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Abstract In this paper we report some recent advances
regarding applications using the method of finite spheres;
a truly meshfree numerical technique developed for the
solution of boundary value problems on geometrically
complex domains. First, we present the development of a
preprocessor for the generation of nodal points on two-
dimensional computational domains. Then, the develop-
ment of a specialized version of the method of finite
spheres using point collocation and moving least squares
approximation functions and singular weight functions is
reported for rapid computations in virtual environments
involving multi-sensory (visual and touch) interactions.
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1
Introduction
In this paper we present some recent developments in the
method of finite spheres [1]; a truly meshfree numerical
technique developed for the solution of boundary value
problems on complex domains. Meshfree methods are
attractive since they circumvent the problem of mesh
generation and offer greater flexibility in the choice of
approximation spaces and the use of weighted residual
schemes than the finite element/finite volume techniques.
Over the past several years quite a few meshfree tech-
niques have been proposed as was reviewed in ref. [1].

However, for a meshfree method to be competitive with
the finite element/finite volume techniques, it must be
computationally efficient. The method of finite spheres has
been developed with the considerations of computational
efficiency and reliability in mind [1, 2]. In this technique,
the idea of a finite element discretization is generalized to

a sphere. The computational domain is discretized using a
set of nodal points and the interpolation functions are
compactly supported on spheres surrounding these nodes.
A weighted residual scheme [3] is employed as the error
minimization criterion.

In [4] effective schemes for incorporating the Dirichlet
boundary conditions in the weak sense were introduced
and in [1] efficient techniques of performing numerical
integration of the terms in the Galerkin weak form were
presented. However, results were reported for problems
having simple two-dimensional geometries. In this paper
we present techniques of automatically generating the
open cover for two-dimensional domains having complex
geometries by generating the nodal points and computing
the sphere radii.

In most engineering applications we require numerical
techniques that are robust and reliable and computation-
ally efficient. But real time performance is seldom an issue.
For certain applications, however, real time performance is
critical. One such application is the development of med-
ical simulators to train physicians. In addition to the
computer such systems have one or more human machine
interface(s). In order to be realistic, they should provide
multi sensory interaction capabilities and perform in real
time.

An example of medical procedures where both visual
and tactile (force) interactions are important is minimally
invasive surgery. Laparoscopic surgery is a particular ex-
ample of such a procedure. This technology uses a small
video camera and a few long slender instruments to per-
form surgery with minimum incision. The camera and
instruments are introduced into the abdomen or chest
through small skin incisions that enable the surgeon to
explore and operate on the internal cavity without the
need for making large openings. Laparoscopic surgery is a
revolutionary technique but requires intensive training.
The success of flight simulators in training pilots has in-
spired the development of analogous ‘‘surgical simulators’’
as immersive virtual environment systems that will train
medical personnel with virtual patients [5].

For real time visual display an update rate of 30 Hz is
sufficient. For haptic display, the Phantom (developed by
Sensable Technologies, Inc.) haptic interface device is
used. This is a low inertia device that has six displacement
degrees of freedom to capture the orientation and position
of the users hands. The paradigm of interaction with the
virtual environment is similar to the exploration of the
world using a walking stick. When the virtual Phantom
tool tip interacts with a virtual object, the interface can
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deliver the three components of the interaction force to the
user resulting in the sensation of touch. For stable simu-
lation, the haptic loop requires an update rate of about
1 kHz [6, 7]. This imposes severe restrictions on the
complexity of the models that can be rendered.

Various techniques can be found in literature for the
simulation and display of deformable objects. These
techniques can be categorized into two main approaches:
‘‘geometrically based’’ approaches and ‘‘physically based’’
approaches (see [8] for a review). The ‘‘geometrically
based’’ modeling approaches, such as Bezier/B-spline
based procedures and free form deformation techniques,
do not account for the physics of deformation, but are
simpler to implement. In contrast, the ‘‘physically based’’
approaches, such as the lumped parameter particle models
and finite element based techniques, attempt to model the
underlying physics, but are computationally intensive.

One of the most popular ‘‘physically based’’ modeling
approaches is a lumped parameter technique using
masses, springs and dampers. Each node has a point mass
associated with it and is connected to its neighbors using
linear or nonlinear springs and dampers. Cover et al. de-
veloped the first laparoscopic gall bladder surgery simu-
lator using surface-based spring-mass models [9]. The
spring-mass models are also widely used in facial simu-
lations. For example, Terzopoulos and Waters constructed
a three-layer network of springs based on three anatomi-
cally distinct layers of facial tissue [10].

