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The objective of this paper is to present a study of the solvability, stability and optimal
error bounds of certain mixed finite element formulations for acoustic fluids. An analyt-
ical proof of the stability and optimal error bounds of a set of three-field mixed finite
element discretizations is given, and the interrelationship between the inf–sup condi-
tion, including the numerical inf–sup test, and the eigenvalue problem pertaining to the
natural frequencies is discussed.

1. Introduction

In recent years, it has been recognized that mixed finite element formulations with

elements satisfying the inf–sup condition can be used reliably in many engineering

applications, e.g. the analyses of rubber-like material, elasto-plasticity, creep, and

Stokes flow.1 In this paper, we focus on the so-called acoustoelastic problems, which

involve acoustic fluids and their interaction with elastic structures.

Following the discovery of nonzero frequency spurious modes associated with

displacement-based acoustic fluid elements,14 extensive research efforts have been

devoted to the improvement of finite element formulations for both frequency

and dynamic analyses of acoustic fluid-structure interaction problems.2,3,15,19–21
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In these research efforts, the origins of nonzero spurious modes have been identi-

fied and both the displacement/pressure (u/p) and displacement–pressure–vorticity

moment (u-p-Λ) formulations have been found to be reliable and accurate provided

that finite element interpolations are selected according to the inf–sup condition

and the boundary discretization satisfies the mass and momentum conservation.2,19

Although the inf–sup condition for mixed formulations has been proposed some time

ago, an analytical proof of whether the inf–sup condition is satisfied by a specific

element or discretization can be very difficult.1,7 In practice, the numerical inf–sup

test proposed in Ref. 8 is valuable.

Without restricting the essence of our exposition in this paper, we only consider

two-dimensional cases. The finite element formulations for three-dimensional cases

can be directly constructed. Consider an open, bounded, convex domain V ⊂ R2

with a sufficiently smooth boundary ∂V = S, e.g. a C1,1 or piecewise smooth

boundary with no re-entrant corners. The components of the strain tensor ε and the

deviatoric strain tensor ε′ are defined as εij = 1
2 (ui,j +uj,i) and ε′ij = εij− 1

3εkkδij ,

where u stands for the displacement vector. Define the Sobolev space [H1
0,Su

(V )]2 =

{v|v ∈ [H1(V )]2,v|Su = 0}, where Su and Sf stand for the Dirichlet and Neumann

boundaries with S = Sf ∪ Su and Sf ∩ Su = ∅. The variational discrete problem of

the u/p formulation for nearly incompressible media with the bulk modulus β and

the shear modulus G can be expressed as,1

min
vh∈νh

{
a(vh,vh) +

β

2

∫
V

[Ph(div vh)]2dV −
∫
V

fB · vhdV −
∫
Sf

fSf · vhdS
}
,

(1.1)

where a(vh,vh) = G

∫
V

|ε′(vh)|2dV , and the projection operator Ph is defined by

∫
V

[Ph(divvh)− divvh]qhdV = 0 , ∀ qh ∈ Qh , (1.2)

with Vh ⊂ [H1
0,Su

(V )]2 and Qh ⊂ L2(V ).

The variational forms (1.1) and (1.2) can also be rewritten as,

2G

∫
V

ε′(uh) : ε′(vh)dV −
∫
V

phdiv vhdV

=

∫
V

fB · vhdV +

∫
Sf

fSf · vhdS , ∀vh ∈ Vh , (1.3)

∫
V

(
ph

β
+ div uh

)
qhdV = 0 , ∀ qh ∈ Qh . (1.4)

Using the standard finite element interpolation procedure with uh = HU, ph =

HpP, ε′ij(u
h) = BU, and ∇ · uh = B̄U, where H and Hp are the interpolation
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matrices, and U and P are the solution vectors, respectively, Eqs. (1.3) and (1.4)

can be written in the algebraic form as follows1:[
Kuu Kup

Kpu Kpp

]{
U

P

}
=

{
R

0

}
, (1.5)

where

Kuu =

∫
V

2GBTBdV , Kup = −
∫
V

B̄THpdV ;

Kpp = −
∫
V

1

β
HT
pHpdV , R =

∫
V

HTfBdV +

∫
Sf

HSfTfSf dS ;

with Kpu = KT
up, and HSf obtained from H.

According to Refs. 1 and 7, two solvability conditions must be satisfied, i.e. (a)

(vh)TKuuv
h > 0, ∀vh ∈ ker(Kpu) and (b) ker(Kup) = {0}. Obviously, a difficulty

arises from the essential assumption for acoustic fluids that G = 0. However, as

discussed in Ref. 20, when we consider the inertia force−ρü in fB, the corresponding

equation of motion can be expressed as[
Muu 0

0 0

]{
Ü

P̈

}
+

[
0 Kup

Kpu Kpp

]{
U

P

}
=

{
R

0

}
, (1.6)

where ρ is the mass density, n is the unit normal vector (pointing outwards),

Muu =

∫
V

ρHTHdV , and R = −
∫
Sf

H
SfT
n p̄dS, with p̄ = −fSf · n. As discussed

in Ref. 19, assuming that the physical constant pressure mode arising from the

boundary condition u · n = 0 on S has been eliminated and there is no spuri-

ous zero frequency,19 the solvability conditions are satisfied in a transient direct

step-by-step solution, where at each time step, we have[
K∗uu Kup

Kpu Kpp

]{
U

P

}
=

{
R̂

0

}
, (1.7)

where R̂ is the effective load vector, and K∗uu = ĈMuu, with Ĉ a positive constant

associated with the direct time integration scheme, e.g. Ĉ =
4

∆t2
for the trapezoidal

rule.

