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Abstract

We consider the problem of assessing the convergence of mixed-formulated finite elements. When displacement-

based formulations are considered, convergence measures of finite element solutions to the exact solution of the

mathematical problem are well known. However when mixed formulations are considered, there is no well-established

method to measure the convergence of the finite element solution. We first review a number of approaches that have

been employed and discuss their limitations. After having stated the properties that an ideal error measure would

possess, we introduce a new physics-based procedure. The new proposed error measure can be used for many different

types of mixed formulations and physical problems. We illustrate its use in an assessment of the performance of the

MITC family of shell elements.

� 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

For many analyses of engineering interest, displace-

ment-based finite element formulations aremost effective.

These formulations have some important advantages

and most notably a strong mathematical background

and simplicity of implementation. For various types of

problems, however, analysts have to resort to mixed

formulations [1,2] because no reliable and efficient dis-

placement-based formulation exists. The analysis of in-

compressible and near-incompressible solids is a typical

example. Whereas the low-order classical displacement-

based finite elements perform very well when com-

pressible materials are considered, the phenomenon of

locking appears when the same elements are used to

model incompressible and near-incompressible materi-

als. This phenomenon manifests itself in the form of an

excessively stiff behavior of the finite element model

when the Poisson ratio approaches the value 0.5. More

formally, we say that a finite element formulation dis-

plays locking if the convergence of the finite element

solution to the exact solution of the underlying mathe-

matical model––in the appropriate norm––is not uni-

form and optimal. Locking results from the relative

inability of the finite element space to approximate the

exact solution which is constrained––in this case by the

incompressibility condition divðUÞ ¼ 0.
Similar locking phenomena are observed when dis-

placement(velocity)-based finite element techniques are

employed to solve for the displacements of thin plates or

shells, in contact problems, in incompressible fluids, and

so on. In each case, the constraint on the exact solution

is different: vanishing shear strains in plates, vanishing

membrane and transverse shear strains in bending-

dominated situations for shells, the no-penetration

constraint in contact problems, the incompressibility

condition in fluids. In all cases, the effective analysis of

these problems requires the use of an alternative ap-

proach to displacement-based finite element formula-

tions. Mixed-interpolated finite elements have been

proposed as that alternative and are widely used both in

academic research and industry [1–3].

However, for each of the mentioned types of analysis

there often exist several competing mixed formulations

and new ones are still being developed. Under these
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circumstances, the need for an objective means to test the

performance of mixed finite element methods is apparent.

If mixed formulations tend to behave better than

displacement-based ones in some cases, the mathematics

underlying mixed formulations is significantly more

complex. As a result, although the mathematical con-

ditions (in particular the inf–sup condition [3]) that a

mixed scheme need to satisfy for uniform optimality in

the appropriate norm are well known, there is frequently

no available analytical proof whether these conditions

are satisfied by mixed-formulated elements if realistic

problems are considered.

In the absence of an analytical proof of optimality,

numerical tests need to be carried out to validate existing

and new mixed finite element formulations. Some such

studies have focused on the convergence of pointwise

values of finite element fields to assess the effectiveness

of finite elements. Although such studies are rather

straightforward to carry out and can be employed to test

for the simpler forms of locking, they do little to help

determine whether or not a formulation locks in the

stricter sense, i.e. whether the convergence rate is opti-

mal and uniform.

In shell analysis, there is the added difficulty of

having to select appropriate test problems that reflect

the entire range of possible load-carrying mechanisms,

asymptotic behaviors and surface geometries [4–9]. If

inappropriate or insufficient test problems are used, in-

correct conclusions about the performance of a discret-

ization may be reached. To complicate matters even

further, exact analytical solutions are frequently not

available when we attempt to solve problems of rea-

sonable complexity.

Considering a given mixed shell formulation, we can

distinguish two ways of checking whether the conver-

gence rate of that formulation can be expected to be

uniformly optimal.

The first method consists in carrying out a numerical

inf–sup test, which, if passed, assures that the analytical

inf–sup condition is satisfied for the given geometry and

boundary conditions [3]. Such tests are available for

plate problems [10], shell problems [11], incompressible

material problems [2,12], contact problems [13]. One

difficulty with numerical inf–sup tests is that they are not

necessarily equivalent to the corresponding inf–sup

condition, i.e. a certain finite element formulation could

fail the numerical inf–sup test although it satisfies the

inf–sup condition because the numerical test can be

more stringent than the inf–sup condition [11] (but let us

note that we have not encountered such situation of

failing the inf–sup test in actual numerical tests). Also, in

some cases, we may accept some locking in a finite ele-

ment formulation and satisfy ourselves with sub-optimal

convergence rates if no better formulation is available.

The second method consists in plotting the conver-

gence to zero of the error norm as meshes are refined for

various values of the critical parameter in some selected

problems. If these curves have optimal slope and do not

shift as the critical parameter is varied, we conclude that

uniform optimal convergence is observed. In the case of

shell analysis, this may require mesh grading when

boundary and internal layers are present in the exact

solution. The difficulty with this second method consists

in determining and implementing the appropriate norm

in which to measure the error. In fact, this norm should

be chosen based on the problem under consideration

and the mathematical model solved. The choice and

implementation of such a norm with emphasis on shell

solutions is the topic of the present work.

An outline of the paper is as follows. In Section 2,

after a review of convergence measures in displacement-

based discretizations, we highlight the difficulties in-

volved in measuring the error in mixed formulations and

introduce our proposed norm. Section 3 applies the

proposed approach to the MITC family of shell ele-

ments [2,14–16]. These elements have been tested in the

past using other approaches and are in wide use. The test

problems used in the present paper are a hyperboloid of

one sheet subjected to a periodic loading, with two dif-

ferent boundary conditions. The choice of these test

problems is justified in the paper. Section 4 presents the

conclusions of our investigation.

2. General theory

In this section, we first recall some results regarding

the assessment of the error of displacement-based finite

element formulations before considering the problem

of assessing the accuracy of mixed-interpolated finite

element methods. In Section 2.2, we review some pro-

cedures that have been proposed and show their limita-

tions. In Section 2.3, we indicate what properties an ideal

error measure would feature and based on those goals we

introduce a new error measure in Section 2.4.

