
Computers and Structures 186 (2017) 11–21
Contents lists available at ScienceDirect

Computers and Structures

journal homepage: www.elsevier .com/locate /compstruc
The Bathe subspace iteration method enriched by turning vectors
http://dx.doi.org/10.1016/j.compstruc.2017.02.006
0045-7949/� 2017 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail address: kjb@mit.edu (K.J. Bathe).
Ki-Tae Kim, Klaus-Jürgen Bathe ⇑
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Received 29 December 2016
Accepted 19 February 2017
Available online 29 March 2017

Keywords:
Structural dynamics
Frequencies and mode shapes
Finite element method
Bathe subspace iteration
Large eigenvalue problems
Parallel processing
We present a novel extension of the Bathe subspace iteration method for the solution of the generalized
eigenvalue problem in structural dynamics. The key idea is to enrich the subspace by using some turning
vectors to replace current iteration vectors. The turning vectors are evaluated from the subspace of the
current iteration. The scheme is simple and a considerable improvement in computational efficiency is
achieved. A simplified convergence analysis is given and the results of some example solutions show
the effectiveness of the method.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

An essential step in structural dynamics is to evaluate some fre-
quencies and mode shapes of the structure considered, and in
today’s analyses very large finite element systems are solved. Hence
extensive efforts have been made to establish effective eigensolu-
tion techniques. The Bathe subspace iteration method [1–4] is a
successful scheme and has been abundantly employed in research
and industry because of its robustness and effectiveness.

An attractive ingredient of the Bathe subspace iteration method
is that it is particularly amenable to parallel implementations. As
discussed in Ref. [5], by partitioning the iteration vectors, most
computations in the method can be programmed in shared and
distributed memory processing and a linear increase in solution
time with the number of eigenpairs sought is achieved.

Another widely used method is the Lanczos method [4,6].
Although the method initially suffered from numerical instabilities
resulting from the loss of orthogonality, techniques have been pro-
posed to overcome this deficiency and at present variations of the
Lanczos method enjoy much success, see for example [7–9]. Using
this method, the computational cost increases almost linearly pro-
portional to the number of eigenpairs sought, which makes the
method also efficient when many eigenpairs are needed. However,
since the algorithmic steps in the solution are sequential, the tech-
nique is not directly suitable to parallel processing.

Since the Bathe subspace iteration method is widely used and
particularly suited to parallel processing, it is of great interest to
speed up the iterations. This speed-up should be achieved even
without parallel processing and should be present in particular
when seeking many eigenpairs (typically more than 100 pairs) of
very large eigenvalue problems. In fact, single processor solutions
provide a good test for basic increases in efficiency, and any signif-
icant decrease in solution times is very valuable.

In this paper, we present a novel algorithm to accelerate the
Bathe subspace iteration method. In the basic method, the sub-
space iteration vectors turn in each iteration a certain amount
towards the required subspace vectors [4,5]. The fundamental idea
for accelerating the iterations is to use the direction of turning of
the subspace in the iterations. This is achieved by establishing
new iteration vectors denoted as ‘‘forward turning vectors” to
replace iteration vectors that are much less useful. This enrichment
of the iterations is a simple addition to the basic Bathe subspace
iteration method, and yields a considerable reduction in computa-
tional cost.

In the following sections, we first describe the algorithm,
referred to as the ‘‘enriched subspace iteration method”. Then we
provide a simplified convergence analysis to give some insight into
how the new vectors accelerate the iterations. Finally, we give the
results of some example solutions to demonstrate the performance
of the scheme.

2. The enriched subspace iteration method

We consider the generalized symmetric eigenvalue problem

Ku ¼ kMu ð1Þ
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where K and M are the stiffness matrix and the consistent mass
matrix of a finite element system with n degrees of freedom. The
matrices K and M are assumed (without loss of generality [4]) to
be positive definite. We seek the smallest p eigenvalues and corre-
sponding eigenvectors ðki;uiÞ; i ¼ 1; . . . ; p, with the ordering

0 < k1 6 k2 6 � � � 6 kp; ð2Þ
which satisfy

Kui ¼ kiMui ð3Þ
and

uT
i Muj ¼ dij; ð4Þ

uT
i Kuj ¼ kidij ð5Þ

where dij is the Kronecker delta.
In the following we describe the algorithm used to solve for

these eigenvalues and eigenvectors.

