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Fluid–structure interaction (FSI) can be simulated in a monolithic way by solving the flow and structural
equations simultaneously and in a partitioned way with separate solvers for the flow equations and the
structural equations. A partitioned quasi-Newton technique which solves the coupled problem through
nonlinear equations corresponding to the interface position is presented and its performance is compared
with a monolithic Newton algorithm. Various structural configurations with an incompressible fluid are
solved, and the ratio of the time for the partitioned simulation, when convergence is reached, to the time
for the monolithic simulation is found to be between 1/2 and 4. However, in this comparison of the par-
titioned and monolithic simulations, the flow and structural equations have been solved with a direct
sparse solver in full Newton–Raphson iterations, only relatively small problems have been solved and this
ratio would likely change if large industrial problems were considered or if other solution strategies were
used.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The simulation of fluid–structure interaction (FSI) and other
coupled problems has gained in importance over the last decade.
Nowadays, FSI simulations are used to avoid flutter of airplanes
[1] and turbomachinery [2] and to study wave-energy converters
[3]. Parachute dynamics is another interesting field as large defor-
mations appear [4]. The design and analysis of artificial heart
valves [5,6], the prediction of the rupture of aneurysms or of the
outcome of surgery [7–10] also rely extensively on FSI simulations
in patient-specific geometries.

An FSI problem can be solved in a monolithic or partitioned
way. In the monolithic approach, the flow equations and structural
equations are solved simultaneously such that their mutual influ-
ence can be taken into account directly which is favorable for the
stability of the calculation. On the other hand, the partitioned ap-
proach is to solve the flow equations and the structural equations
separately which means that the flow does not change while the
solution of the structural equations is calculated and vice versa.
The partitioned approach thus requires a coupling algorithm to al-
low for the interaction and to determine the solution of the cou-
pled problem but software modularity is preserved and different,
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possibly more efficient solution techniques can be used for the
flow equations and structural equations.

Newton methods can be used to solve the flow equations and
structural equations in the entire fluid and solid domain with New-
ton–Raphson iterations. These methods have been applied in
monolithic codes [11–15] but also in partitioned implementations
with a matrix-free solver and finite-difference approximations in
the calculation of the matrix–vector product [16,17].

The FSI problem can be reformulated as a problem – generally
nonlinear – in the discrete position of the fluid–structure interface
only, with all other variables internal to the residual operator of
this problem. Interface-Newton methods solve these nonlinear
equations with Newton–Raphson iterations while the flow equa-
tions and the structural equations can be solved with any method
inside the residual operator. Gerbeau et al. [18,19] utilize an
approximation of the Jacobian from a linear reduced-physics mod-
el whereas Van Brummelen et al. [20–22] employ a matrix-free
Krylov solver for the linear system within each Newton–Raphson
iteration combined with an approximation of the Jacobian-vector
product based on a linear combination of the previous residual
vectors.

Gauss–Seidel iterations between the flow solver and structural
solver can also be used to solve this equation for the interface po-
sition in a partitioned way, but these iterations converge slowly or
diverge if the interaction between the fluid and the structure is
strong due to a high fluid/structure density ratio or an incompress-
ible fluid [23,24]. The convergence can however be accelerated by
Aitken’s D2 method [25]. If the interaction between the fluid and
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the structure is weak, e.g. in aeroelastic simulations, only one cou-
pling iteration is required within each time step [1,26–28] but
these so-called staggered or loosely-coupled methods do not en-
force the equilibrium conditions on the fluid–structure interface
within each time step.

The FSI problem can also be written as a nonlinear problem in
both the discrete interface position and the stress on the interface,
with again all other variables internal to the residual operator of
the problem. This system of equations has been solved with an
interface-block-quasi-Newton technique with two least-squares
reduced-order models (IBQN–LS) [29,30]. The reduced-order mod-
els and approximate Jacobians of the ‘‘black-box” flow solver and
the ‘‘black-box” structural solver are constructed with the informa-
tion on the fluid–structure interface during all the previous itera-
tions in the time step or even information from previous time
steps.

In this work, the technique to create an approximate Jacobian of
a black-box solver from Ref. [29] is employed to develop a new par-
titioned interface-quasi-Newton technique. The particularity of the
new technique is that an approximation for the inverse of the Jaco-
bian that appears in the Newton linearization is obtained such that
no linear system with the Jacobian has to be solved in every New-
ton–Raphson iteration and hence it is named IQN–ILS (interface-
quasi-Newton with inverse Jacobian from a least-squares model).
This new technique couples a black-box flow solver and black-
box structural solver and can be implemented easily in an FSI
framework that currently uses Gauss–Seidel iterations with or
without relaxation.