2.1. Displacement-based discretizations

Consider the very general problem: Find U 2 V (V

being a Hilbert space) such that

AðU ; V Þ ¼ F ðV Þ 8V 2 V ð1Þ

where Að�; �Þ is a bilinear, continuous and elliptic oper-
ator and F ð�Þ is a linear continuous form on V. By

application of the Lax–Milgram theorem, the problem

in Eq. (1) has a unique solution which satisfies

jjU jjV 6 cjjF jjV0 ð2Þ

where c is a constant that depends on the material
properties involved, thickness of the shell in shell

problems, etc., and V0 denotes the dual space of V.
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The displacement-based discretization of this prob-

lem is: Find Uh 2 Vh 	 V (Vh being the finite element

space) such that

AðUh; VhÞ ¼ F ðVhÞ 8Vh 2 Vh ð3Þ

By application of the Lax–Milgram theorem and C�eea�s
Lemma, we immediately obtain that the solution Uh of

this problem exists, is unique and satisfies the following

bound [2]:

AðU 
 Uh;U 
 UhÞ6 inf
Vh2Vh

AðU 
 Vh;U 
 VhÞ ð4Þ

which means

jjU 
 UhjjV 6 cdðU ;VhÞ ð5Þ

where dðU ;VhÞ is the distance between U andVh and c
is a constant that does not depend on the typical element

size h but depends on material properties, shell thick-
ness, etc. Considering the solution of a problem using

polynomial shape functions, this leads to the conver-

gence result:

jjU 
 UhjjV 6 chk ð6Þ

where c is again a constant that is independent of h but
dependent on material properties, shell thickness, etc.,

and the exact solution U , and k is the degree to which
the polynomial discretization is complete. Eq. (6) indi-

cates that the best order of convergence we can expect

from this discretization is k. Of course, the fact that the
constant c depends on the material properties, etc. im-
plies that in general the convergence is not uniform in

those parameters. For instance, when an almost in-

compressible material is considered, the constant c can
be very large, requiring the use of impractically fine

meshes to obtain accurate finite element solutions. Also,

within the range of realistic values for h, the order k may
not be observed. These are manifestations of locking

[1–3,8].

Eqs. (1) and (3) imply the important property

AðU 
 Uh; VhÞ ¼ 0 8Vh 2 Vh ð7Þ

which states the orthogonality of the error with respect

to the finite element space and implies

AðU ;UÞ ¼ AðUh;UhÞ þ AðU 
 Uh;U 
 UhÞ ð8Þ

which provides an easy way of evaluating the energy of

the error eh � U 
 Uh in the finite element solution when

the exact solution U is known. Considering the problem
of almost incompressible media, using this formula we

can readily plot logðAðU 
Uh;U 
UhÞÞ � logðAðU ;UÞ

AðUh;UhÞÞ versus logðhÞ for various values of the Pois-
son ratio m approaching 0:5. If a formulation does not
lock, curves corresponding to the different values of m
essentially coincide and (assuming ‘‘ideal’’ meshing [2])

have a slope of 2k. In a formulation that locks, the

curves corresponding to different values of m will have a
slope lower than 2k or shift––or both––as m is increased
to 0:5.

2.2. Practical measurement of the error

The estimation of the difference between the exact

solution of a mathematical problem and its approximate

numerical solution is a crucial step in an analysis. 1 In

some cases, and in particular if a displacement-based

finite element approach is used to reach the numerical

solution, it is fairly simple to measure this error:

AðU 
 Uh;U 
 UhÞ defines a norm for the error in the
displacements, as indicated in Section 2.1. However,

when mixed-interpolated formulations are used this

approach can not be followed, and there is no well-

established procedure to measure the error. A variety of

techniques have been used by researchers over the years,

and we review here some of these methods with em-

phasis on the analysis of shells.

2.2.1. Analytical versus numerical reference solutions

The reference solutions U can either be obtained

through analytical methods or numerical methods.

Frequently when analytical methods are used, sim-

plifying assumptions (shallow shell assumption, etc.)

must be made to render the problem tractable. These

assumptions can result in inconsistencies between the

analytical problem and the numerical problem (i.e. as

the mesh is refined, the finite element solution does not

converge to the reference analytical solution because the

reference solution and the finite element formulation are

based on fundamentally different mathematical models).

This is particularly the case when the finite elements

considered are of the degenerated type (such as the

MITC elements and other mixed-interpolated formula-

tions) because there are few analytical solutions to

meaningful shell problems based on the degenerated

approach. Even for simpler shell mathematical models,

there are few meaningful complex problems for which

closed-form analytical solutions exist at finite thick-

nesses. Often the analytical solutions that are available

are in the form of infinite series (resulting from a Fourier

or similar analysis), the coefficients of which usually

need to be evaluated numerically.

1 Error measurement procedures, the topic of this paper, are

used for a different purpose than error estimators [17–19]. While

we set out to evaluate the discrepancy between U and Uh when

U (or a close approximation thereof) is known, error estimators
are used to evaluate the discrepancy between U and Uh without

any knowledge of U . Error estimators are typically used in
automatic re-meshing algorithms to determine what regions of

a structure require mesh refinement.
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In any case, in practice, analytical solutions can be

obtained only when very simple geometries are consid-

ered.

For these reasons, numerical methods are frequently

preferred in obtaining reference solutions. There are of

course some pitfalls associated with this approach as

well, in particular the fact that the numerical scheme

used to establish the reference solution must be consis-

tent with the formulation analyzed. Another issue lies in

obtaining a numerical reference solution that is suffi-

ciently accurate. As shown in Ref. [2], if an inappro-

priate formulation is employed, the number of finite

elements needed to obtain a reasonably accurate refer-

ence solution can be much larger than it would be if an

appropriate scheme were used. In fact, the number of

elements needed may be so large that the problem can

hardly be tackled with widely available computers.

Clearly, we should avoid using such methods whenever

possible.

2.2.2. Pointwise schemes

Regardless of whether an analytical or numerical

reference solution is used, comparing pointwise values of

the displacements to a reference solution cannot give a

complete measure of the accuracy of the finite element

solution. Say for instance that the displacement at one

point of a structure calculated using a series of increas-

ingly refined meshes converges to the reference value;

there is no guarantee whatsoever that displacements at

other points converge in a similar manner since con-

vergence may be non-uniform spatially. Also, the ap-

propriate space for the study of the convergence of shell

problems is generally a combination of H 1 spaces and
pointwise values of functions are meaningless in those

spaces [8].