In addition, for the frequency analysis, we have the eigenvalue problem, Kφ =

ω2Mφ, with K = −KupK
−1
pp Kpu and M = Muu. Obviously, M is positive definite

and the eigenvalue problem is well-posed. In fact, for n displacement unknowns and

m pressure degrees of freedom, the number of zero frequencies is n−m.

Considering next the stability of a discretization scheme (refer to Refs. 1 and

7), the following two conditions must be satisfied,

Ellipticity : a(vh,vh) ≥ C‖vh‖21 , ∀vh ∈ ker(Kpu) ,

Inf–sup: inf
qh∈Qh

sup
vh∈Vh

∫
V
qh∇ · vhdV
‖vh‖1‖qh‖0

≥ β0 > 0 ,
(1.8)
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where C is a positive constant independent of the mesh size h, and β0 is a positive

constant independent of both h and β.

Note that when G 6= 0, it is obvious that the ellipticity condition is satisfied.9

Therefore, considering an acoustic fluid, the ellipticity condition can always be

satisfied by some modifications to the variational formulation as discussed in Refs. 1,

6 and 11, see Sec. 2. Of course, in practice, a very small shear modulus compared

with β to represent the acoustic fluid can simply be used.

If these modifications are not employed, the loss of ellipticity introduces zero

frequency modes which correspond to zero deviatoric strain energy and can be

effectively removed from the eigenvalue solutions in engineering computations.

Therefore, the key stability requirement is the inf–sup condition for the selection

of displacement and pressure interpolations, which governs the convergence of the

true physical nonzero frequency modes as confirmed in Refs. 19 and 20.

Furthermore, to reduce the number of zero eigenvalues, according to Refs. 2,

11 and 19, we can use, for acoustic fluids, the so-called displacement–pressure–

vorticity moment (u-ρ-Λ) formulation. Assigning rotλ = (∂λ/∂x2,−∂λ/∂x1)
T and

rotv = ∂v2/∂x1 − ∂v1/∂x2 in association with grad p = (∂p/∂x1, ∂p/∂x2)
T and

div v = ∂v1/∂x1 + ∂v2/∂x2, respectively, we can replace Eqs. (1.3) and (1.4) with∫
V

λh rot vhdV −
∫
V

phdiv vhdV

=

∫
V

fB · vhdV −
∫
Sf

p̄h(vh · n)dS , ∀vh ∈ Vh , (1.9)

∫
V

(
ph

β
+ div uh

)
qhdV = 0 , ∀ qh ∈ Qh , (1.10)

∫
V

(
λh

α
− rotuh

)
µhdV = 0 , ∀µh ∈ Ph , (1.11)

where α, the constant associated with the irrotationality, is a very large number,

and Ph = Qh.
For the u-p-Λ formulation, let λh = HλΛ and rotuh = B̂U, where Hλ is the

interpolation matrix for the variable λh, and Λ is the solution vector for λh, we

have the additional matrices

Kuλ =

∫
V

B̂THλdV and Kλλ = −
∫
V

1

α
HT
λHλdV . (1.12)

Of course, the key benefit of replacing the u/p formulation with the u-p-Λ for-

mulation is to reduce the number of zero frequencies to n−m− k, where k is the

number of vorticity moment degrees of freedom.2 In addition, in the study of sta-

bility and optimal error bounds, it is necessary to use a modified u-p-Λ formulation

in order to fulfil the ellipticity condition by considering both divvh and rotvh, as

discussed in Ref. 11.
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The objective of this paper is to present a comprehensive study of the solvability,

stability, and optimal error bounds of mixed finite element formulations for acoustic

fluids, including the interrelationship between the numerical inf–sup test and the

eigenvalue problem pertaining to the natural frequencies of a coupled acoustoelastic

system. In addition, we extend the technique proposed by Stenberg in Refs. 16–18

for the analytical proof of the inf–sup condition for Stokes flow to the study of the

inf–sup condition for acoustic fluids and provide an analytical proof for the stability

and optimal error bounds of a set of three-field mixed finite element discretizations.

We begin with preliminaries of the governing equations and relevant theorems in

Sec. 2, and then review in Sec. 3 a technique useful for the analytical proof of the inf–

sup condition. The interrelationship between the discrete eigenvalue problems for

both the u/p and u-p-Λ formulations and the numerical inf–sup tests is discussed in

Sec. 4. In Sec. 5, we use the theorems developed in Sec. 3 to prove analytically that

the 9-3-1 and 9-4c-1 elements satisfy the inf–sup condition for the three-field mixed

formulation, and in the concluding section, we reiterate the important findings.

2. Preliminaries

Following the examples in Refs. 2, 11 and 14, we consider the eigenvalue problem:

Find ω, u, p and λ such that

ρω2u− gradp− rotλ = 0 in V ,

p

β
+ div u = 0 in V ,

λ

α
− rot u = 0 in V ,

u · n = 0 on Su ,

(k −mω2)u · n =

∫
Sf

pdS on Sf ,

λ = 0 on S ,

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

where k and m are the mass and stiffness of the piston connected with the acoustic

fluid at the boundary Sf representing the elastic structure in the acoustoelastic

problem, and the boundary condition (2.5) implies that u · n is constant along Sf .