New partitioned solution techniques are usually compared with
other partitioned techniques at their introduction but the differ-
ence in terms of the duration of the simulation compared to mono-
lithic techniques remains unclear. Therefore, the performance of
the new partitioned IQN–ILS method is compared with a mono-
lithic Newton method for several FSI problems with an incom-
pressible fluid. To analyze the difference in performance between
both solution techniques without other causes for differences, ADI-
NA (Adina R&D Inc., Watertown, MA, USA) has been used as this
program is capable of both monolithic Newton–Raphson iterations
and partitioned iterations between the flow and structural solvers.
Only a small modification of the partitioned technique in ADINA
was necessary to enable the new IQN–ILS algorithm. Consequently,
both the mathematical model and the solver for the resulting equa-
tions are identical and also the convergence of the FSI problem is
controlled by ADINA such that both techniques solve the problem
to the same accuracy.

Previous comparisons between the monolithic solution of an FSI
problem and the partitioned solution with black-box solvers seem
to have been limited to 1D problems [31]. In this paper, 2D and 3D
cases with incompressible fluids from several authors [32–34] are
simulated. The limitations of the partitioned technique are demon-
strated and the influence of problem size, large displacements and
fluid/solid density ratio on the difference in performance are
analyzed.

The remainder of this paper is organized as follows: In Section
2, the equilibrium conditions and the governing equations of the
FSI problem are introduced. The new partitioned algorithm and
the monolithic algorithm of ADINA are explained in Section 3
and their performance is subsequently compared for five cases in
Section 4. Finally, the conclusions are given in Section 5.
2. Governing equations

In this section, the equilibrium conditions on the interface and
the governing equations for the fluid flow and the structure are
outlined briefly. The fluid domain and structural domain are indi-
cated as Xf and Xs, respectively, and their boundaries as Cf and
Cs. The fluid–structure interface Ci ¼ Cf \ Cs is the common
boundary of these domains. Fluid and solid are indicated with sub-
scripts f and s and values on the fluid–structure interface are
underlined [35,36].

2.1. Equilibrium conditions

The equilibrium conditions on the fluid–structure interface are
the kinematic condition

df ¼ ds ð1Þ

and the dynamic condition

nf � sf ¼ �ns � ss ð2Þ

with d the displacement, s the stress tensor and n the unit normal
vector that points outwards from the domain X. The Dirichlet–Neu-
mann formulation of the FSI problem is employed which means
that the flow equations are solved for a given velocity of the
fluid–structure interface whereas a stress is imposed on the fluid–
structure boundary of the solid domain.

2.2. Flow equations

The unsteady flow of an incompressible, isothermal fluid is gov-
erned by the conservation of mass and the Navier–Stokes equa-
tions, given by

r � v f ¼ 0 ð3aÞ

qf
@v f

@t
þ qfr � ðv f v f Þ � r � sf ¼ f f ð3bÞ

for x 2 Xf . The flow velocity is denoted by v f , qf is the fluid density,
t the time and f f the body forces per unit of volume on the fluid.
For a Newtonian fluid, the stress tensor is defined as sf ¼
�pIþ 2lc with c ¼ 1

2 ðrv f þ ðrv f ÞTÞ the rate of strain tensor and
l the fluid viscosity. In the Dirichlet–Neumann formulation, the
kinematic condition (1) on a no-slip interface results in

v f ¼ _ds ð4Þ

for x 2 Ci. Due to the time discretization, this velocity boundary
condition becomes an imposed displacement on the fluid–structure
interface. Appropriate conditions have to be imposed on the
remainder of the boundary Cf n Ci.

In FSI calculations, the flow equations have to be solved on a
moving mesh due to the deformation of the structure and therefore
they are discretized in the arbitrary Lagrangian–Eulerian formula-
tion. For the discrete equations in a control volume to be conserva-
tive in time, the volume swept by the control volume’s boundaries
must be calculated in such a way that it is consistent with the time
discretization of the change of its volume. Therefore, every discret-
ization has its own requirement with respect to a consistent calcu-
lation of the time-dependent geometric quantities [14] which is
also referred to as the geometric conservation law [37].

2.3. Structural equations

The deformation of the structure is determined by the conserva-
tion of momentum

qs
@2ds

@t2 �r � ss ¼ f s ð5Þ

for x 2 Xs with qs the structural density and f s the body force per
unit volume on the structure. The relation between the stress tensor
ss and the strains is given by the constitutive equation of the mate-
rial. Again using the Dirichlet–Neumann formulation, the stress is
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imposed by Eq. (2) for x 2 Ci and suitable boundary conditions have
to be applied on Cs nCi.