Hence only evaluating the error at a point (or a

number of points or just a line) cannot be used to rig-

orously analyze the presence of locking in a finite

element shell formulation. That is not to say that eval-

uating the error at a point is always worthless. Indeed,

when an engineer tackles a new problem or tackles a

familiar problem with a new type of finite element, such

evaluation provides a quick check that a reasonable

solution has been attained. However when a deeper

understanding or assessment of the performance of a

finite element formulation is sought more advanced

techniques are clearly necessary.

2.2.3. A global scheme

In Ref. [20], the approach used for displacement-

based elements was extended to the assessment of the

accuracy of mixed-formulated shell finite elements. In

this study, the authors plotted ‘‘lnðj1
 ðAASðUh;UhÞ=
AðU ;UÞÞjÞ’’ versus ‘‘lnðhÞ’’ where AASðUh;UhÞ denotes
the mixed-interpolated form used in the finite element

solution.

There are a number of difficulties in extending to

mixed formulations an approach originally designed for

the assessment of the performance of displacement-

based formulations. Namely, in a mixed formulation we

have, in general,

AASðU ;UÞ 
 AASðUh;UhÞ 6¼ AASðU 
 Uh;U 
 UhÞ ð9Þ

and ðAASðU ;UÞ 
 AASðUh;UhÞÞ is not a norm for

U 
 Uh. Hence, there is no guarantee that ðAASðU ;UÞ

AASðUh;UhÞÞ is positive, and numerical experiments
show that this quantity is frequently negative. This is an

immediate result of the energy convergence not neces-

sarily being from below in a mixed formulation. Indeed,

it is the fact that ðAASðU ;UÞ 
 AASðUh;UhÞÞ is frequently
negative that prompted in Ref. [20] the use of lnðj1

ðAASðUh;UhÞ=AðU ;UÞÞjÞ rather than lnð1
ðAASðUh;UhÞ=
AðU ;UÞÞÞ.
Hence, the approach of Ref. [20], although an im-

provement over measuring differences in solutions at a

point only, may not be sufficiently stringent to assess

whether a mixed finite element scheme is optimal.

2.3. Design of an error measure

From the previous section, it is clear that the proper

procedure to assess the performance of mixed-interpo-

lated shell finite elements should ideally satisfy the fol-

lowing conditions:

1. It should take into account the finite element solu-

tion––and of course the exact solution––over the

entire structure, not just over a few selected points

or lines.

2. It should give quantitative results regarding the per-

formance of the element tested. In particular, it

should define a proper norm for the error. Hence,

we denote this error measure by jjU 
 Uhjj� where
U denotes the exact solution and Uh denotes a finite

element solution. The norm should be easily related

to the physical problem analyzed (i.e. we would like

a physics-based norm).

3. We should be able to employ the procedure whether

or not an analytical solution is available for the prob-

lems considered. Indeed the procedure should be flex-

ible enough that it can handle arbitrary geometries,

loadings, etc.

4. It should be possible to employ a single procedure to

assess the performance of various element formula-

tions, allowing easy comparison between different

formulations.

5. A method that can be easily related to the assessment

method already existing for displacement-based for-

mulations is highly desirable. Of course a procedure

that can be easily extended to mixed finite element

formulations other than shell finite elements––such
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as u/p formulations for the analysis of incompressible

materials and incompressible fluids––would also be

of great value.

6. Finally, in the case of shell structures, the same norm

would be used for all shell problems, regardless of

their asymptotic behaviors and regardless of in which

norm the asymptotic behavior is measured.

Given such an error measure, the goal in developing

shell finite elements would be to identify elements such

that, for any problem with a relative thickness � ¼ t=L
considered, the finite element solution U �

h and the ref-

erence solution U �
ref satisfy

jjU �
ref 
 U �

h jj�
jjU �
ref jj�

¼ Chk ð10Þ

for all thicknesses, with C, a constant independent of the
shell thickness (and of course element size h), and k, the
order of the complete polynomial included in the for-

mulation (see [8]). Such a formulation would be uni-

formly optimal and would be guaranteed not to lock.

Based on these objectives, we propose a new proce-

dure in Section 2.4.

2.4. Proposed error measure

We present our error measure in the context of the

analysis of shells. In order to make our presentation of

the proposed algorithm simple, we first assume that an

analytical solution of the shell problem considered is

available. This requirement will be removed later on.

So for now, let us assume that we are considering a

shell problem based on the Reissner–Mindlin kinematic

assumption (see [8,21,22]) for which we know the exact

analytical solution for the displacements and rotations,

collectively denoted by U . For this problem we can
therefore evaluate the exact strains at every point x in
the geometry. We denote the shell domain by X and the
exact Cartesian strains by BðxÞUðxÞ where BðxÞ is the
strain operator. We discretize this problem and solve it

using a certain finite element formulation, yielding a fi-

nite element solution UhðxhÞ (again, Uh denotes collec-

tively translations and rotations) at every point of the

discretized domain Xh. Our finite element formulation

allows us to calculate the mixed finite element Cartesian

strains BhðxhÞUhðxhÞ related to this solution at every
point xh 2 Xh, where Xh denotes the computational

domain.

Since we have discretized the geometry, the finite

element domain and the actual domain are different

in general, see Fig. 1.

It is however possible to define a one-to-one mapping

between every point xh 2 Xh and every point x 2 X. Let
us denote this mapping by P, so that

8x 2 X 9!xh 2 Xh such that x ¼ Pxh ð11Þ

It should be noted that there is not a unique way of

selecting P: proper care should therefore be taken to
select a reasonable mapping.

The error measure EM we propose is then simply

EMðU ;UhÞ ¼
1

2

Z
X

DeTCðxÞDedX ð12Þ

where CðxÞ denotes the material law expressed in the
Cartesian coordinate system and

De ¼ BðxÞUðxÞ 
 BhðP
1ðxÞÞUhðP
1ðxÞÞ ð13Þ

In physical terms, De denotes the difference between the
exact strains at one point of the structure and the finite

element strains at the corresponding point of the mesh,

while EMðU ;UhÞ is simply the strain energy associated
with this difference. EM is the square of a norm for De.
It is however not the square of a norm for the error in

the displacements.