The spring-mass models are simple and computation-
ally very efficient. However, for purpose of soft-tissue
deformation modeling, they suffer from the following
problems: (1) it is difficult to design a topologically ad-
missible network of springs and masses so as to prevent
the system to fall into unwanted local minima; (2) it is
difficult, and sometimes impossible, to determine the
parameters of a large number of springs, dampers and
masses to represent the global behavior of the tissue
especially if it is intended to capture nonlinear and/or
viscoelastic behavior; and finally (3) it is difficult to
enforce global properties like incompressibility when
using such models.

To overcome the problems associated with the spring-
mass models, Pieper et al. developed a planning system for
facial plastic surgery using isoparametric finite elements
[11]. Bro-Nielsen et al. applied finite elements for real time
surgical simulations using tetrahedral volume elements
[12]. The computation time was reduced significantly by
using a matrix condensation technique. Cotin et al. dem-
onstrated a hepatic surgery simulator using similar finite
element models [13, 14].

However, finite element techniques suffer from certain
drawbacks in real time simulations: (1) the need for nu-
merical integration and volumetric meshing results in a
slower-than-real-time performance unless extensive pre-
computations are performed; (2) the contact between tool
and tissues must occur only at nodal points, hence, to
prevent loss of resolution, the density of nodal points
should be sufficiently high thus requiring extensive
memory resources and high computational overhead; and
finally, (3) cutting or tearing requires an expensive reme-
shing process during simulation, hence precomputed data

of the object becomes, at least locally, invalid and all the
data displayed to the user must be computed in real time.

In this paper we discuss the development of a fast
version of the method of finite spheres for the purpose of
real time simulations of surgical procedures in virtual
environments. The approximation functions are developed
using singular weight functions and the moving least
squares technique [2]. A point collocation scheme is used
and therefore no numerical integration is necessary. This
technique is different from the finite point method [15],
which uses a weighted least squares technique for gener-
ating the approximation functions.

In Sect. 2 we recapitulate both the displacement and
displacement/pressure mixed formulations of the Galer-
kin-based method of finite spheres and present techniques
of automatically generating an open cover for two-
dimensional geometries. In Sect. 3 we discuss the spe-
cialized version of the method of finite spheres using point
collocation. In Sect. 4 we present several examples dem-
onstrating the applicability of the proposed techniques.

2
The Galerkin-based method of finite spheres

2.1
Approximation functions
In this section we briefly recapitulate how we generate low-
cost approximation functions using the partition of unity
paradigm [16] based on the Shepard partition of unity
functions [17].

Let X 2 Rd ðd ¼ 1; 2 or 3Þ be an open bounded domain
and let C be its boundary (see Fig. 1). Let a family of open
spheres fBðxI ; rIÞ; I ¼ 1; 2; . . . ;Ng form a covering for X,

i.e., X �
SN

I¼1 BðxI ; rIÞ, where xI and rI refer to the center
and radius of the sphere I, respectively. We associate a
‘‘node’’ with the geometric center of each sphere. By
SðxI; rIÞ we denote the surface of sphere I. The spheres
may be entirely within the domain (interior spheres) or
may have nonzero intercepts with the boundary (boundary
spheres), see Fig. 1.

We define a radial weighting function WIðxÞ; of the form
WIðxÞ ¼ WðsIÞ, where sI ¼ k x 	 xI k0=rI ; compactly sup-
ported on the sphere centered at node I. We have chosen a
quartic spline weighting function of the following form:

WðsIÞ ¼ 1 	 6s2
I þ 8s3

I 	 3s4
I ; 0 � sI � 1 ð1Þ

The weighting functions define the Shepard partition of
unity functions [17]

u0
I ðxÞ ¼

WIPN
J¼1 WJ

; I ¼ 1; 2; . . . ;N

The functions fu0
I ðxÞg satisfy zeroth order consistency. To

generate approximation spaces with higher order consis-
tency, a local approximation space Vh

I ¼ spanm2IfpmðxÞg
is defined at each node I, where pmðxÞ is a polynomial or
other function and I is an index set. The superscript h is a
measure of the size of the spheres.