2.4. Algebraic equations

The discretization of the mathematical model in space with fi-
nite elements and in time with the time integration algorithm of
Ref. [38] for both the structural and the fluid flow response, which
makes the integration ‘consistent’, results in a system of algebraic
equations. The solution vectors corresponding to the nodes of the
fluid and solid domain are defined as Xf and Xs and the interface
values are consequently given by ds ¼ dsðXsÞ and sf ¼ sf ðXf Þ. The
algebraic equations for the fluid–structure interaction problem
are written concisely as

FðXÞ �
Ff ðXf ;dsðXsÞÞ
FsðXs; sf ðXf ÞÞ

� �
¼ 0 ð6aÞ

with

X ¼
Xf

Xs

� �
ð6bÞ

the solution vector of the coupled problem and Ff and Fs the dis-
crete equations in Xf and Xs, respectively. When the flow problem
and the structural problem are not discretized in the same way on
the fluid–structure interface, the ’consistent’ transfer of variables
between both discretizations is required [14,33].

3. Solution techniques

In this section, we describe the partitioned and monolithic solu-
tion algorithms.

3.1. Partitioned interface-quasi-Newton method

As stated in the introduction, interface-Newton techniques
reformulate the FSI problem (6a) as an equation in the discrete po-
sition of the fluid–structure interface only

RðdsÞ ¼ 0 ð7Þ

with R the residual operator. The number of degrees-of-freedom in
the position of the interface d ds is denoted as p. If solving the flow
equations Ff ðXf ;dsÞ ¼ 0 for Xf with given ds is represented by the
function sf ¼ Ff ðdsÞ and similarly solving the structural equations
FsðXs; sf Þ ¼ 0 for Xs with given sf is denoted by ds ¼ Fsðsf Þ, then
the residual of the FSI problem is defined as

RðdsÞ ¼ Fs � Ff ðdsÞ � ds ð8Þ

To solve Eq. (7) using Newton–Raphson iterations

@Rk

@ds
Ddk

s ¼ �Rk ð9aÞ

dkþ1
s ¼ dk

s þ Ddk
s ð9bÞ

with Rk � Rðdk
s Þ 2 Rp�1, a linear system (9a) has to be solved in

every Newton–Raphson iteration. The Jacobian matrix @Rk=@ds has
to be known explicitly if a direct solver is used for this linear system
or it has to be possible to calculate the product of the Jacobian ma-
trix with a vector if this linear system is solved iteratively. However,
explicit calculation of the Jacobian of the residual operator would
require knowledge of the Jacobians of the solvers for the flow equa-
tions and structural equations while partitioned algorithms are
most useful if they couple existing flow solvers and structural solv-
ers without access to their Jacobian matrices. The matrix–vector
product can be approximated using finite-differences but this re-
quires an evaluation of the residual operator in every iteration of
the iterative solver.
In Ref. [29], a technique to approximate the Jacobian of a func-
tion based on a set of inputs and outputs of that function has been
introduced. In the present paper, it is shown that with a special
choice of the inputs and outputs, an approximation for the inverse
of the Jacobian @Rk=@ds can be obtained. With this approximated
inverse of the Jacobian, an interface-quasi-Newton technique is
constructed which does not require the solution of the linear sys-
tem (9a) in every Newton–Raphson iteration. The complete proce-
dure is given in the Box and is explained in detail below.

First an extrapolation of the interface position based on the pre-
vious time steps is calculated on line 1 where a left superscript
identifies the time level. If no left superscript is used, the current
time level nþ 1 is meant. The flow equations and structural equa-
tions are subsequently solved which results in a first residual vec-
tor R0. Because at least two residual vectors are required to
construct an approximate Jacobian, one iteration with a fixed
relaxation factor x is performed on line 3. The relaxation has to
prevent divergence such that Rðd1

s Þ can still be calculated.
Once at least two vectors R and ~ds are known, differences be-

tween the previous values (superscript i) and the last value (super-
script k) can be calculated