Note that if we were interested in defining an error

measure that is also a norm for the error in the dis-

placements we may consider using as an alternative er-

ror measure EM0 defined by EM0ðU ;UhÞ ¼ EMðU ;UhÞþ
Cjju
 uhjj2L2 þ C0jjh 
 hhjj2L2 where C and C0 are con-

stants needed for the sake of dimensional homogeneity;

u denotes the exact translations and uh denotes the finite
element translations. These constants would need to be

selected carefully to assure that EM0 can be used to

detect locking. Also, in practice, these constants would

need to be selected based on typical dimensions, material

properties, etc. of the problem in such a way as to assure

that in numerical experiments EMðU ;UhÞ and Cjju

uhjj2L2 and C0jjh 
 hhjj2L2 are of comparable magnitudes
(see Appendix A).

In case an analytical solution is not available for the

problem considered, we can substitute in Eq. (12) an

accurate approximation for the strains of the exact so-

lution. This accurate approximation can be obtained for

example by using a finite element method with a very

fine mesh. Note that it is entirely possible to employ

x

hx

Fig. 1. Mapping between a coarse mesh and the exact geome-

try. The mapping defines a bijection between the coarse mesh

(straight line) and the exact geometry of the structure (curved

line).
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finite elements of a different type than the element ana-

lyzed to obtain this reference solution, provided the fi-

nite element scheme used to establish the reference

solution is consistent with the mathematical model em-

ployed.

In rigorous terms, consider the mapping P between
the coarse mesh domain Xh and the reference fine mesh

domain Xref (see Fig. 2). Then we use as our error esti-
mate

EMðU ;UhÞ ¼
1

2

Z
Xref

DeTCðxÞDedXref ð14Þ

where

De ¼ BrefðxÞUrefðxÞ 
 BhðP
1ðxÞÞUhðP
1ðxÞÞ ð15Þ

To analyze convergence rates and locking, we pro-

pose to plot lnðEMðU ;UhÞ=EðU ;UÞÞ versus lnðhÞ with
the notation EðU ;UÞ � 1

2
AðU ;UÞ. In practice AðU ;UÞ

may be replaced with the energy of the numerically

computed reference solution AASðUref ;UrefÞ.

It is important to observe that when the geometry of

the problem considered allows for P to be the identity
operator (i.e. the geometry is exactly represented)

and a displacement-based formulation is analyzed then

clearly we have EMðU ;UhÞ ¼ EðU ;UÞ 
 EðUh;UhÞ ¼
EðU 
 Uh;U 
 UhÞ. Therefore in that case plotting
lnðEMðU ; UhÞ=EðU ; UÞÞ is equivalent to plotting

lnð1 
 AðUh; UhÞ=AðU ; UÞÞ. Hence in this case the pro-
posed procedure reduces to the usual procedure employed

to analyze the convergence rate of a displacement-based

formulation.

3. Numerical experiments: MITC shell elements

In this section, we introduce two test problems for

the assessment of the performance of shell finite ele-

ments. We then apply the error measure introduced in

Section 2.4 to these problems.

3.1. Description of the test problems

The two test problems use the same geometry given

in Fig. 3 and the same loading.

The mid-surface of this structure is described by the

equation

x2 þ z2 ¼ 1þ y2 ð16Þ

i.e. the mid-surface is a hyperboloid of one sheet, a

doubly ruled surface. The loading imposed is the peri-

odic pressure

pðhÞ ¼ P0 cosð2hÞ ð17Þ

where h denotes the polar angle, as shown in Fig. 3.
Using symmetries, the analyses were performed using

one eighth of the structure. Note that the analyses can

x

hx

Fig. 2. Mapping between a coarse mesh and a reference mesh.

The mapping defines a bijection between the coarse mesh (solid

straight line) and the reference mesh (dotted straight line). The

exact geometry is also shown (curved line).
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Fig. 3. Hyperboloid�s mid-surface geometry. The polar angle h used to describe the loading is indicated. Also 
16 y6 1 (Young�s
modulus ¼ 2:0E11, Poisson�s ratio ¼ 1=3).
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also be carried out on one sixteenth of the structure

using antisymmetry conditions at h ¼ 45�.

3.1.1. Clamped hyperboloid

In the first test problem we impose clamped bound-

ary conditions at both ends y ¼ 1 and 
1. This problem
is similar to the clamped cylinder problem which is fre-

quently used to test a shell finite element formulation.

That problem is well known to be membrane-dominated

and to feature boundary layers in the regions near the

clamped boundaries. We use this new test because unlike

the clamped cylinder problem, the hyperboloid problem

has non-zero Gaussian curvature, making it a more

general and also a tougher problem to solve. Indeed the

geometry of the mid-surface does not lead to aligning

the sides of quadrilateral elements with the asymptotic

lines. It is known that finite elements perform better

when their sides are oriented that way (see [4,8]). In in-

dustrial applications though it is generally not possible

to align the mesh with the asymptotic lines and therefore

we should not use such alignment in our tests.

The first step with a new problem like this one con-

sists in determining the asymptotic behavior. We follow

here the method presented in Ref. [7]: we study the

behavior of q defined as

q ¼ logðEhðtiþ1ÞÞ 
 logðEhðtiÞÞ
logðtiÞ 
 logðtiþ1Þ

ð18Þ

where EhðtiÞ denotes the finite element strain energy with
the thickness ti. For our study, we use the sequence of
thicknesses ti ¼ 10
i with i 2 f2; 3; 4; 5; 6g. 2 For each
thickness, the problem is solved using a mesh consisting

of 72� 72 MITC16 shell elements. A boundary layer is
present along the clamped edge, see Fig. 4. Due to the

presence of this layer, we need to use locally refined

meshes (also referred to as ‘‘graded meshes’’) to properly

identify the element convergence behaviors (see Section

3.3).

In our mesh grading scheme, the modelled geometry

is subdivided into two regions: a band of width 6
ffiffiffi
ti

p

along the clamped boundary, and the remainder of the

geometry. Each of these two regions is then meshed

using a uniform mesh (see Fig. 5). We used the same

number of elements in each of the two regions. Note that

the width 6
ffiffiffi
ti

p
is selected based on the theoretical

knowledge that along a line that is not an asymptotic

line, layer thicknesses vary as
ffiffi
t

p
[23], and the constant 6

is chosen based on numerical experiments. For each

thickness, the smoothness of the numerical solution is

checked. The results, obtained with 72� 72 element

MITC16 meshes and presented in Table 1 show that this

problem is membrane-dominated (this is, q approaches
1) as the thickness is decreased.

