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While shells have been analyzed abundantly for many years in engineering and the sciences, improved
finite element and related analysis methods are still much desired and researched. More general and
effective finite element procedures are needed for complex shell structures, including for the analysis
of composite shells and the optimization of shells. In this paper we discuss how finite element methods,
and other analysis techniques, should be tested in order to identify their reliability and effectiveness. We
summarize some important theoretical results, present appropriate test problems and convergence mea-
sures, and we illustrate our discussion through some novel numerical results. An important conclusion is
that the testing has to be performed very carefully in order to obtain relevant results, and we show how
this is accomplished in detail.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Shell finite element analyses have been performed for decades,
and in practice acceptable solutions have been obtained for many
shell analysis problems [1]. However, with recent advances in
technology, more complex shell structures are being designed,
more stringent requirements on accurate analysis results have
evolved, and the optimization of shell structures based on accurate
analyses has become increasingly important. Hence, the search for
more effective shell analysis schemes has actively continued.

The analysis of general shells is a most difficult field, because of
the different shell physical behaviors that can be encountered
[2,3]. An optimal shell analysis scheme would be one that we could
use to solve in a uniformly effective manner any shell structure, of
any geometry, thickness, boundary conditions, and applied loading
- and in linear and highly nonlinear conditions. The optimality of
the scheme would have to be proven mathematically and observed
in numerical tests. Such finite element scheme is extremely diffi-
cult to establish, does not exist at present, and – due to the inher-
ent physical and mathematical difficulties – its development
represents a major challenge in mechanics.

Indeed, considering linear analysis only, shell structures exhibit
already very complex behaviors. Assuming that the shell structure
is stable, that is, the analysis problem is well-posed, the shell
behavior depends on the geometry, shell thickness, boundary con-
ll rights reserved.
ditions and the applied loading. The shell may be in membrane,
bending and mixed strain states, and internal and boundary con-
centrated strain layers may be present [2–4]. To solve for these
complex and varied behaviors, finite element displacement-based
formulations are not effective, and mixed formulations need be
used.

When evaluating a finite element shell discretization scheme, or
any other numerical method, to solve shell structural problems,
analytical proofs regarding convergence are generally out of reach.
Hence, it is important to numerically test the considered method
appropriately. The usual testing involves the solution of some
benchmark shell problems that have been used for many years,
and simply measure the displacement at some point of the shell
structure as a function of mesh refinement [5]. Frequently, rela-
tively simple shell structural problems are solved. While such
solutions are useful, they do not test shell analysis schemes in
depth – because the test problems are usually not stringent
enough, have not been selected judiciously, and the ‘convergence
measure’ employed is not sufficient to give an overall assessment
of a shell numerical solution scheme.

Our objective in this paper is to address the proper testing of
analysis schemes for shell structures and demonstrate this test-
ing. We summarize important theoretical considerations, give
appropriate shell problems to be solved and appropriate conver-
gence measures, and we apply the proposed procedures. While
the theoretical results given herein have largely been published
before, we include these in this paper, in a simple and compact
description, to make the presentation readable and complete.
Our focus in the paper is on the norms used to measure the
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solution accuracy, the actual testing procedure, and the results
obtained for a family of shell elements, namely the quadrilateral
and triangular MITC shell elements. The numerical results given
are largely new because of the norms and the specific testing
Fig. 1. Three shell test problems using an axisymmetric hyperboloid (L = 1.0, E = 1.0 � 10
case. The shaded regions are modeled.

Fig. 2. The test problems for the ellipticity condition; (a) the test for triangular element
these tests are extracted from the one-eighth model of the shell and the lowest eigenva
that we employ. Our focus is also on emphasizing that the de-
tails of appropriate testing, including the specific norms used
in an evaluation, are very important in order to obtain relevant
results.
11 and v = 1/3); (a) the free-free case, (b) the fixed–fixed case, and (c) the fixed-free

s, (b) the test for quadrilateral elements. The single unsupported elements used for
lues are calculated.
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2. The governing shell equations

The basic ingredient of a mathematical shell model is that a
shell mid-surface is defined, and all geometric and kinematic vari-
ables and unknowns are referred to that mid-surface. In this way,
different shell mathematical models can be derived, but in practice
by far most shell analyses are based on the finite element discret-
ization of the basic shell model presented and analyzed by Chapelle
and Bathe [3,6], see also Ref. [7]. This shell model behaves for small
shell thickness in the same way as the shear-membrane-bending
model (for the derivation of this model and researchers who have
contributed to its derivation, see Chapelle and Bathe [3]). This
model can be written in the generic form [3]:

Find ~u 2 V such that

e3Abð~u;~vÞ þ eAmð~u;~vÞ ¼ Fð~vÞ; 8~v 2 V
!
; ð1Þ

where e is the shell thickness parameter t/L (t is the thickness and L
is a global characteristic dimension of the shell structure), the bilin-
ear form Ab represents the scaled bending energy, the bilinear form
Am represents the scaled membrane and transverse shear energies,
~u is the unknown solution (displacement field), ~v is the test func-
tion, V

!
is the appropriate Sobolev space, and F denotes the linear

form of the external loading. In our discussion below, we assume
Table 1
Boundary layer widths used for meshing; L = 1.0.

Analysis cases Top Bottom

Free–free case 0:5
ffiffi
t
p

0:5
ffiffi
t
p

Fixed–fixed case 6
ffiffi
t
p

6
ffiffi
t
p

Fixed–free case – 3
ffiffi
t
p

Fig. 3. Typical finite element meshes used for the three shell problems (N = 8); (a) the fr
quadrilateral elements are obtained by combining adjacent triangular elements.
that the thickness t is constant, but this assumption could be easily
removed [3].

Indeed, for small shell thickness, also the 3D-shell model be-
haves as the models described by Eq. (1) [3,8]. Hence, in our discus-
sion of finite element convergence issues we can use the generic
formulation (1) to focus on the underlying difficulties to properly
measure convergence of finite element procedures.

The basic step of a finite element method is to interpolate geo-
metric, kinematic, and stress (or strain) quantities to solve Eq. (1).
As well known, using as basic solution variables only displace-
ments, leads to very ineffective finite element solution schemes
for general shell problems (that is, the methods ‘lock’) and mixed
finite element procedures must be used [3,9,10]. The reformulation
of Eq. (1) then leads to

Find ~u 2 V
!
; ~g 2 ~C such that

Abð~u;~vÞ þ Bð~v ;~gÞ ¼ Gð~vÞ; 8~v 2 V
!
;

Bð~u;~cÞ � e2Dð~g;~cÞ ¼ 0; 8~c 2 ~C; ð2Þ

with the bilinear forms B and D; ~g the unknown strain solution, ~c
the test function for the strain, ~C the appropriately selected strain
space, and G the linear form of the scaled external loading.

Using the second equation in Eq. (2) to eliminate the unknown
strains from the first equation, and discretizing using finite ele-
ment interpolations and spaces denoted by the subscript h, we
obtain

Ah
bð~uh;~vÞ þ

1
e2 Ah

mð~uh;~vÞ ¼ Gð~vÞ; 8~v 2 V
!

h; ð3Þ

where Ah
b and Ah

m are perturbed forms of Ab and Am, respectively.
The conditions to be satisfied for stability and best convergence

properties are then the ellipticity condition [3,9–11]

Ah
bð~v;~vÞ þ Ah

mð~v ;~vÞP a ~vk k2

V
!; 8~v 2 V

!
h ð4Þ
ee-free case, (b) the fixed–fixed case, and (c) the fixed-free case. The meshes for the



Table 2
The sequence of meshes used.

Analysis cases Axial direction Circumferential
direction

Smooth
area

In
boundary
layer

Free–free case (1/8th of structure) N/2 N/2 N
Fixed–fixed case (1/8th of structure) N/2 N/2 N
Fixed–free case (1/4th of structure) 3N/2 N/2 N

Table 3
The t/L - dependent sequence of meshes used for the shell problem with fixed–fixed
boundary (1/8th of structure), L = 1.0.

t/L Axial direction Circumferential direction

Smooth area In boundary layer

1/100 N/2 4N N
1/1000 N/2 8N N
1/10000 N/2 16N N

1 In shell finite element analysis, it is very important to use the exact surface
normal vector, which is V

!
n ¼ f�X Y � ZgT for this shell structure.
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and the inf-sup condition

inf
~c2~Ch ;~c–0

sup
~v2~Vh

Bð~v;~cÞ
k~vk

V
!k~ck~C

P d ð5Þ

with the constants a and d > 0.
It is very difficult to deeply study and prove analytically

whether the ellipticity and inf-sup conditions are satisfied for a
shell analysis scheme when considering arbitrary shell geometries
and boundary conditions. Indeed, even for ‘just’ plate bending
problems, analytical investigations regarding the inf-sup condition
are limited [9,10]. However, numerical tests can be performed for
plates and shells [12–14], albeit always for only a given geometry,
boundary conditions and mesh sequences used. Hence these
numerical inf-sup tests only give limited information, and indeed
such insight into whether the inf-sup condition may be generally
satisfied can be more directly obtained by convergence tests as
we perform below [3,15,16].