DRi ¼ Ri � Rk ð10aÞ
D~di

s ¼ ~di
s � ~dk

s ð10bÞ

for i ¼ 0; . . . ; k� 1. Each DRi corresponds to a D~di
s and these vectors

are stored as the columns of the matrices

Vk ¼ DRk�1 DRk�2 � � � DR1 DR0
� �

ð11aÞ

Wk ¼ D~dk�1
s D~dk�2

s � � � D~d1
s D~d0

s

h i
ð11bÞ

The number of columns in the matrices Vk and Wk is indicated
by q. If q would exceed p after a very high number of iterations, the
number of columns q in Vk and Wk is limited to p by discarding the
rightmost columns. The desired value of the residual is of course a
vector with zeros and the difference between this desired value
and the current value DR ¼ 0� Rk is subsequently approximated
as a linear combination of the known DRi

DR �
Xk�1

i¼0

ak
i DRi ¼ Vk

ak ð12Þ

with ak
i element i of ak 2 Rq�1. Because q 6 p, this problem is over-

determined and it is solved in the least squares sense [39]. To solve
the linear least squares problem, the so-called economy size QR-
decomposition of Vk is calculated using Householder transforma-
tions [39]

Vk ¼ Q kRk ð13Þ

with Qk 2 Rp�q orthogonal and Rk 2 Rq�q upper triangular. The coef-
ficient vector ak is obtained by solving the triangular system

Rk
ak ¼ Q kT

DR ð14Þ

for ak using back substitution. The D~ds that corresponds to DR is
then calculated as a linear combination of the previous D~di

s, similar
to Eq. (12), giving

D~ds ¼
Xk�1

i¼0

ak
i D

~di
s ¼Wk

ak ð15Þ

Since RðdsÞ ¼ ~dsðdsÞ � ds and since ak is a function of DR, this
results in the relation

Dds ¼Wk
ak � DR ð16Þ

between DR and Dds. The inverse approximate Jacobian is thus not
calculated explicitly but Eq. (16) is a procedure to calculate the
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product of the approximation (indicated with a hat) for the inverse
Jacobian and a vector DR ¼ �Rk

Dds ¼ ð@R̂k=@dsÞ�1ð�RkÞ ¼Wk
ak þ Rk ð17Þ

The position of the interface is finally updated on line 12.
If a residual vector is identical to another one or a linear combi-

nation of other residual vectors, one of the diagonal elements of Rk

will be zero. Consequently, the equation corresponding with that
row of Rk cannot be solved during the back substitution (14) and
the corresponding element of ak is set to zero.

Algorithm. Algorithm of the interface-quasi-Newton method
1: d0
s ¼ 5=2ðndsÞ � 2ðn�1dsÞ þ 1=2ðn�2dsÞ

2: ~d0
s ¼ Fs � Ff ðd0

s Þ and R0 ¼ ~d0
s � d0

s

3: d1
s ¼ d0

s þxR0

4: k ¼ 1
5: While not converged do
6: ~dk

s ¼ Fs � Ff ðdk
s Þ and Rk ¼ ~dk

s � dk
s

7: Vk ¼ ½DRk�1 . . . DR0� with DRi ¼ Ri � Rk

8: Wk ¼ ½D~dk�1
s . . . D~d0

s � with D~di
s ¼ ~di

s � ~dk
s

9: Vk ¼ QkRk

10: solve Rkak ¼ QkT
ð�RkÞ for ak using back substitution

11: Dds ¼Wk
ak þ Rk

12: dkþ1
s ¼ dk

s þ Dds

13: k ¼ kþ 1
14: Endwhile
0.05 m

Ø = 0.01 m

fixed

fixed
p = 0 Pa

no-slip

p = 1333.2 Pa
(0 ≤ ≤ t  0.003 s);

p = 0 Pa
(t > 0.003 s)

0.001 m

Fig. 1. Wave propagation in the straight elastic tube. Geometry, boundary
conditions and coarsest mesh for the solid (left) and fluid (right) model.
From Eq. (14), it can be seen that if part of DR is orthogonal to
Vk and thus to Q k, the decomposition coefficients ak will be zero for
that part of DR. Eq. (16) shows that this component of the residual
is not modified such that Gauss–Seidel iterations between the flow
solver and the structural solver are performed for this component
of the residual. Only the components of DR in the span of the col-
umns of Vk are reduced with Newton–Raphson iterations. In Ref.
[24], a stability analysis of Gauss–Seidel iterations between a flow
solver and a structural solver for the partitioned solution of the
flow in a straight flexible tube is presented and it is shown that
particular components of the residual with a low wave number
are unstable during Gauss–Seidel iterations. Hence, only these
components have to be reduced with Newton–Raphson iterations
while the remainder of the residual disappears during Gauss–Sei-
del iterations. This analysis forms the theoretical basis for the pre-
sented quasi-Newton method.