3.1.2. Free hyperboloid

In the second test problem the formerly clamped

edges are left free.

This problem is similar to the free cylinder problem

which is frequently used to test a shell finite element

2 Of course, not all these thicknesses correspond to realistic

physical problems.

Fig. 4. Deformation of the clamped hyperboloid. The bound-

ary layer along the clamped edge is clearly visible. Graded

72� 72 MITC16 mesh, t ¼ 0:0001, L ¼ 1.

X
Y

Z

Fig. 5. Hyperboloid: example of a 24� 24 graded mesh. There
are 12� 24 elements in the region near the boundary and
12� 24 elements in the rest of the mesh.
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formulation. That problem is known to be bending-

dominated.

Similarly to the clamped hyperboloid, we use this

new test because unlike the free cylinder problem, the

free hyperboloid problem has non-zero Gaussian cur-

vature, making it a more general and also a tougher

problem to solve. In this case we use the boundary layer

width ¼ 0:5 ffiffiffi
ti

p
.

The asymptotic behavior of this problem is again

determined by employing the approach presented in Ref.

[7]. The results given in Table 2 show that the free hy-

perboloid problem is bending-dominated.

3.2. Consistency results

If a finite element formulation is consistent with the

basic shell model of Refs. [8,24] then necessarily a very

fine mesh of elements will give a strain energy close to

the exact solution of the shell model. The difficulty in

using this property to test for consistency––besides the

fact that it is only a necessary condition for consis-

tency––is that while we need to prove consistency for

complex geometries and loading conditions, usually

analytical solutions for such problems are not available

and therefore we do not know the strain energy of the

exact solution. To generate a reference strain energy we

can however make use of the fact that for a displace-

ment-based formulation, we have

Eh 
 E0 ’ Ch2k ð19Þ

where Eh is the strain energy of the finite element solu-

tion obtained using elements of typical size h, E0 is the
strain energy of the exact solution and k is the degree of
the complete polynomial included in the formulation

(see [2]). We can make use of Eq. (19) to evaluate E0
from the strain energies Eh1 and Eh2 in two finite element

models with typical element sizes h1 and h2. In Table 3,
we report the reference energy extrapolated by this

method with the use of 24� 24 and 72� 72 displace-
ment-based 16-node element meshes of the clamped

hyperboloid problem (graded meshes are employed).

This same table also reports the strain energies obtained

with fine meshes of MITC4, MITC9 and MITC16 ele-

ments. For the MITC4 (resp. MITC9, MITC16) ele-

ment, we use a 192� 192 (resp. 96� 96, 72� 72)
element graded mesh. The strain energies obtained with

the MITC elements, considering t as small as 10
5, agree
well with the extrapolated reference strain energies.

In Table 4, we report the results obtained for the free

hyperboloid, and again we observe good agreement be-

tween the strain energies of the MITC finite element

solutions and reference strain energies obtained by ex-

trapolation.

As a more refined approach, we now make use of our

error measure by evaluating in Eq. (14) the reference

strain eref ¼ BrefUref by use of a very fine mesh of dis-
placement-based elements (we use the fine meshes in-

troduced above) and eh ¼ BhUh with a number of coarse

meshes made of MITC elements. If the MITC elements

yield a solution that converges to the solution of the

basic shell model of Refs. [8,24], then the error measure

must go to zero as the MITC mesh is refined. Obviously,

we would also like to observe the error measure con-

Table 2

Asymptotic behavior of the free hyperboloid problem

Thickness Strain energy q

10
2 0.452847� 106
2.9959

10
3 0.448612� 109
2.9999

10
4 0.448552� 1012
3.0000

10
5 0.448502� 1015

Table 3

Strain energy for clamped hyperboloid problem: consistency

t Extrapolated value using 16-node

displacement-based elements

MITC4 MITC9 MITC16

10
2 0.539187� 103 0.539136� 103 0.539187� 103 0.539187� 103
10
3 0.600115� 104 0.600030� 104 0.600115� 104 0.600115� 104
10
4 0.618988� 105 0.618787� 105 0.618988� 105 0.618988� 105
10
5 0.624889� 106 0.624365� 106 0.624889� 106 0.624889� 106
10
6 0.627608� 107 0.625663� 107 0.626748� 107 0.626748� 107

Table 1

Asymptotic behavior of the clamped hyperboloid problem

Thickness Strain energy q

10
2 0.539187� 103
1.0465

10
3 0.600115� 104
1.0134

10
4 0.618988� 105
1.0041

10
5 0.624889� 106
1.0013

10
6 0.626748� 107
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verge with the optimal convergence order allowed by the

interpolation orders of each element. The numerical

results for the clamped hyperboloid are shown in Fig. 6

where the relative consistency measure CMðUref ;UhÞ ¼
EMðUref ;UhÞ=EðUref ;UrefÞ is plotted versus the typical
element size h. Note that a sufficiently accurate solution
could not be obtained with the displacement-based 4-

node element in this problem. Fig. 6 shows that the

optimal order of convergence is essentially observed for

the two elements considered since all curves have es-

sentially the optimal slope. We notice some tapering of

the curves as the typical element size h goes to zero. This
is probably due to the fact that our reference solutions

are obtained numerically and do not coincide perfectly

with the exact solution of the basic shell model.

3.3. Convergence results

In this section, we use the error measure presented in

Section 2.4 to assess the convergence of the quadrilateral

MITC elements.

Since we have established through our numerical

experiments of Section 3.2 that the MITC elements are

consistent with the mathematical model, we can use

these elements to establish our reference solutions. This

is particularly important for two reasons. First, we have

mentioned in the consistency experiments of Section 3.2

that it was not possible to obtain a very accurate refer-

ence solution using the displacement-based 4-node ele-

ment for the clamped hyperboloid problem. Second,

considering now the free hyperboloid, we know that

we must expect severe locking due to the bending-

dominated nature of the problem if we use the dis-

placement-based elements for this analysis. Lower order

displacement-based elements can not be used to estab-

lish sufficiently accurate reference strains in this case.

