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On the stress integration in large strain elasto-plasticity
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Abstract

We briefly compare three algorithms for large strain elastoplastic analysis in which the logarithmic strain tensor is used
to measure the deformations. The first and second algorithms are based on using, respectively, the elastic stretch matrices
in the right basis and left basis of the polar decomposition of the trial elastic deformation gradient, and the third algorithm

uses the left basis and the Finger deformation tensor.
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1. Introduction

In the last decade improved numerical solutions of con-
tinua subjected to large inelastic strains have been obtained
by changing the initial hypo-elasto-plastic algorithms to
procedures based on hyperelastic formulations. These elas-
tic algorithms are energy preserving and are objective since
no stress rates are present [1]. Different strain functions
have been used, but those based on the logarithmic strains
are of special interest. Their additive nature [2] and the
use of the exponential mapping for the flow rule made
possible the use of small strain algorithms for the plastic
part; see Weber and Anand [3], Eterovi¢ and Bathe [4].
Similar frameworks have been used by different authors,
among them we cite the works of Peri¢, Owen and Honnor
[5], Cuitifio and Ortiz [6], and Sim¢ [7]. In particular, Simé
used the left polar decomposition and the Finger defor-
mation tensor to obtain the logarithmic spatial strains and
then performed the plastic stress correction in the principal
spatial directions of the trial state.

Despite some differences among the cited works, three
main frameworks may be distinguished. In the first frame-
work, the right polar decomposition is used; in the second
approach the left polar decomposition is employed and in
the third framework the Finger tensor is used leading to an
algorithm in which rotations are not involved in the case
of isotropic hardening functions. In the following, we give
a brief comparison of the algorithms. For simplicity we
focus our discussion on deviatoric J, plasticity, but the
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conclusions apply, in essence, also to many other material
models.

2. Constitutive frameworks

Multiplicative plasticity is based on Lee’s decomposition
of the deformation gradient tensor X into an elastic X* and
a plastic X” part (we use the notation of [1]):

X = Xfx” 1

The polar decomposition theorem establishes that for valid
deformations, the elastic deformation gradient admits the
following two decompositions:

XE = REU® = VER® 2)

where UZ and V* are respectively the right and left stretch
tensors and R” is the elastic rotation tensor. The Hencky
(or logarithmic) elastic strain tensor and a spatial Hencky
elastic strain tensor may be defined as:

Ef =1InU%; ef =V =RFESRE)T 3)
Similarly, we define the rotated stress tensor (see [1,3,4]) as

T=JREHTTRE 4)

where t is the Cauchy stress tensor and J = det(X) is the
Jacobian determinant of the deformation gradient. For the
isotropic elastic stress-strain law it can be shown that [1,4]:

Jt:D:T:EE—{—T:ﬁP 5)
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with the following stress expressions which follow from the
dissipation inequality

200 p Y =

T_JaBEB = ek T_BEE (6)
where D is the symmetric part of the spatial velocity
gradient and D’ is the symmetric modified plastic velocity
gradient EP defined as EP = XP(XP )~!. The functions
¥, ¥ and ¥ are the free energy functions expressed in
terms of the applicable variables. These expressions define
the work-conjugate quantities for an algorithm. It can be
shown that in the case of associated plasticity, the principle
of maximum dissipation implies:

LOf(t—B.y).
14 3 ;
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T
where f, f are the yield functions defined respectively in
the spatial and the rotated descriptions, b® is the elastic
Finger tensor, £, means the Lie derivative, y, A are con-
sistency parameters (the flow tensors are taken as unitary)
and B, B are the back stresses in the spatial and rotated
configurations respectively [4], i.e.,

B = J(R")"BR" ®)

We note here that the actual value of the yield function is
invariant to any rigid body motion if the proper quantities
are employed. It is also straightforward to show that

If(T—B,y) 3f(T—ﬂ’)»)RE
T ot

Of course, a principal rotated configuration may be defined
such that the following diagonal stress tensor is obtained

[7]
T=JR"tR = Diag(7,, T, T5) (10)

= JRHT )

The previous comments are also applicable when this con-
figuration is used, for which in a similar way, the quantities
ﬁP, 3f/3dT, B are defined, but they are not necessarily
diagonal.