3. Measuring convergence

In this section we first briefly review the conditions for conver-
gence, then we propose the shell test problems, the convergence
measures and appropriate meshing to be used.

3.1. The analytical conditions for convergence

The conditions for convergence are that (i) the discretization
scheme must be consistent, (ii) the scheme must satisfy the elliptic-
ity condition, and (iii) the scheme ideally satisfies the inf-sup condi-
tion [3].

The consistency condition expresses the fact that the discretiza-
tion scheme must properly represent all geometric and strain
terms. This means that the bilinear forms used in the finite element
discretization that are a function of the element size h must ap-
proach the exact bilinear forms of the mathematical model opti-
mally as h goes to zero. Hence, considering Eq. (3), Ah

b and Ah
m

should approach Ab and Am, respectively, as h goes to zero, with
the optimal order corresponding to the finite element interpola-
tions used.

The ellipticity condition means that the finite element discretiza-
tion should not display spurious zero energy modes, for any single
element, for any assemblage of elements, and for any geometry
and boundary conditions.

Ideally, the finite element scheme would also satisfy the inf-sup
condition. Shell elements that satisfy this condition are optimal in
bending-dominated problems for the interpolations used. Hence,
the element would not lock and, provided the consistency and
ellipticity conditions are also satisfied, the element would be opti-
mal in general and perform equally well for any shell thickness,
geometry and boundary conditions. Unfortunately, no general shell
analysis scheme has so far been proven analytically to satisfy the
inf-sup condition, and, as mentioned above, so far only numerical
tests have been performed.

The above three conditions are fundamental, and while they
should hold for any problem formulation and any discretization
scheme, the conditions are particularly difficult to deal with when
considering shell analyses.

3.2. Proposed numerical tests

As mentioned above, due to the complexity of shell behaviors,
rigorous mathematical investigations and proofs on whether a
shell discretization scheme is effective are still out of reach and
therefore, largely, recourse to numerical investigations is neces-
sary. However, these numerical studies need to be well-designed,
discriminating, and based upon the general mathematical insight
already available.

For the proper numerical testing of a shell finite element dis-
cretization scheme, we propose to use the problems defined in
Figs. 1 and 2. The shell problems in Fig. 1 with fully fixed and fully
free boundaries were already used in e.g. Ref. [16] but we now also
consider the problem with one boundary fixed and one free. The
hyperbolic midsurface of the shell structure1 is given by

X2 þ Z2 ¼ 1þ Y2; Y 2 ½�L; L� ð6Þ

and the loading imposed is the smoothly varying periodic pressure
normal to the surface,

pðhÞ ¼ p0 cosð2hÞ with p0 constant: ð7Þ

The problems in Fig. 1 pertain to the solution of a doubly curved
shell, which is important for discriminating tests. The fixed–fixed
structure is a pure-bending inhibited shell, and the free-free struc-
ture is a pure bending non-inhibited shell. Hence the two extreme
cases of fully membrane-dominated and fully bending-dominated
situations are used. The fixed-free structure is as well asymptoti-
cally (that is, as the thickness decreases) a pure-bending inhibited
shell. However, of interest is also the case when the thickness of
the shell is not very small and bending is present.

3.2.1. A numerical test for the consistency condition
This test is performed by solving the shell problems described

in Fig. 1. If only the transverse shear and membrane terms have
been changed, the solutions of the fixed–fixed and fixed-free shell
problems will show whether consistency is satisfied. If all terms in
the energy expressions have been changed, the free-free shell anal-
ysis needs to also be performed to identify whether consistency is
satisfied. However, appropriate convergence measures must be
used with reliable reference solutions, see Section 3.3.