The global approximation space Vh is generated by
multiplying the partition of unity function at each node I
with the functions from the local basis
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Vh ¼
XN

I¼1

u0
I Vh

I

Hence, any function vh 2 Vh can now be written as

vhðxÞ ¼
XN

I¼1

X
m2I

hImðxÞaIm ð2Þ

where

hImðxÞ ¼ u0
I ðxÞpmðxÞ ð3Þ

is a basis/shape function associated with the mth degree of
freedom aIm of node I.

2.2
Automatic generation of nodes
on an arbitrary domain in R2

An important practical issue is the generation of the
approximation spaces on geometries of complex shapes.
Unlike the functions generated using the moving least
squares technique (see [2]) the only criterion that needs to
be satisfied for the functions used in the method of finite
spheres is that the computational domain is a subset of the
union of the spheres. Of course, an additional problem is
to compute the intersections of the spheres with the do-
main boundary. An arbitrary distribution of nodal points
on the domain would render these tasks difficult and in-
efficient and therefore some structure is essential. In [18]
one such structure is defined using an octree based ap-
proach for the domain and a tetrahedral mesh at the
boundary. An extension of this approach to the method of
finite spheres is presented in [19] which uses a quadtree/
octree representation of the domain with special tech-
niques being applied to the boundary spheres.

In the present paper, however, we adopt an alternative
approach and present a technique of generating the nodal
points and defining the interior and boundary spheres
using a commercial finite element analysis program,
ADINA (ADINA R&D, Inc., http://www.adina.com). It is,
therefore, possible to take advantage of the powerful node
generating algorithms of ADINA and compare the results

obtained with the method of finite spheres directly with
that provided by ADINA for exactly the same nodal con-
figurations. It should be noted, however, that the finite
element program is only used to provide a structure to the
distribution of nodes on the domain and the underlying
simplices are not used for interpolation or integration. The
structure provided by the finite element program provides
nearest neighbor information in constant time. Further-
more, unlike in ‘‘pseudo meshfree’’ techniques, the inte-
gration points in the method of finite spheres are uniquely
associated with each sphere or the region of intersection of
two spheres, hence it is not necessary to search for the
spheres contributing to a given integration point.

Figure 2 shows a flowchart of how the ADINA input file
may be used to develop an open cover for the method of
finite spheres. The program STAP [3] has been modified to
MFS_STAP to accept the nodal information generated by
ADINA. The first step involves the creation of an ‘‘edge
table’’ and a ‘‘boundary table’’. The information stored in

Fig. 1. a A schematic of the method of
finite spheres and b some shape functions
in two-dimensions

Fig. 2. Flow chart for generating a cover for a two-dimensional
domain
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these two tables is used in determining the radii of the
spheres as well as the intersection of the spheres with
domain boundaries.

In the ADINA data file each element has three or four
edges with each edge having two nodes. The process of
generation of the ‘‘edge table’’ from the finite element
program is explained in Fig. 3. This table has the structure
ðN1, N2, flipping flagÞ, where N1 and N2 are the nodes
along a finite element edge (with N1<N2). If the local
connectivity information of the nodes necessitates
N1>N2 then the ‘‘flipping flag’’ is set to unity otherwise it
is zero. Note that for an edge interior to the domain (in R2)
the information in the edge table is presented twice with
the value of the ‘‘flipping flag’’ different in the two cases.
Edge table information is not repeated for edges repre-
senting the domain boundary. The information regarding
the boundary edges is stored in the ‘‘boundary table’’. The
edge table also provides, for each node, information re-
garding the nearest neighbors since these are the nodes
connected to that node along the edges emanating from it.

The next step is to compute the radii of the spheres.
Figure 4 shows the construction of a boundary sphere. The
radius of the sphere at a node lying on the boundary is
obtained as the smaller of the edge lengths connecting this
node to its two nearest neighbors. It is to be noted that the
node generation scheme of ADINA does not allow a large
difference between adjacent edge lengths and therefore
this scheme ensures a satisfactory cover. The boundary
table may be utilized to compute the included angle be-
tween the two edges and this information is used for the
generation of integration points for the boundary sphere
(see Fig. 4).

For a node which, together with its nearest neighbors, is
within the domain, the radius of the sphere is computed as
the average of the nearest neighbor distances as obtained
from the edge table. For a node which is within the domain,
but has at least two of its nearest neighbors on the boundary,
the minimum normal distance from the nearest boundary
edges is adopted as the sphere radius (see Fig. 5).