According to Ref. 11, let

V = {v ∈ [H1(V )]2|v · n = 0 on Su , v · n is constant on Sf} ,

V0 = {v ∈ [H1(V )]2|v · n = 0 on S} ,

Q = P = L2(V ) ,

Q0 =

{
q ∈ Q

∣∣∣∣ ∫
V

qdV = 0

}
.
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The corresponding variational form of (2.1)–(2.6) can be expressed as: Find

ω ∈ R, u ∈ V, p ∈ Q, and λ ∈ P such that

a(u,v)+

(
γ1

β
− 1

)
b(v, p)−

(γ2

α
− 1
)
c(v, λ) = ρω2(u,v) +mω2n(u,v) , ∀v ∈ V ,

(p, q)

β
+ b(u, q) = 0 , ∀ q ∈ Q , (2.7)

λ, µ

α
− c(u, µ) = 0 , ∀µ ∈ P ;

where γ1 and γ2 are positive constants such that 0 < γ1 ≤ β and 0 < γ2 ≤ α, (·, ·)
is the usual inner product on Q×Q, P × P , or V × V, and

n(u,v) = (u · n)|Sf (v · n)|Sf , ∀u,v ∈ V ,

a(u,v) = γ1(div u,div v) + γ2(rotu, rotv) + kn(u,v) , ∀u,v ∈ V ,

b(v, q) = (div v, q) , ∀v ∈ V, q ∈ Q ,

c(v, µ) = (rotv, µ) , ∀v ∈ V, µ ∈ P .

Note that in this formulation, the bilinear form a(u,v) is coercive on V × V if

the two artificial constants γ1 and γ2 are positive. Of key importance is that for

the bilinear forms b(v, q) and c(v, µ), we have the following lemma.

Lemma 2.1. There exists a constant C0 such that

sup
v∈V0\{0}

b(v, q) + c(v, µ)

‖v‖1
≥ C0(‖q‖0 + ‖µ‖0) , ∀ q ∈ Q0, µ ∈ P . (2.8)

Proof. For any q ∈ Q0, noting that the domain V is an open, bounded, convex

domain with no re-entrant corners, there exists a unique φ ∈ H2(V ) satisfying (see

Ref. 12 for details)

−∇2φ = q in V , (2.9)

∂φ

∂n
= 0 on S , (2.10)

with

∫
V

φdV = 0.

By elliptic regularity we have,

‖φ‖2 ≤ C̄‖q‖0 , (2.11)

where the positive constant C̄ only depends on the area of V . Analogously, for any

µ ∈ P , there exists a unique ψ ∈ H2(V ) satisfying (see Ref. 12 for details)

∇2ψ = µ in V , (2.12)

ψ = 0 on S , (2.13)
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and by elliptic regularity we have

‖ψ‖2 ≤ C̄‖µ‖0 . (2.14)

Let z = −grad φ− rot ψ with z ∈ [H1(V )]2, we can derive,

div z = −∇2φ = q ,

rotz = ∇2ψ = µ ,
(2.15)

and

z · n|s =

(
−∂φ
∂n
− ∂ψ

∂τ

)∣∣∣∣
S

= 0 , (2.16)

‖z‖1 ≤ ‖φ‖2 + ‖ψ‖2 ≤ C̄(‖q‖0 + ‖µ‖0) , (2.17)

where τ is the unit tangent vector.

Hence, from (2.17), using the Schwarz inequality, we obtain

sup
v∈V0\{0}

b(v, q) + c(v, µ)

‖v‖1
≥ ‖q‖20 + ‖µ‖20
C̄(‖q‖0 + ‖µ‖0)

≥ C0(‖q‖0 + ‖µ‖0) , ∀ q ∈ Q0, µ ∈ P , (2.18)

with C0 = 1/(2C̄). �

Let Vh, Qh and Ph be finite element subspaces of V, Q and P , respectively, the

finite element approximation of the problem (2.7) becomes: Find ωh ∈ R, uh ∈ Vh,
ph ∈ Qh, and λh ∈ Ph, such that

a(uh,vh) +

(
γ1

β
− 1

)
b(vh, ph)−

(γ2

α
− 1
)
c(vh, λh)

= ρ(ωh)2(uh,vh) +m(ωh)2n(uh,vh) , ∀vh ∈ Vh ,

(ph, qh)

β
+ b(uh, qh) = 0 , ∀ qh ∈ Qh ,

(λh, µh)

α
− c(uh, µh) = 0 , ∀µh ∈ Ph .

(2.19)

Now, in order to have a good finite element method, the finite element spaces

have to be chosen such that they inherit the property (2.8), i.e. they should satisfy,

sup
vh∈Vh0 \{0}

b(vh, qh) + c(vh, µh)

‖vh‖1
≥ C0(‖qh‖0 + ‖µh‖0) , ∀ qh ∈ Qh0 , µh ∈ Ph ,

(2.20)

and the theory of mixed methods provides the following optimal error estimate (see

Ref. 13 for detail):

|ω − ωh| ≤ C̃ε2
h , (2.21)



July 2, 2001 9:19 WSPC/103-M3AS 00116

890 W. Bao, X. Wang & K. J. Bathe

where C̃ is a positive constant independent of h and material properties, ω and ωh

are solutions of the problems (2.7) and (2.19), respectively; and

εh = sup
‖u‖1+‖p‖0+‖λ‖0=1

inf
(vh, qh, µh) ∈
Vh ×Qh × Ph

(‖u− vh‖1 + ‖p− qh‖0 + ‖λ− µh‖0) .

In the following section, we will use the technique proposed by Stenberg16–18

to check the discrete inf–sup condition (2.20).

3. Inf–Sup Condition

In order to provide a precise discussion, we have to define our concepts properly.