Generally, q	 p and thus the computational cost of this quasi-
Newton method is limited because it mainly consists of the
QR-decomposition of a p� q matrix and the solution of a q� q tri-
angular system. To reduce the number of quasi-Newton iterations
per time step, the matrices Vk and Wk as defined in Eq. (11b) can
be combined with those from r previous time steps

V 0k ¼ Vk nVk . . . n�rþ2Vk n�rþ1Vk
� �

ð18aÞ
W 0k ¼ Wk nWk . . . n�rþ2Wk n�rþ1Wk

� �
ð18bÞ

The value of r that results in the fastest convergence is prob-
lem dependent but the optimum is flat such that the performance
of the method is robust with respect to this parameter. The nota-
tion IQN–ILS (r) indicates that information from r time steps is re-
used. When information is reused, the relaxation on line 3 is not
required because at least two residual vectors are already known
at that point. The relaxation is then only performed in the first
time step.

3.2. Monolithic Newton method

In the monolithic Newton (MN) method, the flow equations and
structural Eq. (6a) are solved simultaneously with Newton–Raph-
son iterations
@Fk
f

@Xf

@Fk
f

@Xs

@Fk
s

@Xf

@Fk
s

@Xs

2
64

3
75 � DXk

f

DXk
s

" #
¼ �

Fk
f

Fk
s

" #
ð19aÞ

Xkþ1 ¼ Xk þ DXk ð19bÞ

with

Fk
f � Ff ðXk

f ;dsðXk
s ÞÞ ð20aÞ

Fk
s � FsðXk

s ; sf ðXk
f ÞÞ ð20bÞ

This straightforward approach ensures that the interaction be-
tween the fluid and the structure is taken into account during
the solution process due to the off-diagonal blocks of the Jacobian
matrix in Eq. (19a).

3.3. Solvers

In this study, the solution of the flow equations and the struc-
tural equations inside the residual operator (7) of the partitioned
approach was performed with a direct sparse solver and New-
ton–Raphson iterations but any other solver which is faster for a
specific flow or structural problem could be used.

4. Numerical studies

In this section, the partitioned IQN–ILS method and the MN
method are compared in five different FSI cases with incompress-
ible fluids. The average number of Newton–Raphson iterations per
time step (denoted as QN iterations) is only shown for the IQN–ILS
method because the MN method has to solve the flow equations,
the structural equations and their interaction with the same New-
ton–Raphson iterations while the quasi-Newton iterations in the
IQN–ILS method only solve the fluid–structure interaction. The
convergence criterion in the Euclidean norm for the solution of
the FSI problem is 10�2 for both the interface’s displacement and
the force on the interface, unless indicated otherwise. All calcula-
tions have been performed on a dedicated machine with two Intel
Xeon X5355 quad-core processors.

4.1. Wave propagation

The first case is the wave propagation in a straight, three-
dimensional elastic tube [32]. The dimensions, boundary condi-
tions and the coarsest mesh are shown in Fig. 1. The fluid has a
density of 1000 kg=m3 and a dynamic viscosity of 0:003 Pa � s and
it is modeled by 8-node flow-condition-based interpolation (FCBI)
elements [40]. The linear-elastic solid with density 1200 kg=m3,
Young’s modulus 300;000 N=m2 and Poisson’s ratio 0.3 is modeled
using 9-node shell elements. Hundred time steps of 0.0001 s are



Fig. 2. Wave propagation in the straight elastic tube. Pressure contours on the fluid–structure interface.
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performed and the pressure pulse applied at the inlet propagates
through the tube as shown in Fig. 2.

The goal of this problem is to show the influence of the problem
size on the difference in performance between the IQN–ILS and MN
method and the limitations of the partitioned technique. The calcu-
lation of the wave propagation has been performed on three
meshes with respectively 480, 3840 and 12,960 fluid elements
and 240, 960 and 2160 shell elements. Table 1 lists the average
number of quasi-Newton iterations per time step, the time spent
on the flow equations Ff , the structural equations Fs and on the
IQN algorithm (lines 7–12) in the entire simulation. The latter is
negligible with respect to the time spent on the flow and structural
equations. The table also indicates that the duration of the simula-
tion with IQN–ILS is approximately twice the duration of the one
with the MN method, regardless of the problem size. Without re-
use of the previous time steps, more than 10 quasi-Newton itera-
tions are required per time step of the partitioned simulation but
this has been reduced to approximately 3 by the reuse of informa-
tion from the 8 previous time steps.
Table 1
Wave propagation in the straight elastic tube. Average number of quasi-Newton
iterations per time step, total time spent on the flow equations Ff , the structural
equations Fs and on the IQN algorithm (lines 7–12 in the Box on page 9) in the entire
simulation and also the ratio of the time for the IQN–ILS simulation to the time for the
MN simulation. The coarse, medium and fine meshes consist of respectively 480, 3840
and 12,960 fluid elements and 240, 960 and 2160 shell elements.