3.2.2. A numerical test for the ellipticity condition
This test is accomplished by ensuring that any generic single

element does not contain a spurious zero energy mode, or a spuri-
ous small eigenvalue. Flat single elements should first be consid-
ered, but to render the test complete we also propose for



Table 4
The seventh lowest eigenvalue of the element stiffness matrices. DISP denotes the
nodal-point equivalent displacement-based shell finite element. The elements are
unsupported and all show the proper six rigid body modes. The Gauss integration
schemes used over the element shell surface are: (a) ‘usual’ integration orders; 3-
node elements: 3 point integration; 6-node elements: 7 point integration; 4-node
elements: 2 � 2 integration; 9-node elements: 3 � 3 integration, (b) ‘high’ integration
orders; 3-node elements: 7 point integration; 6-node elements: 13 point integration;
4-node elements: 4 � 4 integration; 9-node elements: 5 � 5 integration.

Element t/L = 1/100 t/L = 1/10000

(a) (b) (a) (b)

MITC3 4.06749E+03 4.16337E+03 4.06753E�03 4.16341E�03
DISP3 6.34297E+07 8.96212E+07 6.34278E+05 8.96167E+05

MITC6 2.77891E+03 2.77702E+03 2.77900E�03 2.77710E�03
DISP6 4.89801E+06 4.85714E+06 4.88047E+04 4.83884E+04

MITC4 6.50000E+03 6.33945E+03 6.49997E�03 6.33942E�03
DISP4 9.65451E+06 1.56350E+07 9.64527E+04 1.56259E+05

MITC9 7.11271E+03 7.12058E+03 7.11340E�03 7.12120E�03
DISP9 3.44228E+05 5.59655E+05 3.23948E+03 5.46539E+03
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quadrilateral and triangular elements to consider the single
elements in Fig. 2. If the lowest (seventh) eigenvalue is non-zero
but small, then a sequence of meshes for the same geometries
should be used to see whether this eigenvalue stabilizes at a rea-
sonable value larger than zero.
3.2.3. A numerical test for the inf-sup condition
A numerical test operating on the inf-sup expression is rather

complex [13], and in practice measuring the convergence of a
scheme in the analysis of the shell problem in Fig. 1 with free-free
conditions is more effective. In the solution of the test problem,
Fig. 4. Convergence curves for the shell problem w
however, appropriate convergence measures need be used. If the
convergence curves show the optimal slope and are independent
of the shell thickness, the element discretization, for the mesh
used, is optimal and for this problem passes the inf-sup condition.
Of course, the test results are far from an analytical general evalu-
ation, but since the problem is rather discriminating, a good indi-
cation is obtained.
3.3. Error measures

An important ingredient in measuring convergence in the solu-
tion of the test problems described above is the use of an appropri-
ate error measure. To assess displacement-based formulations, we
would simply use the strain energies calculated by the displace-
ment-based discretization, using Eq. (1), and see whether optimal
convergence is obtained [10]. The strain energy is in this case most
easily calculated by one-half times the spatial integration of the
displacements times the loads. However, for a mixed formulation,
the use of an appropriate norm is required and measuring conver-
gence is much more difficult.

For example, we need to note that if we were to use the solutions
obtained from a perfect non-locking effective mixed shell element
in Eq. (1) in order to evaluate the displacement-based strain energy,
the measure would indicate worse results in bending-dominated
problems than obtained in the equivalent displacement-based
formulation – although any such formulation locks. This is so, of
course, because the displacement-based solution minimizes the
error in the strain energy.

For shell analyses appropriate error measures are:
The (Ab + Am) norm. This norm is properly used for bending-

dominated problems because for well-posed such problems the
ith fixed–fixed boundary. The s-norm is used.
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exact solutions are proven to converge to limit solutions in this
norm [3,17]. The error measure is given by

Abð~u�~uh;~u�~uhÞ þ Amð~u�~uh;~u�~uhÞ

with

Abð~u�~uh;~u�~uhÞ ¼ ð~u�~uhÞT e�3
X

e

Z
Xe

BT
bCBbdXe

" #
ð~u�~uhÞ;

Amð~u�~uh;~u�~uhÞ

¼ ð~u�~uhÞT e�1
X

e

Z
Xe

ðBm þ BcÞT CðBm þ BcÞdXe

" #
ð~u�~uhÞ; ð8Þ

where the summation sign denotes that we sum over all elements
in the reference mesh, Xe is the 3D shell domain of an element, C
is the stress–strain matrix for the shell, Bb, Bm and Bc denote the
strain–displacement matrices of the displacement-based element
corresponding to bending, membrane and transverse shear strain
contributions, respectively. These matrices are evaluated as de-
scribed in the Appendix A.