2.3
Displacement-based formulation
We consider the following variational problem from linear
elasticity.

Find u 2 H1ðXÞ such thatZ
X

�TðvÞC�ðuÞ dX 	
Z
Cu

�TðvÞCNTu þ vTNC�ðuÞ
� �

dC

¼
Z
X

vTfB dX þ
Z
Cf

vTfS dC

	
Z
Cu

�ðvÞTCNTuS dC 8 v 2 H1ðXÞ ð4Þ

where H1ðXÞ is the first order Hilbert space [3]. u and �
are the displacement and strain vectors, C is the elasticity
matrix, fS is the prescribed traction vector on the

Fig. 3. Edge table generation scheme. Each row of the edge table
contains information about the nodes that are on an element
edge. The format is (N1, N2, ‘‘flipping flag’’), where N1 and N2
are the nodes connected by the edge and the flipping flag takes on
a value of zero if the order is N2 < N1 in the original connectivity
information of the element and a value of 1 is the original order is
reversed

Fig. 5. A node (I) that has at least two neighbors that are on the
domain boundary needs special attention. The normal distances
of such a node from the neighboring edges (AB and BC in the
above example) are computed and the radius of the sphere at
node I is assumed as the minimum of these distances

Fig. 4. Generating a boundary sphere at node 1. The boundary
nodes are obtained from the boundary table. The radius of the
sphere at a boundary node is selected as the minimum of the two
nearest neighbor distances. The included angle between the two
edges (u0) is used in the numerical integration scheme for this
sphere
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Neumann boundary Cf , uS is the vector of prescribed
displacements on the Dirichlet boundary Cu (note that the
domain boundary C ¼ Cf [ Cu), fB is the body force
vector (including inertia terms), and N is the matrix of
direction cosine components of a unit normal to the
domain boundary (positive outwards).

We have the following approximation for the displace-
ment field

uðx; yÞ ¼
XN

J¼1

X
n2I

HJnðx; yÞaJn ¼ Hðx; yÞU ð5Þ

where

U ¼ ½a10 a11 a12 � � � aJn � � ��T

is the vector of nodal unknowns, and

aJn ¼ ½uJn v Jn�
is the vector of nodal unknowns at node J corresponding
to the nth degree of freedom (uJn and vJn are the nodal
variables for the x and y direction displacements at node J
corresponding to the nth degree of freedom). The nodal
shape function matrix corresponding to the nth degree of
freedom is

HJnðx; yÞ ¼ hJnðx; yÞ 0
0 hJnðx; yÞ

� �
ð6Þ

We obtain the discretized system of algebraic equations
corresponding to node I and degree of freedom m

XN

J¼1

X
n2I

KImJnaJn ¼ f Im þ f̂fIm ð7Þ

In this equation the various matrices and vectors are as
follows:

KImJn ¼
Z
XI

BT
ImCBJn dX ð8Þ

f Im ¼
Z
XI

HImfB dX ð9Þ

where XI ¼ X \ BðxI ; rIÞ and Bðx; yÞ is the strain–dis-
placement matrix.

If I is a node associated with an ‘‘internal sphere’’, then,
due to compact support

f̂fIm ¼ 0

If the sphere corresponding to node I has nonzero inter-
cept on the Neumann boundary, then

f̂fIm ¼
Z
CfI

HImfS dC ð10Þ

where Cf ¼ [I�Nf
Cf I , N f being the index set of such

nodes.
On the other hand, if the sphere corresponding to node

I has nonzero intercept on the Dirichlet boundary, then

f̂fIm ¼
XN

J¼1

X
n2I

~KKImJnaJn 	 ~ff Im ð11Þ

where

~KKImJn ¼
Z

CuI

HImNCBJn dC þ
Z

CuI

BT
ImCNTHJn dC ð12Þ

and

~ff Im ¼
Z

CuI

BT
ImCNTuS dC ð13Þ

where Cu ¼ [I2N u
CuI

, N u being the index set of such
nodes.