Mesh Coarse Medium Fine

IQN–ILS (8)
QN iterations [–] 3.23 3.28 3.35
Time for Ff [s] 2121 27399 189692
Time for Fs [s] 32 137 370
Time for IQN [s] 1.63 6.44 15.29

MN
Time for Ff [s] 1005 14527 93689
Time for Fs [s] 123 559 1258
Ratio time IQN–ILS to time MN [–] 1.91 1.83 2.00
Table 2 shows that a partitioned simulation becomes more dif-
ficult as the tube length increases which is explained by the stabil-
ity analysis in Refs. [23,24]. The number of quasi-Newton iterations
in the first time step (n ¼ 1) increases significantly with increasing
length of the tube. However, the number of quasi-Newton itera-
tions averaged over all time steps and the ratio of the time for
the IQN–ILS simulation to the time for the MN simulation increase
more slowly until the tube length reaches 0.20 m due to the reuse
from previous time steps. For a tube of 0.40 m, the partitioned sim-
ulation failed in the first time step due to too large displacements
and forces during the quasi-Newton iterations. This indicates the
limitations of a partitioned FSI simulation.

4.2. Mass conservation

Because the deformations in the previous numerical example
are small, a similar experiment with large deformations is per-
Table 2
Wave propagation in the straight elastic tube. Average number of quasi-Newton
iterations per time step, number of quasi-Newton iterations in the first time step
(n ¼ 1), total time spent on the flow equations Ff , the structural equations Fs and on
the IQN algorithm (lines 7–12) in the entire simulation and also the ratio of the time
for the IQN–ILS simulation to the time for the MN simulation. The meshes consist of
respectively 480, 960, 1920 and 3840 fluid elements and 240, 480, 960 and 1920 shell
elements. For the longest tube, the partitioned simulation failed in the first time step.

Length [m] 0.05 0.10 0.20 0.40

IQN–ILS(8)
QN iterations [–] 3.23 3.68 4.62 –
QN iterations (n ¼ 1) [–] 11 16 23 –
Time for Ff [s] 2121 4113 10176 –
Time for Fs [s] 32 67 169 –
Time for IQN [s] 1.63 4.39 15.07 –

MN
Time for Ff [s] 1005 1475 3611 6326
Time for Fs [s] 123 251 504 1008
Ratio time IQN–ILS to time MN [–] 1.91 2.42 2.52 –



Fig. 3. Mass conservation test. Geometry, boundary conditions and mesh for the
solid (left) and fluid (right) model.

Table 3
Mass conservation test. Average number of quasi-Newton iterations per time step,
total time spent on the flow equations Ff , the structural equations Fs and on the IQN
algorithm (lines 7–12) in the entire simulation and also the ratio of the time for the
IQN–ILS simulation to the time for the MN simulation.

IQN–ILS
QN iterations [–] 8.13
Time for Ff [s] 512
Time for Fs [s] 355
Time for IQN [s] 2.13

MN
Time for Ff [s] 582
Time for Fs [s] 71
Ratio time IQN–ILS to time MN [–] 1.33
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formed. In the mass conservation test [33], the pressure at the inlet
and outlet of the tube is increased in 16 equal steps and the steady
solution is calculated in every step. The dimensions, boundary con-
ditions and the mesh for this test are shown in Fig. 3. The mass
flow rate at the inlet, middle and outlet of the tube in both the
monolithic and partitioned simulation is equal to the benchmark
results [33]. The fluid with density 1000 kg=m3 and dynamic
viscosity 1 Pa � s is also modeled by 8-node FCBI elements and
the Mooney–Rivlin solid with parameters js ¼ 109 Pa, C1 ¼
2� 105 Pa and C2 ¼ 105 Pa is modeled using 27/4 u/p solid ele-
ments [41,42]. In this case, the convergence criterion for the solu-
tion of the FSI problem is 10�3.

Fig. 4 shows the large deformations at the end of the simulation.
According to Table 3, the simulation with IQN–ILS takes 33% longer
than the simulation with the MN method but both algorithms are
capable of calculating the response. No information from the pre-
vious steps is reused by the IQN–ILS method because the boundary
conditions of subsequent steps are significantly different such that
information from previous steps is no longer relevant in the cur-
rent step. Again, the time spent on lines 7–12 of the IQN–ILS algo-
Fig. 4. Mass conservation test. Maximum principal stretch.
rithm is negligible in comparison with the time spent on the flow
and structural equations.