Note that we use here the exact bilinear forms Am and Ab, which
is important since otherwise the error in a bilinear form would af-
fect our error calculations.

The Am norm. This norm is properly used for membrane-domi-
nated problems because, here too, for well-posed such problems
the exact solutions are proven to converge to limit solutions in this
norm [3,17]. The error measure is given by

Amð~u�~uh;~u�~uhÞ

¼ ð~u�~uhÞT e�1
X

e

Z
Xe

ðBm þ BcÞT CðBm þ BcÞdXe

" #
ð~u�~uhÞ: ð9Þ
Fig. 5. Convergence curves for the shell problem w
We also use the Am norm without the transverse shear energy con-
tribution, because then we can identify the error caused by these
shear terms

Amð~u�~uh;~u�~uhÞ ¼ ð~u�~uhÞT e�1
X

e

Z
Xe

BT
mCBmdXe

" #
ð~u�~uhÞ:

ð10Þ

While we slightly abuse our notation with the left-hand sides of
Eqs. (9) and (10) being the same, we will always explicitly point
out, in our results, when we do not include the transverse shear
strain effects.

We note that with this error measure bending effects (of course
present for a fixed value of e) in boundary layers are not measured,
since the norm only measures membrane (and shear) actions.
However, in practice, e is not close to zero and there may be the
question as to whether bending effects are still important.

The j-norm. This norm joins membrane and bending effects and
is somewhat naturally and properly used for membrane-
dominated problems because, for well-posed such problems and
any fixed e, displacement-based finite element solutions converge
in the j-norm [3,17]. Since the norm measures membrane, shear
and bending effects, the boundary layer bending effects are
included. The error measure is given by

k~u�~uhk2
j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Amð~u�~uh;~u�~uhÞ

q�

þ e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Abð~u�~uh;~u�~uhÞ þ Amð~u�~uh;~u�~uhÞ

q �2

; ð11Þ
ith fixed–fixed boundary. The Am norm is used.



Fig. 6. Convergence curves for the shell problem with fixed–fixed boundary. The Am norm without the transverse shear energy contribution is used.
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Fig. 7. Convergence curves for the shell problem with fixed–fixed boundary. The L2 norm is used; dashed lines: mid-surface translations; solid lines: section rotations.
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where the Am norm with and without the transverse shear energy
contribution is of interest.

The s-norm. This norm can be used for membrane-dominated
problems and bending-dominated problems [3,16]. The error mea-
sure is given by

k~u�~uhk2
s ¼

Z
X

D~eTD~rdX; ð12Þ

where D~e ¼~e�~eh and D~r ¼ ~r�~rh, and we integrate over the 3D
shell domain (the reference mesh). We should note that we mea-
sure here the difference between the exact and approximate strains
(and the exact and approximate stresses). This is quite different
from the use of the other above-mentioned norms where the calcu-
lated displacements and rotations are measured using the (exact)
bilinear forms Am and Ab. This norm is very useful because of its
physical basis and its applicability to all shell problems, that is,
bending-dominated, membrane-dominated and mixed problems.
The norm is also relatively easy to evaluate. However, it is clear that
the s-norm does not measure errors in deformations that cause no
strains and such errors are also of interest [18,19]. Hence we some-
times use in addition the L2 norm of errors in section rotations and
displacements measured at the mid-surface.

We recommend the use of these convergence measures in the
solution of the test problems of Fig. 1. Note that the applied load
is a smoothly distributed pressure. The reason is that point loads
are not admissible in most shell formulations, that is, the discreti-
zations do not converge when the element size h ? 0. Of course, in
practice, as long as the mesh is not too fine around a point load,
Fig. 8. Convergence curves for the shell problem with fixed–fixed boundary. (a) Am norm
(b) s-norm; (c) Am norm; (d) Am norm without the transverse shear energy contribution. T
for (a).
this action is entering the analysis as a distributed load over a
small area and then no difficulties are encountered [10].