2.1. The algorithm

We start the enriched subspace iteration method by using first a
simple scheme given in Refs. [4,5] to construct q linearly indepen-
dent vectors inMX0, with q > p, in which the diagonal entries ofM,
unit vectors that excite the degrees of freedom of the maximum
values mii=kii and a random vector are used. Usually
q ¼ maxf2p; pþ 8g. Using the linear independent vectors in MX0,
we perform a single iteration using the basic subspace iteration
method to obtain the M-orthonormal starting iteration vectors in
X1, which span the q-dimensional subspace E1, and makes it possi-
ble to directly use the enrichment algorithm.

– The 10 steps in each iteration

For each iteration k ¼ 1; 2; . . ., the following steps 1–10 are per-
formed until convergence is established to the p required eigenval-
ues. Steps 1–5 include the enrichment by establishing and using
the ‘forward turning vectors’ and steps 6–10 are as in the basic
subspace iteration method.

1. For k ¼ 1; 2; . . ., partition the iteration vectors which span Ek
(b)
Xk ¼ ½Uk;X
a
k;X

b
k� ð6Þ

where Uk stores the pk vectors which have converged to the
required tolerance in the previous iterations, with p1 ¼ 0,
and the rest of the iteration vectors are equally partitioned

into Xa
k and Xb

k , which are both of order n� rk. Hence we
use rk ¼ ðq� pkÞ=2.

2. Evaluate Xa
kþ1
KXa
kþ1 ¼ MXa

k: ð7Þ
3. Construct Yk of order n� rk using the following steps in

part (a) and thereafter part (b):
Fig. 1. Geometrical illustration of the subspaces Ek and Ekþ1 when M ¼ I and only
two iteration vectors are considered: (a) in the basic method and (b) in the enriched
method; the red (blue) vectors span the red (blue) plane. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)
(a) Calculate in reverse order the amount of turning of the
iteration vectors in Xa

kþ1 and choose the vectors for
which the measure used is larger than the tolerance
tolt, i.e., for i ¼ rk; rk � 1; . . . ; 2; 1, with tk ¼ 0, evaluate
in this part (a):

bxi ¼ xaðkþ1Þ
i � Xk XT

kMxaðkþ1Þ
i

� �
�
Xtk
j¼1

uj uT
j Mxaðkþ1Þ

i

� �
ð8Þ

where xaðkþ1Þ
i is the ith column vector in Xa

kþ1 and the last
term is only included if tk P 1. Then evaluate
ai ¼
bxT
i Mbxi

ðxaðkþ1Þ
i ÞTMxaðkþ1Þ

i

: ð9Þ

If ai 6 tolt go to the next value of i. If ai > tolt we proceed
as follows

tk ¼ tk þ 1; ð10Þ

utk ¼
bxiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibxT
i Mbxi

q ; ð11Þ

vtk ¼ xaðkþ1Þ
i ð12Þ

and now go to the next value of i.

(b) Next, let tk be the last value reached in the above loop,
part (a). We now construct Yk ¼ xbðkÞ

1 ; . . . xbðkÞ
rk�tk

;
h

v1; . . . ; vtk

i
where xbðkÞ

i , i ¼ 1; . . . ; rk � tk, are the first
rk � tk column vectors in Xb

k . We denote the ith column
vector in Yk by yðkÞ

i . Calculate for i ¼ 1; . . . ; tk

exi ¼ vi � Xa
k ðXa

kÞTMvi

� �
�UkðUT

kMviÞ

�
Xrk�tkþi�1

j¼1

yðkÞ
j ðyðkÞ

j ÞTMvi

� �
; ð13Þ

yðkÞ
rk�tkþi ¼

exiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiexT
i Mexi

q : ð14Þ

Here, we call exi, i ¼ 1; . . . ; tk, and their normalizations by
Eq. (14) the ‘turning vectors’.