For the two problems, and each of the three MITC

elements, we employ a highly refined MITC element

mesh to establish a reference solution and coarse meshes

to assess the convergence. For the MITC4 element, the

coarse meshes consist of N � N ¼ 24� 24, 32� 32,
48� 48 and 64� 64 elements, and the reference solution
is established with a 192� 192 element mesh. For the
MITC9 element, the coarse meshes consist of 8� 8,
16� 16, 24� 24 and 32� 32 elements, and the reference
solution is established with a 96� 96 element mesh. For
the MITC16 element, the coarse meshes consist of 6� 6,
12� 12, 18� 18 and 24� 24 elements, and the reference
solution is established with a 72� 72 element mesh.
For each problem and each element, we employ two

separate meshes: a uniform mesh (see Fig. 7), and a lo-

cally refined mesh, where again we use the refinement

method presented in Fig. 5 with the width of the refined

regions equal to 6
ffiffi
t

p
(for the clamped condition) and

0:5
ffiffi
t

p
(for the free condition).

Table 4

Strain energy for free hyperboloid problem: consistency

t Extrapolated value using 16-node

displacement-based elements

MITC4 MITC9 MITC16

10
2 0.452847� 106 0.452847� 106 0.452847� 106 0.452847� 106
10
3 0.448610� 109 0.448609� 109 0.448610� 109 0.448612� 109
10
4 0.448620� 1012 0.448845� 1012 0.448747� 1012 0.448552� 1012

t = 0.01
t = 0.001
t = 0.0001
t = 0.00001
t = 0.000001

t = 0.01
t = 0.001
t = 0.0001
t = 0.00001
t = 0.000001
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)log(CM

)log(h

)log(CM

)log(h

Fig. 6. Clamped hyperboloid: consistency. Graded meshes are

employed. Top to bottom: MITC9, MITC16. For 4-node ele-

ments accurate enough reference solutions could not be reached

with the displacement-based element. CM denotes the relative

convergence measure, i.e. CM ¼ ð
R

X DeTCDedXÞ=EðUref ;Uref Þ.
The reference solutions are established with displacement-based

9-node and 16-node elements. The bold lines show the optimal

slopes.
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In each case, we plot the relative error measure

REðUref ;UhÞ ¼ EMðUref ;UhÞ=EðUref ;UrefÞ against the
typical element size h ¼ 1=N as the mesh is refined for
the thicknesses t ¼ 10
i with i > 1. 3 If an element pro-
vides uniform optimal convergence, the curves corre-

sponding to the different thicknesses will all be parallel

to each other and have the optimal slope permitted by

the order of their interpolation spaces and there would

be little to no upwards vertical shifting of the curves as

the thickness is reduced (see Eq. (10)). If the curves do

not have the optimal slope, we conclude that the order

of convergence is not optimal. If there is some upwards

shifting of the curves, we conclude that the convergence

is not uniform.

The fact that the meshes are not aligned with the

asymptotic lines, the anticlastic nature of the geometry

of the mid-surface and the presence of boundary layers

combine to make these valuable and quite severe test

problems.

3.3.1. Clamped hyperboloid

The relative errors RE for the clamped hyperboloid

problem using uniform meshes are shown in Fig. 8. We

observe that for all three elements studied the order of

convergence becomes lower (the curves ‘‘flatten out’’) as

the shell thickness is reduced and there is some upwards

shifting.

The relative errors RE obtained for the same prob-

lem modelled with locally refined meshes are shown in

Fig. 9. We observe that for all three elements studied the

convergence order remains constant and optimal as the

shell thickness is reduced and for the MITC9 and

MITC16 there is some minor downwards shifting of the

curves indicating that the elements actually perform

slightly better at smaller thicknesses. The MITC4 ele-

ment shows some minor upwards shifting (considering

the practical cases tP 10
4).

3.3.2. Free hyperboloid

The relative errors RE for the free hyperboloid using

uniform meshes are shown in Fig. 10. The relative errors

X
Y

Z

Fig. 7. Hyperboloid: example of a uniform 24� 24 mesh.

3 Of course below a certain thickness it is not possible to

solve the finite element problem as the stiffness matrices become

ill-conditioned, leading to instabilities in the numerical solution

or solver failure. We report here all results that could be

obtained without ill-conditioning occurring.

-1.9 -1.8 -1.7 -1.6 -1.5 -1.4 -1.3
-9

-8

-7

-6

-5

-4

-3

-2

-1

0

t = 0.01
t = 0.001
t = 0.0001
t = 0.00001
t = 0.000001

t = 0.01
t = 0.001
t = 0.0001
t = 0.00001
t = 0.000001

t = 0.01
t = 0.001
t = 0.0001
t = 0.00001
t = 0.000001

-1.6 -1.5 -1.4 -1.3 -1.2 -1.1 -1 -0.9 -0.8
-9

-8

-7

-6

-5

-4

-3

-2

-1

0

-1.5 -1.4 -1.3 -1.2 -1.1 -1 -0.9 -0.8 -0.7
-9

-8

-7

-6

-5

-4

-3

-2

-1

0

)log(RE

)log(h

)log(RE

)log(h

)log(RE

)log(h

Fig. 8. Clamped hyperboloid modelled with uniform meshes:

convergence. Top to bottom: MITC4, MITC9, MITC16. The

reference solutions are established using very fine meshes of the

same MITC elements. The bold lines show the optimal slopes.
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RE for the same problem solved using locally refined

meshes are shown in Fig. 11.

From Fig. 10, we observe that when uniform meshes

are employed for this problem the convergence order is

low and clearly sub-optimal for relatively thick shells.

When locally refined meshes are employed, we conclude

from Fig. 11 that good orders of convergence are re-

covered for all elements. However, in particular for the

MITC9 element an upwards shifting of the curves is

observed, indicating that the convergence is not uni-

form. We attribute this non-uniformity to some spurious

shear strains in the finite element solution (see Ref. [25]).