To measure the convergence of the discretization schemes with
various shell thicknesses, we use the relative errors given by

EðAbþAmÞ ¼
Abð~u�~uh;~u�~uhÞ þ Amð~u�~uh;~u�~uhÞ

Abð~u;~uÞ þ Amð~u;~uÞ
;

EAm ¼
Amð~u�~uh;~u�~uhÞ

Amð~u;~uÞ
; Ej ¼

k~u�~uhk2
j

k~uk2
j

;

Es ¼
k~u�~uhk2

s

k~uk2
s

; E~uL2 ¼
k~u�~uhkL2

k~ukL2
; E

~h
L2 ¼

k~h�~hhkL2

k~hkL2

: ð13Þ

The theoretical convergence behaviors of the solutions using the
shell elements is then given by

EðAbþAmÞ ffi ch2k
; EAm ffi ch2k

; Ej ffi ch2k
; Es ffi ch2k

;

E~uL2 ffi chkþ1
; E

~h
L2 ffi chkþ1

; ð14Þ

where h is the element size, k is the interpolation order of the ele-
ment and c is a constant, different in each case. Note that these
measures, except for the L2 norms, correspond to squared values
of norms.

To evaluate the nodal load vectors for the problem solutions, we
establish the nodal pressure load vectors from the analytical value
of pressure normal to the exact shell mid-surface, according to Eqs.
(6) and (7), and then the consistent nodal point force vectors by the
usual interpolation and integration over the finite elements dis-
cretizing the shell surface.
in smooth area (dashed lines) and (Ab + Am) norm in boundary layer (solid lines);
he t/L - dependent sequence of meshes in Table 3 is used for (b), (c) and (d), but not



Fig. 9. Convergence curves for the shell problem with fixed–fixed boundary. (a) and (c) j-norm; (b) and (d) j-norm with the Am norm without the transverse shear energy
contribution.

Fig. 10. Convergence curves for the shell problem with fixed–fixed boundary. The s-norm is used.
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Fig. 11. Convergence curves for the shell problem with fixed–fixed boundary. The Am norm is used.

Fig. 12. Convergence curves for the shell problem with fixed–fixed boundary. The Am norm without the transverse shear energy contribution is used.
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In the practical use of these norms, it is very important to em-
ploy, when the exact solution~u is unknown, instead, a reliable ref-
erence mesh finite element solution,~uref , obtained using a very fine
mesh with an element that satisfies the consistency condition. We
employ, for the test problems, reference solutions obtained using
the MITC9 shell element, which was analyzed in Ref. [16].

Note that, actually, in the statements of the error measures in
Eqs. (8)–(11), we slightly abuse our notation (considering Eq. (3))
in that ~uh is now the calculated displacement vector from a given
target mesh mapped into the reference mesh, that is, the size of
~uh is the same as ~uref (in terms of nodal degrees of freedom in
Eqs. (8)–(11)). However, in the s-norm calculation in Eq. (12), ~uh

is the displacement vector of the target solution which we use to
evaluate the strains and stresses in the target mesh. The actual
evaluation of the above norms can be accomplished as described
in Ref. [20].

3.4. Meshing

Another very important requirement in the convergence studies
is to mesh the boundary and internal layers appropriately [3,16].
Table 1 summarizes information on boundary layers in each case
encountered in the shell analyses of Fig. 1. To observe the actual
and proper convergence rates of finite element discretizations,
the meshing used should be such that the error measured per unit
volume, or surface, of the shell is uniform in the finite element
solutions [10]. Hence, in the illustrative solutions given next,
meshes taking the boundary layers into account have been used,
see Fig. 3 and Tables 2 and 3.
Fig. 13. Convergence curves for the shell problem with fixed–fixed boundary. (a) Am nor
(b) s-norm; (c) Am norm; (d) Am norm without the transverse shear energy contribution. T
for (a).
Due to symmetry, only the shaded areas in Fig. 1 are modeled.
We will use in the tests the MITC quadrilateral and triangular shell
elements [21–25]. The sequence of meshes used is given in Table 2
(but for Fig. 8(b) to (d) and Fig. 13(b) to (d), Table 3 is used as indi-
cated in the Figure titles). For the convergence studies, N = 8, 16, 32
and 64 is used for linear elements, and N = 4, 8, 16 and 32 is used
for quadratic elements. The element size is h = L/N. In addition, for
the shell problem with the free-free boundary, N = 128 and N = 64
are employed for the MITC3 element and the MITC6 element,
respectively.

To calculate the relative errors in Eq. (13) we use the finite ele-
ment solutions ~uref obtained with very fine MITC9 shell element
meshes (N = 96) instead of the exact solutions ð~uÞ.
4. Illustrative solutions

The objective in this section is to illustrate the considerations
and recommendations given above. We solve the problems
described in Fig. 1 using the convergence measures given in
Section 3.3. In the finite element discretizations, we use the quad-
rilateral MITC4 [21] and ‘improved’ MITC9 shell elements [22] and
the triangular MITC3 [23] and ‘improved’ MITC6 shell elements
[24], see also Ref. [25]. A particular difficulty in formulating trian-
gular elements is that these elements need to be spatially isotropic,
a condition fulfilled by the MITC3 and MITC6 elements.