2.4
Displacement/pressure mixed formulation
For an almost incompressible medium in plane strain
conditions, we consider the following weak form

Find u 2H1ðXÞ and p 2 L2ðXÞ such thatZ
X

�DT ðvÞCD�DðuÞ	 �VðvÞp
h i

dX

	
Z
Cu

�DT ðvÞCDNTuþ vTNCD�DðuÞ
h i

dCþ
Z
Cu

vTNIpdC

¼
Z
X

vTfB dXþ
Z
Cf

vTfS dC

	
Z
Cu

�DT ðvÞCDNTuS dC 8v 2 H1ðXÞ ð14Þ

	
Z
X

q �VðuÞþ p

j

h i
dXþ

Z
Cu

qITNTu dC

¼
Z
Cu

qITNTuS dC 8q 2 L2ðXÞ ð15Þ

where H1ðXÞ and L2ðXÞ are the first order Hilbert space
and Lebesgue space of square integrable functions, re-
spectively. j is the bulk modulus; p is the pressure; �V and
�D are the volumetric and deviatoric components of the
strain tensor and CD is the matrix relating the deviatoric
stress components to the deviatoric strain components.

We use the same approximation for the displacement
field as in Eq. (5), and choose the following approximation
for the pressure field

pðx; yÞ ¼
XN

J¼1

X
n2I

h
p
Jnðx; yÞpJn ¼ Hpðx; yÞP ð16Þ

where P ¼ ½ p10 p11 p12 � � � pJn � � ��T is the vector of nodal
point unknowns corresponding to the pressure degrees of
freedom. The shape function h

p
Jnðx; yÞ at node J corre-
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sponding to the nth degree of freedom is also generated
using the partition of unity paradigm.

In [20] we have employed the numerical inf-sup test [3]
to identify several combinations of these two spaces that
result in a stable formulation.

Using the displacement and pressure approximations in
Eqs. (14) and (15) we obtain the following discrete sets of
equations corresponding to node I and degree of freedom
m

XN

J¼1

X
n2I

KuuImJn
KupImJn

KT
upImJn

KppImJn

2
4

3
5 aJn

pJn

( )
¼

f Im

0

( )
þ f̂f Im

ð17Þ
where

KuuImJn
¼

Z
XI

BDT
Im CDBD

Jn dX ð18Þ

KupImJn
¼ 	

Z
XI

BT
VImh

p
Jn dX ð19Þ

KppImJn
¼ 	 1

j

Z
XI

h
p
Imh

p
Jn dX ð20Þ

and

f Im ¼
Z
XI

HImfB dX ð21Þ

where XI ¼ X \ BðxI ; rIÞ. If I is a node associated with an
‘‘interior sphere’’, then, of course

f̂fIm ¼ 0

If the sphere corresponding to node I has a nonzero in-
tercept on the Neumann boundary Cf , then

f̂fIm ¼
R

CfI
HImfS dC

0

�
ð22Þ

where Cf ¼ [C2N f
Cf I ; N f being the index set of such

nodes.
On the other hand, if the sphere corresponding to node

I has a nonzero intercept on the Dirichlet boundary Cu,
then

f̂fIm ¼
XN

J¼1

X
n2I

~KKuuImJn
~KKupImJn

~KKT
upImJn

0

2
4

3
5 aJn

pJn

( )
	

~ffuIm

~ffpIm

8<
:

9=
;
ð23Þ

where

~KKuuImJn
¼

Z
CuI

HImNCDBD
Jn dC þ

Z
CuI

BDT
Im CDNTHJn dC

ð24Þ

~KKupImJn
¼ 	

Z
CuI

HImNIh
p
Jn dC ð25Þ

~ffuIm
¼

Z
CuI

BDT
Im CDNTuS dC ð26Þ

and

~ffpIm
¼ 	

Z
CuI

h
p
ImITNTuS dC ð27Þ

where Cu ¼ [I�Nf
CuI ; N u being the index set of such

nodes.

2.5
Numerical integration schemes
We review some of the schemes that we introduced in [1]
for efficient computation of the terms in the local Galerkin
weak form. We concentrate on two-dimensional domains
and limit our discussion to ‘‘interior disks’’ (disks that
have non zero intercepts with the domain boundary),
‘‘boundary sectors’’ (disks intercepted by the domain
boundary) and the ‘‘lens’’ shaped regions of overlap of two
disks.