These studies clearly show that graded meshes must

be used to evaluate shell finite element formulations.
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Fig. 9. Clamped hyperboloid modelled with graded meshes:

convergence. Top to bottom: MITC4, MITC9, MITC16. The

reference solutions are established using very fine meshes of the

same MITC elements. The bold lines show the optimal slopes.
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Fig. 10. Free hyperboloid modelled with uniform meshes:

convergence. Top to bottom: MITC4, MITC9, MITC16. The

reference solutions are established using a very fine mesh of the

same MITC elements. The bold lines show the optimal slopes.
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4. Concluding remarks

In this paper, we reviewed error measure procedures

that have been employed to test existing mixed-formu-

lated finite element schemes. In particular, we indicated

that there is a need for a procedure that allows to rig-

orously assess the discrepancy between the exact math-

ematical solution of a shell problem and the approximate

solution of the same problem obtained through the use

of a finite element procedure. We designed a new error

measure method that can be used to evaluate this dis-

crepancy. Our proposed error measure, which is physi-

cally based, defines a norm for the error in the strains

and can be extended to other problems where mixed-

interpolated finite element methods are used, such as

plates, beams or incompressible materials.

We used this error measure to numerically analyze

the quadrilateral MITC shell elements with two severe

test problems. First we confirmed that the elements are

consistent with the basic shell mathematical model of

Refs. [8,24]. Then we studied the convergence properties

of the MITC elements. Specifically, we investigated the

influence of using uniform versus graded meshes on the

convergence rates observed in a membrane-dominated

problem and a bending-dominated problem. Our in-

vestigation of the MITC elements indicates that the use

of locally refined meshes in the boundary layers is cru-

cial in allowing good convergence rates to be observed.

In the case of the membrane-dominated problem, uni-

formly optimal convergence is observed. In the case of

the bending-dominated problem, the MITC4 element

performs extremely well, and also the MITC9 and

MITC16 show good orders of convergence. However,

the convergence is not uniform for the MITC16 element

and specifically for the MITC9 element, which therefore

should be improved [25].

A natural extension of the work presented here

would be to study, using the same approach, other ex-

isting mixed finite element formulations, such as the

isoparametric u/p elements used in incompressible ma-

terial analysis, the MITC plate elements and the many

mixed-formulated shell elements that have been pro-

posed in recent years.
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Appendix A. Application of the proposed error measure to

a Timoshenko cantilever beam

In this appendix, we illustrate the error measure of

Section 2.4 when applied to a Timoshenko cantilever

beam [3].

A.1. Structure considered

We consider a straight cantilever beam occupying the

domain X ¼ ½0; L�. The thickness of the beam is denoted
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Fig. 11. Free hyperboloid modelled with graded meshes: con-

vergence. Top to bottom: MITC4, MITC9, MITC16. The ref-

erence solutions are established using very fine meshes of the

same MITC elements. The bold lines show the optimal slopes.
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by t and its width is 1. The beam is clamped at x ¼ 0.
The loading consists of a concentrated force F applied at
the free end, as shown in Fig. 12. The beam is made of a

linear isotropic elastic material with Young�s modulus
E and shear modulus G.
The beam is modelled using the Timoshenko beam

theory. The governing equations for the beam are:

Q ¼ Gt
dw
dx

þ U

� �

M ¼ EI
dU
dx

8>><
>>: ðA:1Þ

where Q is the shear force, M is the bending moment, w
and U are the z direction translation and y axis rotation
and I ¼ t3=12. In this beam structure only two strains
are present:

�xx ¼ z
dU
dx

cxz ¼ U þ dw
dx

8><
>: ðA:2Þ

The exact solution is

w ¼ F
EI

ðx
 LÞ3

6

 L2x
2

þ L3

6

" #

 F
Gt

x

U ¼ 
 F
EI

ðx
 LÞ2

2

 L2

2

" #
8>>>><
>>>>:

ðA:3Þ

In particular, the tip displacement and rotation are

wðLÞ ¼ 
 FL3

3EI

 FL

Gt

UðLÞ ¼ FL2

2EI

8><
>: ðA:4Þ

and the exact strains of the mathematical model are

given by

cxz ¼ 
 F
Gt

�xx ¼
Fz
EI

ðL
 xÞ

8><
>: ðA:5Þ

A.2. Finite element solution with N elements

We model the beam structure with N equally sized
mixed-interpolated finite elements, with linear variations

in the transverse displacement w and section rotation U
and constant element transverse shear strain (i.e. tied at

the element mid-point, see [2]). It can be seen that in the

finite element solution the shear strain is predicted ex-

actly at all points and the bending strain is predicted

exactly at the mid-point of each element. We can make

use of this property combined with the fact that the

strains in the element with nodes nþ 1 and n verify [2]

cASxz ¼ wnþ1 
 wn

L=N
þ Unþ1 þ Un

2

�xx ¼
Nz
L
ðUnþ1 
 UnÞ

8><
>: ðA:6Þ

to obtain expressions for the nodal displacements and

rotations. With some algebra, we find that the nodal

displacements and rotations are given by

wn ¼
FL3

EIN 3
n3

6

 Nn2

2
þ n
12

� �

 FLn
GtN

Un ¼ 
 1
2
n2 þ Nn

� �
FL2

EIN 2

8>><
>>: ðA:7Þ

A.3. Proposed error measure

Using the definition of our error measure in Eq. (12),

with some algebra we obtain that EMðU ;UhÞ ¼ F 2L3=
2Et3N 2, all of it coming from the bending energy since
the transverse shear is predicted exactly at all points.

From Eq. (A.4), we see that the strain energy of the

exact solution is

EðU ;UÞ ¼ F 2
2L3

Et3

�
þ L
2Gt

�
ðA:8Þ

Hence the relative error for this problem is

REðU ;UhÞ ¼
EMðU ;UhÞ
EðU ;UÞ ¼

F 2L3

2Et3N 2

F 2
2L3

Et3
þ L
2Gt

� �

¼ 1

N 2
1

4þ E
G

t
L

� 2 ðA:9Þ

Therefore we have

REðU ;UhÞ6
1

4N 2
¼ h2

4L2
ðA:10Þ

where h ¼ L=N is the element size. The fact that we
could find an upper bound for the relative error of the

form Ch2 with C independent of t and the optimal order

x

y

F

z

Fig. 12. Beam problem definition.
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of convergence, which is 2 for the linear element con-

sidered, indicates that there is no locking. 4

A.4. Alternative error measures

We have mentioned that our proposed error measure

of Eq. (12) is a norm for the strain error but is in general

not a norm for the displacements. This might be a dif-

ficulty for specific problems where we need to evaluate

the error in the displacements with great accuracy. In

this section, we comment on three alternative error

measures that are norms for the displacements.