First, we perform the ellipticity test, which is of course passed
for flat elements. For the test described in Fig. 2, we calculate the
lowest seven eigenvalues of single unsupported elements. This test
m in smooth area (dashed lines) and (Ab + Am) norm in boundary layer (solid lines);
he t/L - dependent sequence of meshes in Table 3 is used for (b), (c) and (d), but not
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is passed as presented in Table 4. Since the elements are warped
(note that the director vectors at the nodes are normal to the exact
shell mid-surface), we list the eigenvalues obtained with the ‘usual’
numerical integration orders and the ‘high’ integration orders, and
note some expected differences. The results show that the lowest
eigenvalues of the displacement-based elements are much too high
and that the eigenvalues of the MITC elements behave as expected.
These eigenvalues also scale appropriately with the shell thickness,
a criterion not seen for the eigenvalues of the displacement-based
elements. Here of course the correct scale is (t/L)3.

We next focus on the convergence tests by solving the problems
in Fig. 1 with the meshes shown in Fig. 3 and the ‘usual’ numerical
integration orders, see Table 4(a). Using the ‘high’ numerical inte-
gration orders has an insignificant effect on these results.

In Figs. 4–21, the solid thick line represents the optimal conver-
gence rate.

4.1. The shell problem with fixed–fixed boundary: the membrane-
dominated case

The convergence results obtained in the solution of this prob-
lem using the MITC elements are given in Figs. 4–9. The results
in Figs. 4–6 show good convergence for all elements in the s-norm
and in the Am norm not including transverse shear strain effects,
with the quadrilateral elements slightly better in performance, as
expected.

The results using the Am norm including and not including the
transverse shear strain effects reflect the errors in these strains
when measured in this norm. Of interest are therefore the results
in Fig. 7, which gives the convergence in the L2 norm of the dis-
placements and section rotations seen at the shell mid-surface.
Fig. 14. Convergence curves for the shell problem with fixed–fixed boundary. (a) and (c
contribution.
The displacements converge quite well; significantly larger errors
are measured in the rotations.

To obtain further insight, we show in Fig. 8 additional results for
the MITC4 element. Fig. 8(a) shows the performance of the MITC4
element in the bending dominated boundary layer and in the
membrane dominated part outside the boundary layer, measured
individually. These results tell that the element performs quite
well in each part of the structure. Fig. 8(b) to (d) show a good con-
vergence behavior in the applicable norms when the thickness-
dependent meshing given in Table 3 is used.

Finally, Fig. 9 shows some convergence results in the j-norm.
The optimal slopes are seen but the transverse shear energy error
in the norm is causing the upward shift of the curves. It is valuable
to see that the behavior of the errors is quite like when measured
in the Am norm.

The results using the corresponding displacement-based ele-
ments are given in Figs. 10–14. These elements are optimal for this
problem, as predicted by theory [3,17], but the fine meshing in the
boundary layer must also be used. Indeed, Fig. 13(a) shows that, as
expected, the displacement-based elements severely lock in the
boundary layer and Fig. 14 therefore does not show optimal slopes.
Comparing these results with those given in Figs. 4, 5, 6, 8 and 9,
we see that, for the MITC shell elements, the stresses show less er-
ror but the transverse shear energy error in the Am norm is larger.

4.2. The shell problem with free-free boundary: the bending-
dominated case

The convergence results are given in Figs. 15 and 16. Here the
quadrilateral elements show an excellent convergence behavior,
indeed virtually perfect convergence curves. On the other hand,
) j-norm; (b) and (d) j-norm with the Am norm without the transverse shear energy



Fig. 15. Convergence curves for the shell problem with free-free boundary. The s-norm is used.

Fig. 16. Convergence curves for the shell problem with free-free boundary. The (Ab + Am) norm is used.
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Fig. 17. Convergence curves for the shell problem with fixed-free boundary. The s-norm is used.