For an ‘‘interior disk’’ we have implemented a piece-
wise midpoint quadrature rule (see Fig. 6a) by subdividing
the disk using concentric circles and radial lines and
evaluating the integral on each of the subdomains as the
area of the subdomain multiplied by the integrand evalu-
ated at the centroid of the subdomain. Hence, for the in-
tegral of a function f ðx; yÞ on a disk (X) of radius R0 we
use the following approximationZZ
X

f ðx; yÞ dx dy ’
Xnh

i¼1

Xnr

j¼1

Dijf ðrj cos hi; rj sin hiÞ

ð28Þ
where nh is the number of sectors in which the disk is
subdivided and nr is the number of subdivisions along
each radius. Here

rj ¼ j2 	 j þ 1=3

j 	 1=2
Dr; hi ¼ ði 	 1=2ÞDh

where

Dr ¼ R0

nr
; Dh ¼ 2p

nh

The weight

Dij ¼ j 	 1

2

� �
Dh Drð Þ2

is the area of the subdomain and is independent of the
circumferential direction.

In [4] we categorized the boundary sectors into two
major groups depending on the angle u0 that the radii
joining the center of the disk to the two intercepts of the
disk on C make interior to the domain:
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Type I sector: u0 � p (see Fig. 6b). The piece-wise mid-
point quadrature rule (28) applies with the modification
Dh ¼ u0=nh.

Type II sector: u0 > p (see Fig. 6c). We may integrate
over this type of boundary sector by first decomposing it
into a sector for which the rule of the Type I sector can be
used and a triangle.

For integrals defined on the ‘‘lens’’ shaped region of
overlap of two disks (see Fig. 6d) the following rule has
been developed. Ny integration points are chosen along the
line AB corresponding to either a Gauss quadrature scheme
or a piece-wise midpoint quadrature rule. The lens is
subdivided into strips of width equal to the integration
weights W

y
j : The area of the jth strip, Aj, may be computed

analytically.
We may now write down an integration ruleZZ

XIJ

f ðx; yÞdx dy ’
XNx

i¼1

XNy

j¼1

Dijf ðxi; yjÞ ð29Þ

where

Dij ¼
AjW

x
i

lj

lj is the length of a straight line drawn parallel to the x-axis
through each integration point along AB, Nx is the number

of integration points (corresponding to either a midpoint or
a Gaussian quadrature rule) along each of these lines, and
Wx

i is the weight associated with the ith integration point.

3
Point collocation based method of finite spheres
In this section we present a formulation of the method of
finite spheres based on the point collocation technique for
problems of linear elasticity. Numerical integration is
circumvented as the governing differential equations are
directly applied to the nodal points. Interpolation func-
tions based on the moving least squares technique are
used.

3.1
Governing equations
Let us consider the linear elasticity problem defined on a
continuum X 2 R3 with boundary C (see Fig. 7). The
system of governing differential equations is

¶T
� sðuÞ þ fBðxÞ ¼ 0 in X ð30Þ

with force (Neumann) boundary conditions

NsðuÞ ¼ fSðxÞ on Cf ð31Þ
and displacement (Dirichlet) boundary conditions

uðxÞ ¼ uSðxÞ on Cu ð32Þ

Fig. 6. Integration schemes on a an in-
terior sphere; b a Type I boundary
sphere;
c a Type II boundary sphere and d on the
‘‘lens’’ shaped overlap region of two
spheres
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In Eqs. (30)–(32), u and s are the displacement and stress
vectors, fS is the prescribed traction vector on the Neu-
mann boundary Cf , uS is the vector of prescribed dis-
placements on the Dirichlet boundary Cu (note that the
domain boundary C ¼ Cf [ Cu and Cf \ Cu ¼ 0), fB is the
body force vector (including inertia terms), ¶� is a linear
gradient operator, N is the matrix of direction cosine
components of a unit normal to the domain boundary
(positive outwards).

3.2
Point collocation
The point collocation technique [3] is a weighted residual
scheme in which the displacement solution u is approxi-
mated by uh and the governing partial differential equa-
tions are evaluated at the nodal points. The discrete set of
equations may be written as

¶T
� sðuhÞ

� �
x¼xI

þ fBðxIÞ ¼ 0 in X ð33Þ

with force (Neumann) boundary conditions

NsðuhÞ½ �x¼xI
¼ fSðxIÞ on Cf ð34Þ

and displacement (Dirichlet) boundary conditions

uhðxIÞ ¼ uS on Cu ð35Þ
where xI is the position vector of node I.

