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Abstract

We address herein the calculation of Prager’s hardening parameter in computational plasticity when mixed hard-

ening is considered. We consider two approaches to evaluate the mixed hardening response; namely, based on splitting

the plastic strains and based on splitting the plastic modulus. For a one-dimensional stress–strain curve with nonlinear

hardening, the proper calculation of Prager’s hardening parameter is demonstrated and some comparisons and insight

are provided.
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1. Introduction

The development of material models and their use in

computational plasticity is of much importance and

interest [1,2]. Numerous papers have been written on the

use of classical and improved inelastic material models,

and many new models to capture the nonlinear behavior

of materials have been proposed.

Frequently, with these models, the hardening and

cyclic behavior shall be captured, and this is in many

cases accomplished using Prager’s mixed hardening ap-

proach [3]. Prager’s hardening parameter is computed

using one-dimensional conditions and then applied to

multi-dimensional cases, see, for example, [4,5]. How-

ever, while Prager’s theory is clear, it must be applied

judiciously in computational plasticity. We consider in

this paper the case of nonlinear mixed hardening and

discuss and compare two approaches––one based on

splitting the plastic strains and one based on splitting the

plastic modulus––to obtain a value for Prager’s harden-
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ing parameter. In the case of splitting the plastic strains,

the result is different from the parameter frequently used

in the literature, see for example [6–10]. However, with

the result given in this paper we reproduce the one-

dimensional test results in a physical manner, whereas

using the parameter frequently given in the literature, a

response inconsistent with one-dimensional test results is

obtained. In the case of splitting the plastic modulus, the

one-dimensional test result is also reproduced exactly but

the procedure may be regarded to be less physical.

We do not comment on inelastic material models,

and do not wish to discuss the advantages and disad-

vantages of the assumptions of Prager’s model. Indeed

many other and more comprehensive models to repre-

sent hardening characteristics have been proposed.

However, the simple approach of Prager is still widely

used in engineering practice and for this reason we

pursued this study.

Hence, the only objective of this paper is to focus on

the proper evaluation of Prager’s hardening parameter

corresponding to a one-dimensional mathematical model

of a generic physical experiment. This evaluation shall

clear up some misconceptions and of course give some

insight into the modeling of mixed hardening in com-

putational plasticity.
ed.
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2. Derivation of hardening parameters

Let us consider the general nonlinear elasto-plastic

response corresponding to a specimen in one-dimen-

sional tensile stress conditions, as shown in Fig. 1. The

response in the figure corresponds to a mathematical

model of plasticity and is assumed to closely (and per-

haps exactly) represent the measured data obtained in a

tensile test. This response must clearly be reproduced by

any computational scheme and in any conditions of

assumed hardening, that is, in kinematic, isotropic, or

mixed hardening––as long as we subject the specimen

only to monotonically increasing tensile strain condi-

tions. As is usually done, we use this one-dimensional

response to evaluate Prager’s mixed hardening parame-

ter. This result, with of course also uniaxial cyclic

response data, is then employed in general multi-

dimensional stress analysis.

To proceed with the evaluation of Prager’s mixed

hardening parameter, we recall some classical governing

relations corresponding to von Mises plasticity, but only

those that we shall actually use in our derivations.

For the next developments, consider the following

decomposition of the plastic strain increments

dep ¼ depi þ depk ¼ M dep þ ð1�MÞdep ð1Þ

where depi and depk are, respectively, the isotropic and

kinematic contributions. We note that these strains are

hence assumed to be co-linear. The hardening conditions

correspond to isotropic hardening, M ¼ 1, kinematic

hardening,M ¼ 0, or general mixed hardening, 0 < M <
1. We are interested in this last case.

The yield function assuming mixed hardening is

fy :¼ 1
2̂
s : ŝ� 1

3
r2
y ð2Þ
σexp

σy(0)

ep e p

E
P

epi

current yield stress for the SPS method

xx xx

Fig. 1. One-dimensional monotonically increasing tensile stress

situation (yield curve). A generic yield curve.
where ŝ :¼ s� a are the deviatoric stresses s :¼ devðrÞ
shifted by the back stresses a and ry is the effective yield

stress, and of course during yielding fy ¼ 0.