3. Numerical algorithms

The widely used Euler backward numerical algorithms
are based on the elastic-predictor plastic-corrector phases.
The elastic predictor in the hyperelastic models is based
directly on

-1
X ="AX(X") (1n
where we have used the notation of [1,8]. The polar de-
composition of the predicted elastic deformation gradient

is X* = RFUF = VERE. Both U and VZ may be used to

evaluate the stresses from the invariant stored elastic energy
function

YEUE ) = LK InJEP + pe® e =" (JEEF)

= 1K[InJ*) +uE* : E* (12)
where K is the bulk modulus, @ is the shear modu-
lus, JZ = det(XF) and (-) is the deviatoric part properly
defined in view of Flory’s decomposition. In terms of prin-
cipal stretches, the stresses can also be evaluated using
~ ~/E ~/E . .
WE(JE,E") where E is the diagonal tensor of principal
elastic stretches. It is immediate to check that the trial stress
values are

— Y )
T, = SEF = K(In™* 7)1+ 2 InEF (13)

and similarly for 7, and T, but in terms of & and E*E
respectively. We note here that [4]

exp(2E) =exp(Ar ’*A’BP) exp(2TAE") exp(At ’*A’ﬁp)
(14)

t+A6RE _ Rf exp(E;E) exp(_Att+AtﬁP) exp(_t+A6E/E)
(15)

which for the general case and sufficiently small time
steps yields the approximations E/¥ ~ "TATEE 4 A¢ 1+ D’
and T4 R® ~ RE (= A R). In the special case of pure
isotropic hardening the equality holds since BP, E* and
"AEF have the same eigenspaces. Thus, once the pre-
dictor is established, the corrector phase is applied in an
almost irrotational way which allows for the use of any
basis for this task. Note that using the principal rotated
configuration (using Eq. 10) requires the solution of an
eigenproblem [7] whereas in the other approaches this
computation may be avoided through the use of proper ap-
proximations for the exponential and logarithmic functions
of a tensor [3,4] and the explicit solution for the square
root of a tensor [9] (all of them independent of whether
the eigenvalues are equal or not). On the other hand, no
advantage is obtained in kinematic hardening using the
configuration of Eq. (10) since the back-stress tensor needs
to be updated and the setting advocated in [7] yields differ-
ent results if this task is not performed. Note that the yield
stress is invariant to rotations of the quantity T — g, but not
of any of the components independently as stated in Ref.
[7].

A further analysis of the algorithms with tables of the
actual procedures may be found in Ref. [10].

4. Examples

Consider a single element with prescribed displacements
such that the deformation gradients are
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Fig. 1. Example 1: (A) stress tj; vs. stretch A (all algorithms). Example 2: (B) tj; vs. y for kinematic hardening (results for isotropic
hardening, not shown, are virtually coincident). (C) —1y, vs. y for isotropic hardening. (D) —1,, vs. y for kinematic hardening.
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with A =[1, 1.5] and y = [0, 0.5]. These examples have
been considered in [4] for the algorithm using the right
basis. For simplicity linear hardening is considered. The
material constants are: K = 166.67 MPa, u = 76.92 MPa,
oo = 0.75 MPa (initial yield stress), H = 2.0 MPa (linear
hardening modulus). It is seen from Fig. 1 that, as predicted
from the previous arguments, the results obtained using
both bases are coincident for both isotropic and kinematic

hardening, and almost coincident for the algorithm using
the left basis and the Finger tensor. In the case of kinematic
hardening it is also seen that if the backstress is not updated
to the basis used in the plastic correction, the results differ
substantially in example 2 for the 75, component. We refer
to Reference [10] for further details and examples.

5. Conclusions

We briefly reviewed and compared three stress calcu-
lation algorithms for isotropic elastoplasticity considering
large strains based on the multiplicative decomposition
and the logarithmic strains. The stress calculations are
performed in the bases of the left and the right polar de-
compositions of the elastic deformation gradient, whereas
the plastic integration may be performed in any rotated
configuration. No significant difference in the results is ob-
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tained if the proper update is performed for the backstress
tensor. From the computational standpoint, the operations
and cost are similar, but in the case of the algorithm using
the left basis and the Finger tensor, the cost is higher due
to the need for the proper rotation update of the backstress
[10].
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