3.3
Nodal interpolation
We choose the moving least squares functions as the trial
functions, i.e.

uhðxÞ ¼
XN

J¼1

HJðxÞaJ ¼ HðxÞU ð36Þ

where N nodes are used for discretization and

U ¼ ½a1 a2 a3 � � ��T ð37Þ
is the vector of nodal unknowns, and aJ ¼ ½uJ vJ wJ � is the
vector of nodal unknowns at node J (uJ ; vJ and wJ are the
nodal variables for the x, y and z direction displacements
at node J). The nodal shape function matrix corresponding
to the Jth node is

HJðxÞ ¼
hJðxÞ 0 0

0 hJðxÞ 0
0 0 hJðxÞ

2
4

3
5 ð38Þ

where

hJðxÞ ¼ WJðxÞPðxÞTA	1ðxÞPðxJÞ ð39Þ
with

AðxÞ ¼
XN

I¼1

WIðxÞPðxIÞPðxIÞT ð40Þ

The vector PðxÞ contains monomials (local basis func-
tions) ensuring consistency up to a desired order. For a
problem in R3, for example, to ensure zeroth order con-
sistency

PðxÞT ¼ ½1�
and the resulting moving least squares shape functions in
(39) are Shepard partition of unity functions. For first
order consistency

PðxÞT ¼ ½1; x; y; z�
and so on. The function WJðxÞ is a singular radial
weighting function compactly supported on the sphere
surrounding node J. It is well known (see [21]) that if such
a weighting function is used for all the nodes in the do-
main then hJðxKÞ ¼ dJK 8 J;K (see [22] for a discussion on
how to generate such functions efficiently). Therefore U in
(37) is a vector of nodal displacements.

3.4
Discretized equations
Using (36) the discretized stress vector is

sðxÞ ¼
XN

J¼1

CBJðxÞaJ ¼ CBðxÞU; ð41Þ

where the strain–displacement matrix BðxÞ in Eq. (41) is
partitioned as

BðxÞ ¼ B1ðxÞB2ðxÞ � � �BJðxÞ � � �½ �
where

BJðxÞ ¼ ¶�HJðxÞ ¼

ohJ=ox 0 0
0 ohJ=oy 0
0 0 ohJ=oz

ohJ=oy ohJ=ox 0
0 ohJ=oz ohJ=oy

ohJ=oz 0 ohJ=ox

2
6666664

3
7777775

ð42Þ
The discretized equations (33) and (34) may therefore be
written as

Fig. 7. The specialized boundary value problem corresponding to
the problem of virtual surgery simulation. Homogeneous Di-
richlet conditions are prescribed on portion Cu1 of the boundary
while nonhomogeneous Dirichlet boundary conditions are pre-
scribed by the surgical tool interacting with the body on portion
Cu2 of the boundary
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¶T
� CBðxIÞU þ fBðxIÞ ¼ 0 in X ð43Þ

and

NCBðxIÞU ¼ fSðxIÞ on Cf ð44Þ
Equations (43), and (44) can be expressed in the compact
form

KU ¼ f ð45Þ
where K is the stiffness matrix (nonsymmetric but banded)
and f is the vector containing nodal loads.

3.5
Fast point collocation for laparoscopic surgery simulation
We specialize the point collocation approach to the problem
of laparoscopic surgical simulation. We consider a special
boundary value problem where homogeneous Dirichlet
conditions are prescribed on portion Cu1 of the boundary
and nonhomogeneous Dirichlet boundary conditions are
prescribed on portion Cu2 of the boundary where the virtual
tool interacts with the organ (see Fig. 7), i.e.

uðxÞ ¼ 0 on Cu1 ð46Þ
and

uðxÞ ¼ utool on Cu2 ð47Þ
where utool is the displacement field applied to the virtual
organ through the tool (assumed known). Furthermore

fSðxÞ ¼ 0 on Cf ð48Þ
and

fBðxÞ ¼ 0 ð49Þ
The key observation in the development of a fast solution
procedure is that during the process of interaction of the
surgical tool with the soft tissue, only the boundary con-
ditions on Cu2 change (assuming that the tissue is not
ruptured).