Considering (2.20), we use Vh0 instead of Vh, and if the inf–sup condition in the form

of (2.20) is satisfied, since Vh0 ⊂ Vh, the inf–sup condition for the problem (2.19)

is also satisfied, provided that the constant pressure mode is eliminated, i.e. we are

using Qh0 instead of Qh. Therefore, for simplicity and clarity, we adopt Vh0 and Qh0
in the rest of the paper.

Let T h be a partition of V which consists of either triangular or convex quadri-

lateral elements. Naturally, the partition is assumed to satisfy the usual compat-

ibility and regularity conditions.1 Let us further assume that the finite element

polynomial spaces Vh0 , Qh0 , and Ph can be uniquely defined on T h by using a

reference element T̂ , i.e. the unit triangle, or square element within the reference

polynomial spaces, V̂, Q̂ and P̂. For T ∈ T h, let FT : T̂ → T be an affine or bilinear

mapping from T̂ onto T , i.e. x = FT (x̂). We define

Vh0 = {vh ∈ V0|vh(x)|T = v̂h(F−1
T (x)) , v̂h ∈ V̂ , x ∈ T , ∀T ⊂ V } ,

and

Qh0 = {qh ∈ Q0|qh(x)|T = q̂h(F−1
T (x)) , q̂h ∈ Q̂ , x ∈ T , ∀T ⊂ V } ,

Ph = {µh ∈ P|µh(x)|T = µ̂h(F−1
T (x)) , µ̂h ∈ P̂ , x ∈ T , ∀T ⊂ V } ;

or

Qh0 = {qh ∈ Q0 ∩C(V )|qh(x)|T = q̂h(F−1
T (x)) , q̂h ∈ Q̂ , x ∈ T , ∀T ⊂ V } ,

Ph = {µh ∈ P ∩ C(V )|µh(x)|T = µ̂h(F−1
T (x)) , µ̂h ∈ P̂ , x ∈ T , ∀T ⊂ V } ;

where C(V ) denotes the set of continuous functions on V , and both x and x̂ rep-

resent the position vectors in the two-dimensional domain considered in this paper

and its reference domain, respectively.

The second choice for Qh0 and Ph is also called the Taylor–Hood discretization.

For T ∈ T h we denote its characteristic diameter as hT , its boundary as ∂T , its

boundary unit normal vector as nT , its boundary unit tangent vector as τT , the

set of its edges as `(T ), the characteristic length of its edges as hE , and

`h =
⋃

T∈T h
`(T ) = `hV ∪ `hS ,
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with

`hV = {E ∈ `h|E ∩ V 6= ∅} ,

`hS = {E ∈ `h|E ⊂ S} .
In general, by a macroelement M we mean the union of one or more neighbor-

ing elements in T h. Analogously, a macroelement M is said to be equivalent to

a macroelement in the reference domain M̂ if there is a mapping FM : M̂ → M

satisfying the following conditions:

(i) FM is continuous and bijective;

(ii) If M̂ =
m⋃
j=1

T̂j , where T̂j , j = 1, . . . ,m are the elements of M̂ , then Tj =

FM (T̂j), j = 1, . . . ,m are the elements of M ;

(iii) FM |T̂j = FTj ◦ F−1

T̂j
, where FT̂j and FTj are affine or bilinear mappings from

the reference element T̂ onto T̂j and Tj, respectively, with j = 1, . . . ,m.

We denote the family of macroelements equivalent to M and M̂ asM and M̂,

respectively. Hence, for a given macroelement M , analogous to the definition of

finite element spaces, and `h, `hV and `hS on V , we can define finite element spaces

VhM , QhM and PhM , along with `hM , `hM,V and `hM,S on M . Notice here that QhM
corresponds to Q rather than Q0 and VhM corresponds to V0 rather than V for the

domain occupied by a macroelement M .

Introduce the following norms in Qh0 and Ph,

‖qh‖2V,Q =
∑
T∈T h

h2
T ‖ grad qh‖20,T +

∑
E∈`hV

hE

∫
E

|[qh]|2dS , ∀ qh ∈ Qh0 , (3.1)

‖µh‖2V,P =
∑
T∈T h

h2
T ‖ rot µh‖20,T +

∑
E∈`hV

hE

∫
E

|[µh]|2dS

+
∑
E∈`hS

hE

∫
E

|µh|2dS , ∀µh ∈ Ph ; (3.2)

where [a] denotes the jump of the variable a across edges E ∈ `hV , and analogously

the following semi-norms in QhM and PhM ,

|qh|2M,Q =
∑
T⊂M

h2
T ‖ grad qh‖20,T +

∑
E∈`hM

hE

∫
E

|[qh]|2dS , (3.3)

|µh|2M,P =
∑
T⊂M

h2
T ‖ rot µh‖20,T +

∑
E∈`hM,V

hE

∫
E

|[µh]|2dS

+
∑

E∈`hM,S

hE

∫
E

|µh|2dS . (3.4)
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Furthermore, we define,

Vh0,M = {vh ∈ VhM |vh|∂M\S = 0 , vh · n|∂M∩S = 0} ,

NM = {(qh, µh) ∈ QhM ×PhM |(div vh, qh)M + (rot vh, µh)M = 0 , ∀vh ∈ Vh0,M} ,

where

(div vh, qh)M + (rot vh, µh)M

=
∑
T⊂M

∫
T

(qh div vh + µh rot vh)dV , ∀vh ∈ Vh0,M , qh ∈ QhM , µh ∈ PhM . (3.5)

Then we have the following lemma:

Lemma 3.1. There exist two positive constants Ca and Cb independent of h and

material properties such that

sup
vh∈Vh0 \{0}

b(vh, qh) + c(vh, µh)

‖vh‖1
≥ Ca(‖qh‖0 + ‖µh‖0) − Cb(‖qh‖V,Q + ‖µh‖V,P) ,

∀ qh ∈ Qh0 , µh ∈ Ph . (3.6)

Proof. Let (qh, µh) ∈ Qh0 × Ph ⊂ Q0 × P be arbitrary, noting that the domain

V is an open, bounded, convex domain with no re-entrant corners, then, from the

inequality (2.8), there exists v ∈ V0, such that

b(v, qh) + c(v, µh) ≥ C0(‖qh‖0 + ‖µh‖0)2 (3.7)

and

‖v‖1 ≤ ‖qh‖0 + ‖µh‖0 . (3.8)

We now interpolate v with vh ∈ Vh0 defined by the technique of Clemént10 such

that we have the following error estimates,∑
T∈T h

h−2
T ‖v− vh‖20,T +

∑
E∈`h

h−1
E

∫
E

|v− vh|2dS ≤ C1|v|21 (3.9)

and

‖vh‖1 ≤ C2‖v‖1 , (3.10)

with C1 and C2 independent of h and material properties.

Then, using integration by parts, we obtain

b(vh, qh) + c(vh, µh) = b(vh − v, qh) + c(vh − v, µh) + b(v, qh) + c(v, µh)

≥ b(vh − v, qh) + c(vh − v, µh) + C0(‖qh‖0 + ‖µh‖0)2

=
∑
T∈T h

(v − vh, grad qh − rot µh) + C0(‖qh‖0 + ‖µh‖0)2
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+
∑
E∈`hV

∫
E

[(vh − v) · nT ([qh]) + (vh − v) · τT ([µh])]dS

+
∑
E∈`hS

∫
E

(vh − v) · τTµhdS ,

and furthermore, using the Hölder and Schwarz inequalities, (3.8), the fact that

|v|21 ≤ ‖v‖21, and the following inequality based on (3.8) and (3.10),

‖vh‖1 ≤ C2‖v‖1 ≤ C2(‖qh‖0 + ‖µh‖0) , (3.11)

we have

b(vh, qh) + c(vh, µh)

≥ −

 ∑
T∈T h

h−2
T ‖v− vh‖20,T +

∑
E∈`h

h−1
E

∫
E

|v− vh|2dS

1/2

× (‖qh‖V,Q + ‖µh‖V,P) + C0(‖qh‖0 + ‖µh‖0)2

≥ −
√
C1|v|1(‖qh‖V,Q + ‖µh‖V,P) + C0(‖qh‖0 + ‖µh‖0)2

≥ −
√
C1(‖qh‖0 + ‖µh‖0)(‖qh‖V,Q + ‖µh‖V,P) + C0(‖qh‖0 + ‖µh‖0)2

= [C0(‖qh‖0 + ‖µh‖0)−
√
C1(‖qh‖V,Q + ‖µh‖V,P)](‖qh‖0 + ‖µh‖0)

≥ [Ca(‖qh‖0 + ‖µh‖0)− Cb(‖qh‖V,Q + ‖µh‖V,P)]‖vh‖1 , (3.12)

with Ca = C0/C2 and Cb =
√
C1/C2. �

Lemma 3.2. Suppose that for every M ∈ M, the space NM , consisting of

functions that are constant vectors on M, is two-dimensional if ∂M ∩ S = ∅ or

one-dimensional if ∂M ∩S = ∅. Then there exists a positive constant βM such that

the condition

sup
vh∈Vh0,M\{0}

b(vh, qh) + c(vh, µh)

‖vh‖1
≥ βM(|qh|M,Q + |µh|M,P) ,

∀ qh ∈ QhM , µh ∈ PhM , (3.13)

holds for every M ∈M.

Proof. Consider a fixed M ∈ M. Define the constant βM as

βM = inf
(qh, µh) ∈ QhM × PhM
|qh|2M,Q + |µh|2M,P = 1

sup
vh∈Vh0,M\{0}

b(vh, qh) + c(vh, µh)

‖vh‖1

= inf
(qh, µh) ∈ QhM × PhM
|qh|2M,Q + |µh|2M,P = 1

sup
vh ∈ Vh0,M\{0}
‖vh‖1 = 1

[b(vh, qh) + c(vh, µh)] . (3.14)
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Since NM , consisting of functions that are constant vectors on M , is two-

dimensional if ∂M ∩ S = ∅ one-dimensional if ∂M ∩ S 6= ∅, and QhM , PhM , and

Vh0,M are finite-dimensional, it follows that βM > 0.

Let us now prove that there is a constant βM such that βM ≥ βM > 0 for

every M ∈ M. Let x̂1, . . . , x̂d be the vertices of the elements in M̂ . Every M ∈M
is now uniquely defined by its vertices xi = FM (x̂i), with i = 1 . . . , d, and so

we may write βM = β(x1, . . . ,xd). We will now consider the vertices as a point

y = (x1,x2, . . . ,xd) in R2d, and βM = β(y) as a function of y. Let hM = max
T⊂M

hT .