4. Evaluate Ykþ1 from
KYkþ1 ¼ MYk ð15Þ

where we now have in Ykþ1 the ‘forward turning vectors’
which are the key ingredient to obtain a faster convergence.



Table 1
Comparison of operation counts (number of multiplications); the results of the basic method are taken from Refs. [3,4]; for the enriched method, we also consider the algorithm summarized in Appendix A; herem denotes the mean half-
bandwidth of K and M.

Basic subspace iteration method Enriched subspace iteration method

Operation Calculation Number of operations Operation Calculation Number of operations

Factorization of K K ¼ LDLT 1
2 nm

2 þ 3
2nm Factorization of K K ¼ LDLT 1

2 nm
2 þ 3

2nm

Iteration KXkþ1 ¼ Rk nqð2mþ 1Þ Iteration
Rk ¼ Wk

n�pk
; Ra

k
n�rk

; Rb
k

n�rk

" #
Kkþ1 ¼ XT

kþ1Rk
1
2 nqðqþ 1Þ KXa

kþ1 ¼ Ra
k

nrkð2mþ 1Þ
Rkþ1 ¼ MXkþ1 nqð2mþ 1Þ ½DT

kþ1;A
T
kþ1;B

T
kþ1� ¼ ðXa

kþ1Þ
T
Rk nrkðpk þ rkþ1

2 þ rkÞ
Mkþ1 ¼ XT

kþ1Rkþ1
1
2 nqðqþ 1Þ Ra

kþ1 ¼ MXa
kþ1

nrkð2mþ 1Þ
Kkþ1Q kþ1 ¼ Mkþ1Q kþ1Kkþ1 oðq3Þ Ckþ1 ¼ ðXa

kþ1Þ
T
Ra
kþ1

1
2 nrkðrk þ 1Þ

Rkþ1 ¼ Rkþ1Q kþ1 nq2 Check the amount of turning (see step (a) in Appendix A) oðqr2k Þ
Total in single iteration nqð4mþ 2qþ 3Þ þ oðq3Þ
Sturm sequence check K ¼ K� lM nðmþ 1Þ Calculate Skð¼ MYkÞ (see step (b) in Appendix A) ntkðqþ 1Þ

K ¼ LDLT 1
2 nm

2 þ 3
2nm

KYkþ1 ¼ Sk nrkð2mþ 1Þ

Kkþ1 ¼
Kk sym:
0 Akþ1
0 YT

kþ1R
a
k YT

kþ1Sk

24 35 nrkðtk þ rkþ1
2 Þ

Rb
kþ1 ¼ MYkþ1 nrkð2mþ 1Þ

Mkþ1 ¼
I sym:

DT
kþ1 Ckþ1

YT
kþ1Wk YT

kþ1R
a
kþ1 YT

kþ1R
b
kþ1

24 35 nrkðpk þ rk þ rkþ1
2 Þ

Kkþ1Q kþ1 ¼ Mkþ1Q kþ1Kkþ1 oðq3Þ
Rkþ1 ¼ ½Wk;Ra

kþ1;R
b
kþ1�Q kþ1 nq2

Total in single iteration 2nrkð4mþ qþ 3Þ þ nq2 þ ntkðqþ rk þ 1Þ þ oðq3Þ
Sturm sequence check K ¼ K� lM nðmþ 1Þ

K ¼ LDLT 1
2 nm

2 þ 3
2nm

K
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Fig. 2. Relative errors measured in the solution of the simple example problem
when using the basic method and the enriched method: (a) first, (b) second and (c)
third eigenvalues; the dashed lines give the theoretical convergence rates.
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5. Construct Xkþ1 where the column vectors span Ekþ1
Xkþ1 ¼ ½Uk;Xa
kþ1;Ykþ1�: ð16Þ