Let ~KK be the stiffness matrix after incorporating the
homogeneous Dirichlet conditions (46). Let ~CC be the in-
verse of this matrix. This matrix can be partitioned as

~CC ¼
~CCaa

~CCab
~CCba

~CCbb

� �
ð50Þ

corresponding to a partitioning of the vector of nodal
parameters as

U ¼ ½atool Ub�T ð51Þ
where Ub 2 R3ðN	mÞ is the vector of unknown nodal dis-
placements , atool 2 R3m is the vector of known nodal
displacements and m is the number of nodes on boundary
Cu2. The reaction force vector at the tool f tool 2 R3m is
obtained from the relation

Fig. 8. A plate with two holes. The figure in a shows the finite
element mesh generaed by ADINA. The figure b shows the open
cover generated by 175 spheres

Fig. 9. a The finite element mesh generated on a quarter of a thin
annulus is shown. The figure in b shows the open cover generated
by 37 spheres

35



f tool ¼ ~CCaa

� �	1
atool ð52Þ

and the unknown nodal displacements may be obtained as

Ub ¼ ~CCbaf tool ð53Þ
If the matrix ~CC is precomputed and stored, then the cost of
computation of the tool reaction forces is Oðm2Þ and of the
displacement field is OðmðN 	 mÞÞ: Therefore, the overall

computational complexity of such a procedure is OðmNÞ
which is essentially OðNÞ when m � N .

4
Examples
Two examples demonstrating the techniques of generating
a satisfactory cover using the ADINA input data file are
presented in Fig. 8 and 9. In Fig. 8 a plate with two holes of

Fig. 10. a A square cantilever plate in
plane strain conditions with a hole at the
center. Uniform tensile loading is applied
to one side. In b a quarter of the problem
is considered and the covering of the
domain using 50 spheres is shown. In c a
comparison of the convergence in strain
energy is shown when linear Galerkin
finite elements as well as the method of
finite spheres are used

Fig. 11. The problem of a linear elastic
hemisphere being indented by a tool-tip
at the pole. The deformed surface, ob-
tained using the point collocation -based
method of finite spheres is shown in the
vicinity of the tool tip together with the
undeformed surface
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different diameters is discretized using 175 spheres. Figure
9 shows one quarter of an annulus discretized using 37
spheres. The corresponding finite element meshes, gener-
ated using ADINA, are also shown.

In Fig. 10 we present the problem of a cantilever plate in
plane strain conditions with a circular hole at its center. A
uniformly distributed tensile loading is applied along one
of the sides of the plate. Due to symmetry one quarter of
the problem is discretized. A discretization using 50
spheres is shown in Fig. 10b. In Fig. 10c we compare the
convergence in strain energy when the plate is discretized
using Galerkin finite elements (linear) and the method of
finite spheres (with linear local basis) when a h-type re-
finement is performed. It is observed that the method of
finite spheres exhibits a superior convergence rate com-
pared to the Galerkin finite element technique since ap-
proximation spaces exhibiting higher order continuity are
used.

We have implemented the point collocation based
method of finite spheres for real time simulation and
display of deformation and tool tip reaction force for
certain simple 3D geometries In Fig. 11b we show the
displacement solution results obtained by applying vertical
displacement to the pole of a hemisphere using the point
collocation-based method of finite spheres (with linear
local basis).

5
Concluding remarks
In this paper we have demonstrated how the data flow of a
commercial finite element program, ADINA, can be used
in the method of finite spheres in a general two-dimen-
sional analysis. The superior node generation capabilities
of a commercial finite element software can be harnessed
and analysis results obtained using the method of finite
spheres may now be directly compared with finite element
results for exactly the same nodal configurations. This
introduces spheres as a new class of ‘‘finite elements’’ and
opens up the possibility of developing an integrated
computer aided design/engineering environment where
the user has the option of using either the spheres or the
more traditional finite elements or a combination of both
to solve a specific problem.

However, the techniques developed in this paper need
to be generalized to three-dimensional domains before
such a step may be implemented. While some of the
techniques described here directly carry over to three-di-
mensions, new techniques for computing the intersections
of spheres with complex three-dimensional boundaries
need to be developed. Integration rules for three-dimen-
sional computational subdomains are also required.

In addition, we have discussed a specialized version of
the method of finite spheres, using point collocation, for
rapid computation in multimodal virtual environments,
specifically in laparoscopic surgery simulation. While the
initial results are encouraging, techniques of simulating
surgical cutting need to be developed. Moreover, a linear
elastic model is inadequate since soft biological tissues are
highly nonlinear, anisotropic and exhibit rate dependent
properties. Efficient techniques of simulating such

behavior need to be developed which allow the computa-
tions to be performed in real time.
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