Fig. 18. Convergence curves for the shell problem with fixed-free boundary. The Am norm is used.
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Fig. 19. Convergence curves for the shell problem with fixed-free boundary. The Am norm without the transverse shear energy contribution is used.
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Fig. 20. Convergence curves for the shell problem with fixed-free boundary. The L2 norm is used; dashed lines: mid-surface translations; solid lines: section rotations.
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Fig. 21. Convergence curves for the shell problem with fixed-free boundary for the
‘original’ MITC6 shell element, presented in Ref. [23] as the MITC6a element. The L2

norm is used; dashed lines: mid-surface translations; solid lines: section rotations.
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considering the triangular elements, these only perform reason-
ably well for the cases t/L = 1/100 and 1/1000, and, due to some
locking, the convergence for the very thin shell is not good. How-
ever, we note that the final slopes of the convergence curves for
the triangular elements are also virtually optimal.

4.3. The shell problem with fixed-free boundary

For this problem, we should expect that the performance of the
elements can be deduced from their performance given above. The
convergence curves are given in Figs. 17–20. All elements show in-
deed the expected convergence behavior.

However, the solution of this problem also shows the deficiency
of the ‘original’ MITC6 shell element presented in Ref. [23] and ana-
lyzed in Refs. [18,19]. Fig. 21 shows the convergence in the L2 norm
for the mid-surface displacements and section rotations. We see a
much larger error in the rotations than for the improved MITC6
shell element presented in Ref. [24], see Fig. 20.
5. Conclusions

The objective in this paper was to describe how shell finite ele-
ments, and indeed any analysis scheme for shell structures, should
be properly tested. We presented appropriate test problems, error
measures based on norms, details on how to calculate the norms
and some test results, largely not previously published.

An important conclusion is that the details of performing the
tests, including the use of discriminating problems, the proper
meshing of curved surfaces and boundary layers, the evaluation
of the nodal load vectors using the exact shell geometry, the use
of appropriate error norms with proper reference solutions, and
the correct calculation of the various terms in the error measures,
are very important in order to obtain a proper evaluation of a shell
solution scheme. Of all the norms used, we conclude that the s-
norm is quite physical and practical, and gives in all cases the prop-
er indication regarding convergence (in the solution of membrane,
bending dominated and mixed problems), but is best used together
with the L2 norm on the rotations and displacements.

In this paper, we used the MITC shell elements in the meshes of
Fig. 3 to demonstrate the use of our testing. While already a signif-
icant number of results are given, additional valuable results
would be obtained when using in the meshing skewed elements,
or even randomly distorted elements. Of course, the basic conclu-
sions given above regarding the procedures to be used in such test-
ing are not expected to change.

The accurate analysis of shell structures is inherently extremely
difficult and improvements in available analysis techniques are
very desirable. The search for more effective analysis methods will
therefore continue for quite some time. The procedures for mea-
suring convergence given here should be of value in the proper
evaluation of any proposed solution scheme, including schemes
solving the 3D-shell model [3,8,26], and hence in the general
search for the more effective analysis of shell structures.

Of course, we considered in this paper only a priori error esti-
mates and corresponding convergence behaviors of shell elements,
the a posteriori error estimation in shell analyses is another large
and very important field, where much progress is still needed [27].
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Appendix A. On the numerical evaluation of the norms

In Eqs. (8)–(11), it is crucial to calculate accurately the strain–
displacement matrices Bb, Bm and Bc for the bending, membrane
and transverse shear actions, respectively.

Let us consider the complete strain–displacement matrix
B(r,s,n) defined corresponding to the local Cartesian shell-aligned
coordinate system at the shell mid-surface (n = 0)

Bðr; s; nÞ ¼

B�r�r

B�s�s

Bnn

B�r�s

B�sn

Bn�r

2
66666666664

3
77777777775
; ðA:1Þ

where �r; �s and n denote the base vectors at the shell mid-surface
and Bnn = 0.

We can separate the strain–displacement matrices correspond-
ing to membrane, bending and transverse shear strains as follows

Bmðr;s;nÞ ¼

B�r�r

B�s�s

0

B�r�s

0

0

2
66666666664

3
77777777775

n¼0

; Bbðr;s;nÞ ¼

B�r�r

B�s�s

0

B�r�s

0

0

2
66666666664

3
77777777775
�Bm; Bcðr;s;nÞ ¼

0

0

0

0

B�sn

Bn�r

2
66666666664

3
77777777775
:

ðA:2Þ

Here we use the matrix Bm(r,s,n) defined corresponding to the local
Cartesian shell-aligned coordinate system at the shell mid-surface
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(n = 0), and we then evaluate all other strain–displacement matrices
for all values of n using that same coordinate system.
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