There are two main approaches that are used to

obtain ry and a. In the first approach, see for example

[9], which we call the ‘‘splitting of plastic strains (SPS)

method’’, we consider epi and epk as main variables

(computing ep via Eq. (1)) and ry as a function of the

effective isotropic plastic strain ry ¼ ~ryð�epiÞ. In the sec-

ond approach, see for example [11], which we call the

‘‘splitting of plastic modulus (SPM) method’’, we con-

sider the total effective plastic strain �ep as the main

variable and ry as a function of that strain, ry ¼ r̂yð�epÞ.
Given a variation of the effective plastic strain d�ep,

the variation of ry is in the SPS method

dry � d~ry ¼
d~ry

d�epi
d�epi ¼ d~ry

d�epi
o�epi

o�ep
d�ep :¼ EM

p M d�ep ð3aÞ

and in the SPM method

dry � dr̂y ¼
dr̂y

d�ep
d�ep :¼ K 0 d�ep ð3bÞ

In Eq. (3a) we use Eq. (1) and thus have o�epi=o�ep ¼ M .

We also employ dð�Þ to emphasize that it is the variation

due to d�ep and not due to d�epi (i.e. d~ry ¼ M d~ry where

d~ry is the variation in the yield stress at �epi corre-

sponding to d�ep). We note that, in Eq. (2), consistent

with the SPS method, the value of ry is evaluated at �epi,
whereas consistent with the SPMmethod, the value of ry

is evaluated at �ep.
Prager’s hardening rule assumes that the evolution of

the back stresses a is proportional to that of the plastic

strains ep. Again, both approaches are applicable, i.e.,

da may be considered as a function of the kinematic

plastic strain increments da ¼ d~aðdepkÞ or as a function

of the total plastic strain increments da ¼ dâðdepÞ.
For the evaluation of Prager’s hardening parameter,

we consider uniaxial conditions corresponding to the x-
axis. Then given a variation depxx we obtain for the SPS

method,

daxx � d~axx ¼
d~axx
depkxx

oepkxx
oepxx

depxx :¼ Cpð1�MÞdepxx ð4aÞ

and for the SPM method

daxx � dâxx ¼
dâxx
depxx

depxx :¼ H 0 depxx ð4bÞ

Of course in the uniaxial loading considered

drxx ¼
orxx

oepxx
depxx :¼ Ep depxx ð5Þ

where Ep is the tangent of the (experimental, prescribed)

uniaxial stress–plastic strain curve. Using Eq. (2) for the

uniaxial condition and performing the variation on fy
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Fig. 2. Stress–strain curves; Ramberg–Osgood model (the

numerical error in the integration is negligible).
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(which must be zero by the consistency requirement) we

obtain

drxx � 3
2
daxx � dry ¼ 0 ð6Þ

For the general case we have depxx 6¼ 0. Hence, substi-

tuting Eqs. (3a), (4a) and (5) for the SPS method we

obtain

Ep � 3
2
Cpð1�MÞ � EM

p M ¼ 0 ð7aÞ

and using Eqs. (3b), (4b) and (5) for the SPMmethod we

obtain

Ep � 3
2
H 0 � K 0 ¼ 0 ð7bÞ

Eq. (7a) is trivial when M ¼ 1 (simply saying that

EM
p ¼ Ep since d�epi ¼ d�ep), but otherwise gives Cp as

Cp ¼
2

3

Ep �MEM
p

1�M
ð8Þ

where from Eq. (3a) EM
p ¼ Epj�epi . Here we emphasize

that consistent with this approach EM
p is the tangent of

the stress–plastic strain curve at the effective isotropic

plastic strain.

The result given in Eq. (8) is different from the result

given by other authors, who simply use for this ap-

proach

Cp ¼ 2
3
Ep ð9Þ

see for example [6–10]. Here we should note that Cris-

field in Ref. [9] obtained Eq. (7a) but then erroneously

concluded that Eq. (9) must hold. The value given in Eq.

(9) holds for the case of kinematic hardening, that is

when M ¼ 0, and for the case when a bilinear stress–

strain curve is assumed, that is, when EM
p ¼ Epj�epi ¼

Epj�ep . But in general nonlinear mixed hardening condi-

tions, the formula in Eq. (8) should be used.

If the value given in Eq. (8) is used, the one-dimen-

sional response given in Fig. 1 is exactly reproduced, and

for any value of M . On the other hand, if the value in

Eq. (9) is used, the model response of Fig. 1 is not ex-

actly reproduced. The discrepancy clearly depends on

the nonlinearity of the yield curve and the value of M .

However, in computational plasticity it is obviously

imperative to reproduce the one-dimensional response

exactly, which merely corresponds to saying that the

‘‘response output must be equal to the response input’’.

Fig. 2 shows an example of a yield curve and the

results obtained using Eq. (8) (the results are equal to the

yield curve) and the results obtained using Eq. (9). Here

the case of M ¼ 0:5 is considered and a considerable

discrepancy is seen between the predicted response using

Eq. (9) and the response that should be obtained. It is
clear that it is important in practice to use Eq. (8) in the

computations.