We may assume that hM = 1 and that x1 coincides with the origin in R2. Since

the general case can be handled by a scaling argument using the mapping G(x) =

h−1
M (x − x1), where x1 is chosen as the origin, all vertices x2, . . . ,xd lie within a

given distance from the origin. Furthermore, every T ⊂M has a diameter less than

or equal to unity and the triangulation T h is regular. This means that the point y

belongs to a compact set, denoted by D, in R2d. It can easily be proved that the

function β is continuous (see Ref. 16 for a similar argument), and since β(y) > 0

for every y ∈ D, we conclude that there is a constant βM > 0, independent of h

and material properties, such that β(y) ≥ βM for every y ∈ D. Thus,

inf
(qh, µh) ∈ QhM × PhM
|qh|2M,Q + |µh|2M,P = 1

sup
vh ∈ Vh0,M\{0}
‖vh‖1 = 1

[b(vh, qh) + c(vh, µh)] = βM ≥ βM > 0, ∀M ∈ M,

(3.15)

and the desired inequality (3.13) follows from (3.15) directly. �

Theorem 3.1. Suppose that there is a fixed set of equivalent classes of

macroelements Mi, with i = 1, . . . , N, a positive integer L, and a macroelement

partition Mh for V, such that

(M1) For each M ∈ Mi, with i = 1, . . . , N, the space NM , two-dimensional if

∂M ∩S = ∅ or one-dimensional if ∂M ∩S 6= ∅, consists of functions that are

constant on M.

(M2) Each M ∈Mh belongs to one of the classes Mi, with i = 1, . . . , N.

(M3) Each T ∈ T h is contained in at least one and not more than L macroelements

of Mh.

(M4) Each E ∈ `hV is contained in the interior of at least one and not more than

L macroelements of Mh.

(M5) Each E ∈ `hS is contained on the boundary of at least one and not more than

L macroelements of Mh.

Then the inf–sup condition (2.20) holds.

Proof. Let (qh, µh) ∈ Qh0 ×Ph be arbitrary. From Lemma 3.2 and (M1), we know

that for every M ∈Mh there exists vhM ∈ Vh0,M , extending it with 0 outside of M ,
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such that

b(vhM , q
h) + c(vhM , µ

h) =
∑
T⊂M

∫
T

(qh div vhM + µh rot vhM )dV

≥ C3(|qh|M,Q + |µh|M,P)2 , (3.16)

‖vhM‖1 = ‖vhM‖1,V = ‖vhM‖1,M ≤ |qh|M,Q + |µh|M,P , (3.17)

where C3 is a constant independent of M , h and material properties. �

Let us define

vh =
∑

M∈Mh

vhM , (3.18)

and from (M3)–(M5), noting (3.16), we have that

b(vh, qh) + c(vh, µh) =
∑

M∈Mh

[b(vhM , q
h) + c(vhM , µ

h)]

≥
∑

M∈Mh

C3(|qh|M,Q + |µh|M,P)2

≥ C3(‖qh‖2V,Q + ‖µh‖2V,P) . (3.19)

Furthermore from (M4) and (M5), we know that each element T ∈ T h is con-

tained in at most L macroelements. This gives, using Schwarz’s inequality and

(3.17)

‖vh‖21 =

∥∥∥∥∥∥
∑

M∈Mh

vhM

∥∥∥∥∥∥
2

1

≤ L
∑

M∈Mh

‖vhM‖21

≤ L
∑

M∈Mh

(|qh|M,Q + |µh|M,P)2 ≤ 2L2(‖qh‖2V,Q + ‖µh‖2V,P) . (3.20)

Therefore we obtain, using Schwarz’s inequality

sup
wh∈Vh0 \{0}

b(wh, qh) + c(wh, µh)

‖wh‖1

≥ b(vh, qh) + c(vh, µh)

‖vh‖1
≥
√

2C3

2L
(‖qh‖2V,Q + ‖µh‖2V,P)1/2

≥ C4(‖qh‖V,Q + ‖µh‖V,P) , ∀ qh ∈ Qh0 , µh ∈ Ph , (3.21)

with C4 = C3/(2L).
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Combining Lemma 3.1 and the above inequality, we have that

sup
vh∈Vh0 \{0}

b(vh, qh) + c(vh, µh)

‖vh‖1

= ξ sup
vh∈Vh0 \{0}

b(vh, qh) + c(vh, µh)

‖vh‖1
+ (1− ξ) sup

vh∈Vh0 \{0}

b(vh, qh) + c(vh, µh)

‖vh‖1

≥ ξ[Ca(‖qh‖0 + ‖µh‖0)− Cb(‖qh‖V,Q + ‖µh‖V,P)]

+C4(1− ξ)(‖qh‖V,Q + ‖µh‖V,P)

≥ CaC4

Cb + C4
(‖qh‖0 + ‖µh‖0) , ∀ qh ∈ Qh0 , µh ∈ P , (3.22)

where we choose ξ = C4/(Cb + C4) > 0. �

4. Numerical Inf Sup Tests

As defined in Sec. 1, the mass matrix Muu corresponds to the L2-norm ‖ · ‖0 on

Vh0 , i.e. ‖uh‖20 = 1
ρ
UTMuuU, and the matrices Kpp and Kλλ correspond to the

0-norm ‖ · ‖0 on Qh0 and Ph, respectively. For clarity, we introduce two matrices

K̃pp = −βKpp and K̃λλ = −αKλλ, such that ‖ph‖20 = PTK̃ppP and ‖λh‖20 =

ΛTK̃λλΛ. Moreover, we define a matrix Suu to represent the 1-norm ‖ · ‖1 on Vh0 ,

i.e. ‖uh‖21 = UTSuuU. In addition, we know that Kup and Kuλ are related to the

bilinear forms b(uh, ph) and c(uh, λh), i.e.

b(uh, ph) = −UTKupP and c(uh, λh) = UTKuλΛ .