A.4.1. Displacement-based strain energy

In this section, we consider the strain energy as an

alternative error measure:

EMðU ;UhÞ ¼ EðU 
 Uh;U 
 UhÞ ðA:11Þ

Considering our problem, we find after some algebra,

using Eq. (A.7), that the contribution to EM from

bending is

EMb ¼
F 2L3

2Et3N 2
ðA:12Þ

and the contribution from shear is

EMs ¼
ð4N 2 
 1Þ

N 4
GF 2L5

2E2t5
ðA:13Þ

It should be noted that the contribution from bending is

the same for this alternative error measure as for our

proposed error measure, of course, because the bending

strains are not mixed-interpolated in the element con-

sidered. The shear contribution differs however: in our

proposed error measure there is no contribution from

shear. It can be argued that from the point of view of the

engineer, our error measure is in this regard more logi-

cal: considering that the shear strains are predicted ex-

actly at all points in the structure, it is unexpected to

have a non-zero contribution to the error measure

coming from shear.

The relative error is

REðU ;UhÞ ¼
1

N 2

1þ 4N
2 
 1
N 2

L2

t2
G
E

4þ E
G

t2

L2

ðA:14Þ

This expression cannot be put in the form

for t small enough; REðU ;UhÞ6C
1

N 2
ðA:15Þ

with C a constant independent of the thickness t. As a
matter of fact, for t small enough, ð1þ ðð4N 2 
 1Þ=N 2Þ�
ðL2=t2ÞðG=EÞÞ=ð4þ ðE=GÞðt2=L2ÞÞ behaves as ðð4N 2

1Þ=4N 2ÞðL2=t2ÞðG=EÞ and goes to infinity as t goes to
zero. Note that it is therefore the contribution to the

error measure coming from shear that prevents Eq.

(A.15) from holding. Hence, using the error measure

EM we would obtain the impression that the element

shear locks, although in reality the shear strain is pre-

dicted exactly at all points. 5

A.4.2. Am þ Ab

Another error measure that is used for bending-

dominated problems is [8]

EM�ðU ;UhÞ ¼ AmðU 
Uh;U 
UhÞþAbðU 
Uh;U 
UhÞ
ðA:16Þ

One advantage of this error measure is that it defines

a norm equivalent to the norm for the space V, as

proven in [8]. Using Eqs. (A.12) and (A.13), we obtain

immediately that

EM�ðU ;UhÞ ¼
F 2L6

t6N 2
1

2E

�
þ G
2E2
4N 2 
 1

N 2

�
ðA:17Þ

and therefore the relative error in this norm is

RE�ðU ;UhÞ ¼
EM�ðU ;UhÞ

AmðU ;UÞ þ AbðU ;UÞ

¼ 1

N 2

1

2E
þ G
2E2
4N 2 
 1

N 2

2þ t4

2L4G

ðA:18Þ

We can put this expression in the form

RE�ðU ;UhÞ6C
1

N 2
ðA:19Þ

with C a constant independent of the thickness t. Hence
in this error measure we find, similarly to our proposed

error measure, that there is no locking.

One disadvantage of using EM�ðU ;UhÞ as an error
measure is that this measure only applies in the case of

bending-dominated problems and we need to resort to a

different error measure to assess the performance of a

finite element formulation in membrane-dominated or

mixed (intermediate) cases. Another disadvantage of this

approach is that the physical meaning of EM� is not

immediate.

4 Of course, in this problem only shear locking could be

present.

5 We implemented the error measure EM of Eq. (A.11) for

shell problems and observed in this case also that the relative

error RE can take surprisingly large values even when a

reasonably accurate solution has been reached.
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A.5. EM þ jj � jj2L2

We mentioned in Section 2.4 that our proposed norm

could be modified into a norm for the displacements by

adding to it the L2 norm of the displacements, in the
form

EM0ðU ;UhÞ ¼ EMðU ;UhÞ þ C
Z L

0

ðw
 whÞ2 dx

þ C0
Z L

0

ðU 
 UhÞ2 dx ðA:20Þ

where we denote by w the translational degrees of free-
dom and U the rotational degrees of freedom.
From Eqs. (A.3) and (A.7), we evaluate

Z L

0

ðw
 whÞ2 dx ¼
F 2L7

E2I2
394N 3 
 8N

N 7
ðA:21Þ

and

Z L

0

ðU 
 UhÞ2 dx ¼
F 2L5

120E2I2
1

N 4
ðA:22Þ

As expected, both terms vary with N as 1=N 4, whereas
the error in the strains varies as 1=N 2. Hence we have

EM0ðU ;UhÞ ¼
F 2L3

2Et3N 2
þ C

F 2L7

E2I2
394N 3 
 8N

N 7

þ C0 F 2L5

120E2I2
1

N 4
ðA:23Þ

We can also evaluate the L2 norms for the translations
and rotations of the exact solution

Z L

0

w2 dx¼ F 2L3

420E2I2G2t2
ð11L4G2t2 þ 77L2EIGtþ 140E2I2Þ

ðA:24Þ

and

Z L

0

U2 dx ¼ 2
15

F 2L5

E2I2
ðA:25Þ

which show that these quantities vary like t
6 as t goes to
zero. We could propose to use C ¼ t3E=L4 and C0 ¼
t3E=L2. Defining

RE0ðU ;UhÞ ¼
EMðU ;UhÞ þCjjw
whjj2L2 þC0jjU
Uhjj2L2

EðU ;UÞ þCjjwjj2L2 þC0jjUjj2L2
ðA:26Þ

this choice of constants would result in

RE0ðU ;UhÞ ¼
L3

2t3N 2

�
þ L3t3

I2
394N 3 
 8N

N 7

þ t3

L2
L5

120I2
1

N 4

�
2L3

t3

���
þ LE
2Gt

�

þ t4

420LI2G2
11L4G2

t

�
þ 77L

2EIG
t2

þ 140E
2I2

t3

�
þ t3

2

15

L3

I2

�
ðA:27Þ

All three terms of the numerator and denominator vary

like 1=t3 and the numerator varies with N as 1=N 2, which
implies that we have, for t small enough,

RE0ðU ;UhÞ6C
1

N 2
ðA:28Þ

The disadvantage of the error measure EM0 is that it

does not have a clear physical meaning and for some

complex situations the constants C and C0 may not be

easy to select.
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