4.3. Strong coupling

The strong coupling test [33] is an unsteady test which is diffi-
cult due to the strong interaction between fluid and solid. The
dimensions, boundary conditions and the mesh for this test are
shown in Fig. 5. The fluid domain is discretized with 8-node FCBI
elements with density 1 kg=m3 and dynamic viscosity 1 Pa s. The
Mooney–Rivlin solid with parameters js ¼ 3:3333 Pa, C1 ¼
1:6667 Pa and C2 ¼ 0 Pa does not have inertia and consists of 8/1
u/p solid elements [41,42]. The simulation with time step 0.02 s
continues until the fluid domain has almost zero thickness. The
coarse mesh is constructed with 10 fluid elements and 1 solid ele-
ment and the fine mesh with 100 fluid elements and 4 solid ele-
ments. This case has been analyzed with a convergence criterion
of 10�4 for the solution of the FSI problem.

The IQN–ILS method passes the strong coupling test; the dis-
placement and velocity of the fluid–structure interface are shown
in Fig. 6. Table 4 indicates that the partitioned simulation is 1.76
times more expensive than the monolithic simulation on the
coarse mesh and 3.16 times more expensive on the fine mesh
although the number of quasi-Newton iterations is approximately
4.6 in both cases. As opposed to the wave propagation in Section
4.1, the problem size increases from the coarse to the fine mesh
but the number of degrees of freedom on the fluid–structure inter-
face remains constant and consequently the number of quasi-New-
ton iterations is similar on both meshes.

4.4. Shell in steady-state cross-flow

The shell in steady-state cross-flow is a benchmark with large
displacements [33]. The dimensions and boundary conditions for
this test are shown in Fig. 7 and the velocity at the inlet is in-
creased in 10 equal steps. The fluid has a density of 1000 kg=m3

and a dynamic viscosity of 0.1 Pa s and it is modeled by respec-
tively 13� 18� 8 and 24� 36� 15 8-node FCBI elements in the
Fig. 5. Strong coupling test. Geometry, boundary conditions and coarsest mesh for
the solid (grey) and fluid (white) model. The solid is confined to stay in the channel.



Table 4
Strong coupling test. Average number of quasi-Newton iterations per time step, total
time spent on the flow equations Ff , the structural equations Fs and on the IQN
algorithm (lines 7–12) in the entire simulation and also the ratio of the time for the
IQN–ILS simulation to the time for the MN simulation. The coarse and fine meshes
consist of respectively, 10 and 100 equal fluid elements and 1 and 4 equal solid
elements.

Mesh Coarse Fine

IQN–ILS
QN iterations [–] 4.58 4.65
Time for Ff [s] 112 691
Time for Fs [s] 1 2
Time for IQN [s] 0.24 0.31

MN
Time for Ff [s] 62 210
Time for Fs [s] 2 9
Ratio time IQN–ILS to time MN [–] 1.76 3.16

Fig. 7. Shell in steady-state cross-flow test. Geometry and boundary conditions for
the solid and fluid model.

Table 5
Shell in steady-state cross-flow test. Average number of quasi-Newton iterations per
time step, total time spent on the flow equations Ff , the structural equations Fs and on
the IQN algorithm (lines 7–12) in the entire simulation and also the ratio of the time
for the IQN–ILS simulation to the time for the MN simulation. The coarse and fine
meshes consist of respectively 13� 18� 8 and 24� 36� 15 fluid elements and
6� 12 solid elements.

Mesh Coarse Fine

IQN–ILS(1)
QN iterations [–] 3.22 3.22
Time for Ff [s] 119 2506
Time for Fs [s] 12 14
Time for IQN [s] 0.01 0.06

MN
Time for Ff [s] 186 4510
Time for Fs [s] 3 3
Ratio time IQN–ILS to time MN [–] 0.69 0.56
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coarse and fine meshes. The linear-elastic solid with Young’s mod-
ulus 70� 109 N=m2 and Poisson’s ratio 0.3 is modeled using 6� 12
equal MITC4 shell elements with thickness 1:25� 10�3 m.