In the SPM method, the condition (7b) must hold. In

this case authors typically select K ¼ bMrexp and H ¼
2
3
ð1� bM Þrexp such that

K 0 ¼ bMEp ð10aÞ
H 0 ¼ 2
3
ð1� bM ÞEp ð10bÞ

where bM is interpreted to have a similar meaning as M
and rexpðepxxÞ is the experimental (or analytical) stress–

strain curve [11–14].

We should note that except for bilinear stress–strain

curves, both approaches differ in the modeling of mixed

hardening

• In general, bMEp 6¼ MEM
p since EM

p is evaluated at �epi

whereas Ep is evaluated at �ep.
• In general, Cpð1�MÞ 6¼ H 0, since Cp must be ob-

tained via Eq. (8) while H 0 is prescribed as given in

Eq. (10b).

• In the SPS method the yield stress in Eq. (2) is ~ry , a

function of �epi and, therefore, evaluated at �epi. In the

SPM method the yield stress is r̂y , a function of �ep

and evaluated at �ep.
• In essence, the SPS method makes use of the assump-

tion in Eq. (1) whereas the SPMmethod makes use of

the assumption in Eqs. (10a) and (10b).

Obviously, the same monotonic uniaxial stress–strain

curve is obtained in both approaches provided Eq. (8) is

used in the SPS method (of course Eq. (7b) is auto-

matically satisfied in the SPM method by using Eqs.

(10a) and (10b)), but the cyclic behavior for the case of



-0.4 -0.2 0 0.2 0.4 0.6

-1000

 -500

    0

  500

 1000

 1500

∧
M = M = 1.

∧
M = M = 0.

-0.4 -0.2 0 0.2 0.4 0.6
-1500

-1000

 -500

    0

  500

 1000

 1500

st
re

ss
 σ

xx
st

re
ss

 σ
xx

plastic strain ep
xx

∧
M = M = 0.5

Analytical
SPS method
SPM method

Fig. 3. Predictions under cyclic loading for different values of

M , bM . The SPS and SPM methods yield the same response

when M ¼ bM ¼ 0 and M ¼ bM ¼ 1.

-0.4 -0.2 0 0.2 0.4 0.6
-1500

-1000

 -500

    0

  500

 1000

 1500

Analytical
SPS method
SPM method

∧
M

∞
 = M

∞
 = 0,  M 0 = M0 = 1, η = 2

plastic strain ep
xx

st
re

ss
 σ

xx

∧

Fig. 4. Cyclic response prediction using the variables M , bM as
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mixed hardening is in general clearly different, as shown

for example in Fig. 3. Both approaches are equally valid

since from a uniaxial experimental monotonic curve

nothing can be said about which amount corresponds to

each type of hardening.

For a more accurate modeling in cyclic loading, a

variable mixed hardening such as, for example in the

SPS method

M ¼ M1 þ ðM0 �M1Þ expð�g�epÞ ð11aÞ
and in the SPM method

bM ¼ bM1 þ ð bM0 � bM1Þ expð�g�epÞ ð11bÞ
may yield better results for the prediction of the

Bauschinger effect at different strain levels. An illustra-

tive example comparing the response predicted using the

SPS and SPM methods, but without comparison with

experimental results, is given in Fig. 4.

Note that in Figs. 1–4, the strain levels reached are

rather large merely for demonstration purposes. In

practice, a large strain formulation would need to be

used [13–15].
3. Work-conjugacy––the principle of maximum plastic

dissipation

In each approach, the dissipation function may be

written in terms of the main variables considered. We

have for the SPS method

d eDp ¼ r : dep þ ~a : d~nþ ~ry d~1 ð12aÞ

and for the SPM method

d bDp ¼ r : dep þ â : dn̂þ r̂y d1̂ ð12bÞ

where ~n, ~1, n̂ and 1̂. are internal variables work-conju-

gate to ~a, ~ry , â and r̂y respectively. Using a three-

dimensional version of Eq. (6) we have

dFy � n : ðds� daÞ �
ffiffi
2
3

q
dry ¼ 0 ð13Þ

where n :¼ ðs� aÞ=ks� ak. For the SPS method this

equation may be written as

deFy � n : ðds� d~aÞ �
ffiffi
2
3

q
d~ry ¼ 0 ð14aÞ

whereas for the SPM method we have

dbFy � n : ðds� dâÞ �
ffiffi
2
3

q
dr̂y ¼ 0 ð14bÞ

If we then employ Eqs. (3a) and (4a) to write the

expression in Eq. (14a) as a function of the variations

with respect to their respective primary functions (i.e.