In the frequency analysis of acoustic fluids, as discussed in Refs. 2 and 19, for the

u/p formulation, we need to solve the following eigenvalue problem for the nonzero

eigenvalues,

KaU = ω2
aMuuU , (4.1)

with Ka = −KupK
−1
pp Kpu. On the other hand, for the u-p-Λ formulation, we need

to solve the following eigenvalue problem for the nonzero eigenvalues,

KbU = ω2
bMuuU , (4.2)

with Kb = −KupK
−1
pp Kpu −KuλK

−1
λλKλu and Kλu = KT

uλ.

As discussed in detail in Ref. 19, some of the nonzero eigenvalues of (4.2), if

α� β, located in the higher spectrum and representing the rotational modes, are

in fact zero frequency modes in (4.1). Obviously, using (4.2) instead of (4.1) can

significantly reduce the number of zero frequency modes.

Recall that in the numerical inf–sup tests for both the u/p and u-p-Λ formu-

lations, as presented in Ref. 20, we need to solve two similar eigenvalue problems
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by replacing the mass matrix Muu with Suu, and modifying the stiffness matrices,

i.e. we solve

K̃aU = λaSuuU , (4.3)

and

K̃bU = λbSuuU , (4.4)

where K̃a =
1

β
Ka and K̃b = − 1

β
KupK

−1
pp Kpu −

1

α
KuλK

−1
λλKλu.

Notice that the matrices Ka, K̃a, Kb, K̃b, Muu and Suu are all symmetric.

In addition, Muu and Suu are positive definite. To have stable and reliable finite

element discretizations for both mixed formulations, we must have

inf
qh∈Qh0 \{0}

sup
vh∈Vh0 \{0}

b(vh, qh)

‖vh‖1‖qh‖0
=

√
λ̂a(h) , (4.5)

with lim
h→0

√
λ̂a(h) =

√
aλ > 0; and

inf
(qh,µh)∈Qh0×Ph\{(0,0)}

sup
vh∈Vh0 \{0}

b(vh, qh) + c(vh, µh)

‖vh‖1(‖qh‖0 + ‖µh‖0)
=

√
λ̂b(h) , (4.6)

with lim
h→0

√
λ̂b(h) =

√
bλ > 0, where λ̂a(h) and λ̂b(h) are the smallest nonzero

eigenvalues of the problems (4.3) and (4.4), respectively; and aλ and bλ are positive

constants independent of h (and of course, material properties).

Comparing Eq. (4.1) with Eq. (4.3), it is easy to confirm that

inf
qh∈Qh0 \{0}

sup
vh∈Vh0 \{0}

b(vh, qh)

‖vh‖0‖qh‖0
=

√
ρ√
β
ω̂a(h) ,

where ω̂a is the smallest nonzero eigenvalue of the problem (4.1).

Since ‖vh‖0 ≤ ‖vh‖1, ∀vh ∈ Vh0 , we obtain
√
ρ√
β
ω̂a(h) ≥

√
λ̂a(h) .

Thus, we have

lim
h→0

ω̂a(h) ≥
√
βaλ√
ρ

> 0 ,

and in addition, because of the same matrix structure of Ka and K̃a, the number of

zero frequencies of the eigenvalue problems (4.1) and (4.3) are the same. Therefore,

we can in this case simply calculate the lowest frequency of the problem in (4.1)

for increasingly refined meshes, and if this frequency approaches zero, the inf–sup

test is not passed. On the other hand, if the smallest frequency does not approach

zero, we cannot, strictly, say anything about the discretization scheme.

Considering the u-p-Λ formulation, assume that α = Kβ, then we have

Kb = β(KupK̃
−1
pp Kpu +KKuλK̃

−1
λλKλu) and K̃b = KupK̃

−1
pp Kpu + KuλK̃

−1
λλKλu.
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Fig. 1. A typical macroelement.

Therefore, it is obvious that we could only have a similar relationship when K = 1,

based then on Kb = βK̃b, between the numerical inf–sup test value and the vi-

bration frequency for the u-p-Λ formulation. However, in practice, we want that

K � 1.

5. Applications

In this section, we will apply the results discussed in Sec. 3 to two examples.

Example 5.1. The 9-3-1 element.

Let T h be a partition of V comprised of convex quadrilateral elements and the

finite element spaces be defined as

Vh0 = {vh ∈ V0|vh|T ∈ [Q2(T )]2 , T ∈ T h} ,
Qh0 = {qh ∈ Q0|qh|T ∈ P1(T ) , T ∈ T h} ,
Ph = {µh ∈ P|µh|T ∈ P0(T ) , T ∈ T h} .

Suppose that the partition T h satisfies: For each T ∈ T h, there exists at least

one node of T in V . Then for this method the macroelement condition in Lemma 3.2

is valid for a macroelement consisting of four elements, as shown in Fig. 1.

To prove this we consider a macroelement M = T1 ∪ T2 ∪ T3 ∪ T4 and the

corresponding reference macroelement M̂ = T̂1 ∪ T̂2 ∪ T̂3 ∪ T̂4 as shown in Fig. 1.

Let F = (F1, F2) be the continuous piecewise bilinear mapping from M̂ onto M .

Suppose (qh, µh) ∈ NM , i.e.