6. Project the matrices K and M onto the subspace Ekþ1
Kkþ1 ¼ XT
kþ1KXkþ1; ð17Þ

Mkþ1 ¼ XT
kþ1MXkþ1: ð18Þ

7. Solve for the eigensystem of the projected matrices
Kkþ1Q kþ1 ¼ Mkþ1Q kþ1Kkþ1: ð19Þ
8. Calculate an improved approximation to the eigenvectors
Xkþ1 ¼ Xkþ1Q kþ1: ð20Þ
9. Measure which of the eigenvalue approximations kðkþ1Þ
i have

converged [4], that is, satisfy
1� ðkðkþ1Þ
i Þ2

ðqrrðkþ1Þ
i ÞTqrrðkþ1Þ

i

24 351=2

6 tolc; i ¼ pk þ 1; . . . ;p ð21Þ

where qrrðkþ1Þ
i is the ði� pkÞth column vector in Q rr

kþ1 with
Q rr

kþ1 being a 2rk � 2rk submatrix obtained by partitioning
Q kþ1 into

Q kþ1 ¼ Q cc
kþ1 Q cr

kþ1

Q rc
kþ1 Q rr

kþ1

" #
ð22Þ

where the submatrices Q cc
kþ1; Q

cr
kþ1 and Q rc

kþ1 are of order
pk � pk; pk � 2rk and 2rk � pk, respectively.

10. Update the number of converged iteration vectors to pkþ1

and increase k if pkþ1 < p.
– End of 10 steps in each iteration

In the above iteration, it is effective to order the iteration vec-
tors such that the corresponding approximate eigenvalues increase
in magnitude. Then, provided that the starting iteration vectors in
X1 are not M-orthogonal to one of the eigenvectors sought we
have, for i ¼ 1; . . . ; p,

kðkþ1Þ
i ! ki and xðkþ1Þ

i ! ui as k ! 1 ð23Þ

where xðkþ1Þ
i is the ith column vector in Xkþ1, see Section 3.

Note that in step 3(a) we consider the vectors bxi,
i ¼ rk; rk � 1; . . . ; 2; 1, which are M-orthogonal to all previous iter-
ation vectors in Xk and choose only the corresponding vectors

xaðkþ1Þ
i that are providing a stable solution. With the ordering of

the iteration vectors given above, the amount of turning is negligi-
ble for the first few iteration vectors, and near convergence very

small. Hence we consider the vectors xaðkþ1Þ
i in reverse order in

Eq. (8). In step 3(b) then, the vectors exi, i ¼ 1; . . . ; tk, are M-
orthogonalized to the vectors in Uk and Xa

k and the first rk � tk col-

umn vectors in Xb
k .

In the actual implementation, we do not evaluate Eq. (8), and
instead proceed to calculate the ai values using the efficient algo-
rithm given Appendix A. Also, as shown in the appendix some
results obtained in step 3 can be reused in Eqs. (17) and (18).

The turning vectors in Yk are M-orthonormal and improved by
solving Eq. (15). The entries in Ykþ1 corresponding to the turning
vectors are the ‘forward turning vectors’. For example, consider a

subspace Ek spanned by fxðkÞ
1 ;xðkÞ

2 g. We also assume that the turning

vector of xðkÞ
1 is used, so that yðkÞ

1 ¼ ex1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiexT
1Mex1

q.
. Since yðkÞ

1 can be

expressed as a linear combination of xðkÞ
1 and xðkþ1Þ

1 , yðkþ1Þ
1 is equal

to a linear combination of xðkþ1Þ
1 and xðkþ1Þ

1 where

xðkþ1Þ
1 ¼ K�1ðMxðkþ1Þ

1 Þ, and thus yðkþ1Þ
1 can be interpreted as a for-

ward turning vector. Fig. 1 shows geometrically the subspace
Ekþ1 used in the basic subspace iteration method and that used in
the enriched subspace iteration method, when M ¼ I.

Table 1 summarizes the complete procedure of the enriched
subspace iteration method and gives the number of operations
required with a comparison to the basic subspace iteration
method. Here, one operation means one multiplication which
almost always is followed by one addition.