The partitioned simulation yields the benchmark results ob-
tained with the monolithic method. Table 5 indicates that the
IQN–ILS method is faster for this simulation, on the coarse mesh
and even more on the fine mesh. The IQN–ILS algorithm required
on average 3.22 iterations per step and reused information from
the previous step to accelerate the convergence.
Fig. 8. Flexible restrictor in the converging channel. Geometry, boundary condi-
tions and mesh for the solid (black) and fluid (white) model.

Fig. 9. Flexible restrictor in the converging channel. Horizontal velocity.
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4.5. Restrictor in converging channel

The last example is a flexible restrictor flap in a converging
channel [34] which is used to demonstrate the effect of the fluid/
solid density ratio on the performance difference. The dimensions,
boundary conditions and mesh for this simulation are shown in
Fig. 8, as well as the points A and B which are located on the left
hand side of the restrictor. Fig. 8 represents half of the channel
and a symmetry boundary condition is applied on the top edge.
The fluid with dynamic viscosity 0.1 Pa s is modeled with 4-node
FCBI elements. The linear-elastic solid with density 1500 kg=m3,
Young’s modulus 2.3 � 106 N/m2 and Poisson’s ratio 0.45 is mod-
eled with 9-node solid elements. A total of 250 time steps of
0.1 s are calculated. For the reference fluid density of 956 kg=m3,
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Table 6
Flexible restrictor flap in a converging channel. Average number of quasi-Newton
iterations per time step, total time spent on the flow equations Ff , the structural
equations Fs and on the IQN algorithm (lines 7–12) in the entire simulation and also
the ratio of the time for the IQN–ILS simulation to the time for the MN simulation. The
density of the fluid is varied from 250 kg=m3 to 1750 kg=m3, the density of the solid is
1500 kg=m3.

qf [kg/m3] 250 500 750 956 1300 1500 1750

IQN–ILS (2)
QN iterations [–] 1.51 1.97 2.30 2.48 2.46 2.53 2.80
Time for Ff [s] 174 273 355 404 433 460 516
Time for Fs [s] 1 4 4 5 6 5 9
Time for IQN [s] 0.16 0.16 0.33 0.39 0.48 0.40 0.71

MN
Time for Ff [s] 125 155 177 186 200 207 213
Time for Fs [s] 8 10 11 12 13 12 13
Ratio time IQN–ILS to time MN

[–]
1.32 1.67 1.91 2.07 2.07 2.13 2.33
the horizontal velocity in the entire field is depicted in Fig. 9 and
the pressure and horizontal displacement of the points A and B
are shown in Fig. 10.

The fluid density is subsequently varied from 250 kg=m3 to
1750 kg=m3 and the comparison between the IQN–ILS and MN
method is given in Table 6. As the fluid density increases, the ratio
of the time for the IQN–ILS simulation to the time for the MN sim-
ulation increases from 1.32 to 2.33 and the average number of qua-
si-Newton iterations per time step increases from 1.51 to 2.80. This
effect of the fluid/solid density ratio is expected and explained by
the stability analysis of partitioned FSI algorithms in Refs.
[23,24]. Information from the two previous time steps is reused
by the IQN–ILS method.

5. Conclusions

A new interface-quasi-Newton (IQN) algorithm for partitioned
FSI simulations has been presented. The algorithm can easily be
implemented as a replacement for existing algorithms because as
in other schemes the flow solver and structural solver are treated
as ‘‘black-boxes”. The performance has been compared with mono-
lithic Newton (MN) simulations in five different cases considering
various structural configurations and incompressible fluids. For
each case when convergence was reached, the ratio of the time
for the IQN simulation to the time for the MN simulation was be-
tween 1/2 and 4, but of course there are cases for which the parti-
tioned simulations do not converge.

The conclusions of a comparison as given here are difficult to
generalize. First, while problems of various characteristics have
been solved, still, only specific problems have been considered
and in general rather small problems in number of equations. Sec-
ond, the solutions of the structural equations and the flow equa-
tions have been obtained using a direct sparse solver with full
Newton–Raphson iterations. However, different solver schemes,
in particular much more efficient for the fluid equations when
the number of elements becomes very large, are frequently used,
in ADINA and otherwise, see for example, [43]. The performance
comparisons may look different when different problems are
solved and other solver schemes are used.

We should also mention that the data transfer to a separate pro-
gram, in which the IQN algorithm has been implemented, has been
neglected. This data transfer would not exist if the algorithm were
implemented together with the solver programs, and needs to be
optimized otherwise.

However, while there are these shortcomings of the study, the
new algorithm is valuable, and the general observations given in
the paper can be used to assess whether a monolithic or parti-
tioned solution of a fluid–structure interaction problem might be
more effective.
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