d~ry ¼ M d~ry and d~a ¼ ð1�MÞd~a) we obtain

deFy � n : ½ds� ð1�MÞd~a� �
ffiffi
2
3

q
M d~ry ¼ 0 ð15Þ

The Lagrangians of the constrained principle for the

SPS and SPM methods are, respectively, eL ¼ d eDp�
d~keFy and bL ¼ d bDp � dk̂bFy . The principle of maximum

plastic dissipation yields in the SPS method
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reL ¼ 0 )

o~L
or
¼ 0 ) dep ¼ d~kn

o~L
o~a
¼ 0 ) d~n ¼ �d~kð1�MÞn ¼ �depk

o~L
o~ry

¼ 0 ) d~1 ¼ �d~kM
ffiffi
2
3

q
¼ �d�epi

8>>><
>>>:

ð16aÞ

and in the SPM method

rbL ¼ 0 )

oL̂
or
¼ 0 ) dep ¼ dk̂n

oL̂
oâ
¼ 0 ) dn̂ ¼ �dk̂n ¼ �dep

oL̂
or̂y

¼ 0 ) d1̂ ¼ �dk̂
ffiffi
2
3

q
¼ �d�ep

8>>><
>>>:

ð16bÞ

These relations show the expected values of the work-

conjugate variables of ~a, â, ~ry and r̂y for the SPS and

SPM methods.
4. Concluding remarks

Mixed hardening in computational plasticity is fre-

quently modeled using Prager’s hardening rule. If non-

linear hardening is considered, care must be exercised to

employ the rule such that, for all values of M , the

monotonically increasing one-dimensional stress re-

sponse is properly captured. We summarized and com-

pared in this paper two approaches that can be used.

The first approach is based on splitting the plastic strains

(the SPS method) and the second one is based on split-

ting the plastic modulus (the SPM method). Either ap-

proach can be employed but in the SPS method the

appropriate formula to evaluate Prager’s hardening

modulus must be used (and was frequently not em-

ployed in the literature).

While we focused here on the case of isotropic time-

independent plasticity, the same concepts and the

formula in Eq. (8) are of course also applicable in time-

dependent conditions and, in the appropriate form, in

orthotropic inelastic analysis.
References

[1] Bathe KJ, editor. Computational fluid and solid mechan-

ics. Elsevier Science; 2001.

[2] Bathe KJ, editor. Computational fluid and solid mechanics

2003. Elsevier Science; 2003.

[3] Prager W. A new method of analyzing stresses and strains

in work-hardening plastic solids. J Appl Mech, ASME

1956;23:493–6.

[4] Lemaitre J, Chaboche J-L. Mechanics of solid materials.

Cambridge University Press; 1990.

[5] Khan AS, Huang S. Continuum theory of plasticity. John

Wiley & Sons; 1995.

[6] Axelsson K, Samuelsson A. Finite element analysis of

elastic–plastic materials displaying mixed hardening. Int J

Numer Meth Eng 1979;14:211–25.

[7] Kojic M. The governing parameter method for implicit

integration of viscoplastic constitutive relations for isotro-

pic and orthotropic metals. Comput Mech 1996;19:49–57.

[8] Kojic M, Grujovic N, Slavkovic R, Zivkovic M. A general

orthotropic von Mises plasticity model with mixed hard-

ening: model definition and implicit stress integration.

Trans ASME 1996;63:376–82.

[9] Crisfield M. Non-linear finite element analysis of solids and

structures. Vol. 2. Advanced topics, J Wiley; 1997.

[10] Su M, Gu Q, Guo B. Finite element analysis of steel

members under cyclic loading. Finite Elem Anal Des

2002;39:43–54.

[11] Krieg RD, Key SW. Implementation of a time independent

plasticity theory into structural computer programs. In:

Stricklin JA, Saczalski KJ, editors. Constitutive equations

in viscoplasticity: computational and engineering aspects.

AMD-20. ASME; 1976. p. 125–37.

[12] Simo JC, Taylor RL. Consistent tangent operators for

rate-independent elastoplasticity. Comput Meth Appl

Mech Eng 1985;48:101–18.

[13] Eterovi�c AL, Bathe KJ. A hyperelastic-based large strain

elasto-plastic constitutive formulation with combined iso-

tropic–kinematic hardening using logarithmic stress and

strain measures. Int J Numer Meth Eng 1990;37:1099–114.

[14] Simo JC, Hughes TJR. Computational inelasticity. Springer;

1998.

[15] Bathe KJ. Finite element procedures. Prentice Hall; 1996.


	On modeling mixed hardening in computational plasticity
	Introduction
	Derivation of hardening parameters
	Work-conjugacy--the principle of maximum plastic dissipation
	Concluding remarks
	References


