of transient prob-
lems using traditional spatial finite element discretizations, it is
frequently necessary to introduce numerical damping. The damp-
ing has to be imposed by the time integration scheme such as to
eliminate spurious oscillations while at the same time not deterio-
rating the overall accuracy of the response prediction. The standard
Bathe scheme and the q1- Bathe method are frequently effective
but improvements are clearly desirable and for this reason we fur-
ther investigated the b1=b2-Bathe scheme.

Through a comparison of the b1=b2-Bathe and the standard
Bathe scheme (which is the q1- Bathe method when q1 ¼ 0:0, that
is, L-stable) we showed that the period elongation error of the
b1=b2-Bathe method is significantly less than provided by the stan-
dard Bathe method (using c as a parameter) when amplitude decay
is sought, that is, when we use value of the parameters that lead to
a smaller ‘‘fall-value” of the spectral radius. We illustrated the use
of the integration techniques in some example solutions but did
not find ‘‘universally” effective values for b1 and b2.

The major disadvantage in the use of the b1=b2-Bathe method is
that good values for the parameters need to be identified by
numerical experimentation. The advantage using the standard
Bathe scheme with c ¼ 0:5 and CFL = 1 is that no parameter is cho-
sen or adjusted. Of course, if the b1=b2-Bathe, the standard Bathe
scheme or q1-Bathe method are used with numerical experimen-
tation, more accurate results may be reached, and then the b1=b2-
Bathe method may give the best accuracy, but the actual improve-
ment in accuracy depends on the problem solved.

Although no ‘‘breakthrough” for a drastically better perfor-
mance than when using the standard Bathe scheme was discov-
ered, we believe that the given study gives important insight and
places the Bathe time integration schemes on a stronger
foundation.

The experience gained through this work shows also once more
the difficulties encountered when using ‘‘traditional spatial finite
element discretizations” to solve wave propagation problems. A
smaller time step does not necessarily lead to a smaller solution
error. On the other hand, using the ‘‘overlapping finite elements”
provides a much more powerful approach since the spatial disper-
sion errors can be uniformly reduced by refining the mesh and the
temporal errors are reduced by decreasing the time step size, see
Refs. [25–26] and the references given therein.
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