(div vh, qh)M + (rot vh, µh)M = 0 , ∀vh ∈ Vh0,M .
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Using integration by parts, we have

(div vh, qh)M + (rot vh, µh)M = −(vh, grad qh)M + (vh, rot µh)M

+
∑

E∈`hM,V

∫
E

[vh · nT ([qh]) + vh · τT ([µh])]dS

+
∑

E∈`hM,S

∫
E

vh · τTµhdS = 0 . (5.1)

Since grad qh|Ti for i = 1, . . . , 4 are constants, vh grad qh|Ti ∈ Q2(T i) for

i = 1, . . . , 4 and the composite integration (nine-point integration) gives the exact

values for the integrals (vh, grad qh)Ti. Following the procedure of Ref. 18 and

choosing vh ∈ Vh0,M such that the only nonvanishing degrees of freedom are the

values of both components at the center nodes x22, x23, x24 and x25 of T1, T2,

T3 and T4, respectively, we obtain grad qh|Ti = 0 for i = 1, . . . , 4, which implies

that both qh and µh are piecewise constant. Then we choose vh ∈ Vh0,M such that

the only nonvanishing degrees of freedom are vh · n1, vh · n2, vh · n3 and vh · n4,

where n1, n2, n3 and n4 are the normals of the segments x3x18, x7x18, x11x18 and

x15x18, evaluated at the points x20, x19, x21 and x17, respectively, it is not difficult

to confirm that qh is constant on M . Therefore,

(div vh, qh)M + (rot vh, µh)M

=
∑

E∈`hM,V

∫
E

vh · τT ([µh])ds+
∑

E∈`hM,S

∫
E

vh · τTµhdS = 0 . (5.2)

Now we choose vh ∈ Vh0,M such that the only nonvanishing degrees of freedom

are vh · τ 1, vh · τ 2, vh · τ 3 and vh · τ 4, where τ 1, τ 2, τ 3 and τ 4 are tangents of

the segments x3x18, x7x18, x11x18 and x15x18, evaluated at the points x20, x19,

x21 and x17, respectively. We confirm that µh is constant on M . If ∂M ∩ S = ∅,
we obtain the desired macroelement condition, including the fact that NM is two-

dimensional. If ∂M ∩ S 6= ∅, without loss of generality, suppose E0 = x1x3 ∈ `hM,S .

We need to choose vh ∈ Vh0,M such that the only nonvanishing degree of freedom is

vh · τE0 evaluated at the point x2. Then we obtain µh = 0 on M , i.e. NM is one-

dimensional. Thus the desired macroelement condition is proved for a macroelement

of four elements, and based on Lemma 3.2 and Theorem 3.1, the inf–sup condition

of (2.20) is satisfied.

Example 5.2. The 9-4c-1 element.

Again, here for the sake of simplicity, we consider a special case. For the general

case, one has to check the macroelement condition numerically.
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We assume V to be a rectangle and T h be a partition of V containing squares

with the same size.

Vh0 = {vh ∈ V0|v|T ∈ [Q2(T )]2 , T ∈ T h} ,
Qh0 = {qh ∈ Q0 ∩ C(V )|qh|T ∈ Q1(T ) , T ∈ T h} ,
Ph = {µh ∈ P|µh|T ∈ P0(T ) , T ∈ T h} .

Suppose the partition T h satisifes: For each T ∈ T h, there exists at least one

node of T in V . Then, we proceed to prove that the macroelement condition in

Lemma 3.2 is valid for a macroelement consisting of four elements.

Following the procedure above, we choose vh ∈ Vh0,M such that the only non-

vanishing degrees of freedom are the values of both components at the center points

of T1, T2, T3 and T4, respectively, as shown in Fig. 1. Since here the elements T1,

T2, T3 and T4 are squares, from grad qh = 0, we get

qh(x1) = qh(x18) = qh(x5) = qh(x9) = qh(x13) = a

and

qh(x3) = qh(x7) = qh(x11) = qh(x15) = b ,

where a and b are constants.

Then we choose vh ∈ Vh0,M such that the only nonvanishing degrees of freedom

are vh ·τ 1, v
h ·τ 2, v

h ·τ 3 and vh ·τ 4, evaluated at the points x20, x19, x21 and x17,

respectively. Without much difficulty, using vh · grad qh = vh · n∂q
h

∂n
+ vh · τ ∂q

h

∂τ
,

we obtain a = b and µh|T1 = µh|T2 = µh|T3 = µh|T4 = constant. Therefore, qh and

µh are always constant functions on M . If ∂M ∩∂V 6= ∅, we suppose that one edge,

say E0, of M is such that E0 = x1x3 ∈ `hM,S . Then we choose vh ∈ Vh0,M such that

the only nonvanishing degree of freedom is vh · τE0 evaluated at the point x2, and

obtain µh = 0 on M , i.e. NM is one-dimensional. Hence, the desired macroelement

condition is proved for a macroelement of four elements and the inf–sup condition

(2.20) is satisfied based on Lemma 3.2 and Theorem 3.1.

6. Conclusions

In this paper, we have considered some mixed finite element formulations for an

acoustic fluid and have proven that certain finite element discretizations satisfy the

inf–sup condition of solvability, stability, and optimal error bounds. The ellipticity

condition can be satisfied by using a small shear (material) constant or by using

regularization parameters. The procedure employed herein to prove the inf–sup

condition can also directly be applied to other discretizations of the mixed finite

element formulations considered in the paper. We have also related the numerical

inf–sup values calculated in the inf–sup test to the free vibration frequencies of the

problem considered. The free vibration frequencies give only insight in some special

cases whether an element discretization might be reliable.

Finally, readers are referred to Refs. 4 and 5 for more discussion on the conver-

gence of eigenvalues of mixed finite element formulations.
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