An important aspect of enriching the subspace by forward turn-
ing vectors is that for the vector for which the turning is used, a
single iteration in the enriched subspace iteration method has
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the effect of two iterations in the basic subspace iteration method.
Furthermore, the computational effort related to the enrichment is
not expensive. In a single iteration the number of operations
(neglecting the oðq3Þ operations) of the enriched method is
2nrkð4mþ qþ 3Þ þ nq2 þ ntkðqþ rk þ 1Þ and the basic method is
nqð4mþ 2qþ 3Þ where m is the half-bandwidth of K and M, see
Table 1. Of course, when rk ¼ q=2 and tk ¼ 0, the computational
effort in both methods is the same. As an example when the
enrichment is used, consider in three-dimensional analysis,
m ¼ q and rk ¼ tk ¼ q=2 (although in practice rk actually decreases
as the iterations are performed). The ratio of the number of opera-
tions per iteration is then about 1.125, giving a 12.5% increase in
the computational effort per iteration using the enrichment
scheme. In many practical large scale analyses the increase in the
cost is probably smaller because the half-bandwidth of the system
is large, and indeed the increase may be practically negligible.
Hence, considering not only the acceleration of the iteration by
the use of turning vectors but also the inexpensive computational
cost, the enrichment leads to a significant speed-up in solving the
eigenvalue problem.

It is also important to note that the use of the turning vectors
preserves the important characteristic of the basic subspace itera-
tion method that the method is amenable to parallel processing, as
discussed in Ref. [5]. Indeed, the computations in steps 2, 4, 6 and
8, in which most of the computational effort in the iterations is
expended, can be parallelized as presented in Ref. [5]. The opera-
tions in step 3 can be also partly parallelized. Only some operations
in the last summation of Eq. (13) are not amenable to parallel pro-
cessing because in the loop the vector vi is used with the vectors

yðkÞ
j , j ¼ rk � tk þ 1; . . . ; rk � tk þ i� 1, which were previously calcu-

lated in the same loop. However, the computational effort for this
sequential algorithm is relatively small compared to the other
computations which can be performed in parallel processing.

Several different ways could be developed to exploit the idea of
using turning vectors, like dividing the iteration vectors in step 1
such that the number of vectors in Xa

k is equal to p� pk. However,
we focus in this paper on the simple dividing scheme described
above.
2.2. Additional aspects

In the enriched subspace iteration method, the reduction in
solution time is achieved by, firstly, the enrichment using forward
turning vectors, which is most significant, and, secondly, by not
performing the iteration for the converged iteration vectors. The
second aspect is not important when only few eigenpairs are
required, as it was the case in the early use of the method.

Considering that in the method the multiplication of the con-
sistent mass matrix M by the iteration vectors might be computa-
tionally expensive and that the mode shapes are in many cases
not very different from those of the same discretization using a
lumped mass matrix, a further reduction in computations may
be achieved by performing first a few iterations using a diagonal
mass matrix. We construct this diagonal mass matrix using the
diagonal elements of the consistent mass matrix M and scaling
these elements so that all mass of the finite elements is applied.
We call the eigenproblem using this lumped mass matrix the
‘‘associated eigenvalue problem” to the generalized eigenvalue
problem in Eq. (1).

The solution procedure is then as follows:

(i) Establish the q starting iteration vectors, q > p, as discussed
in Section 2.1.

(ii) Perform the enriched subspace iterations to solve the ‘‘asso-
ciated eigenvalue problem” until a stopping criterion is sat-
isfied (this step might not be included, see example
solutions).

(iii) Using the solutions obtained from step (ii) continue the
enriched subspace iterations to solve the generalized eigen-
value problem (Eq. (1)).

(iv) Carry out the Sturm sequence check to verify that the
required eigenvalues and eigenvectors have indeed been cal-
culated [1,4].

Simple options are possible for the stopping criterion in step
(ii): for example, we may stop when the error bounds for all the
eigenvalues sought are below the tolerance tols or we may stop



Table 2
Finite element meshes used to solve the beam problem.

Name Number of elements
(cross section � length)

Degrees of
freedom

Half-bandwidth

B-MESH1 8 � 8 � 2200 534,357 243
B-MESH2 10 � 10 � 2800 1,016,037 363
B-MESH3 12 � 12 � 3000 1,520,493 507

Table 3
Finite element meshes used to solve the wall problem.

Name Number of elements
(width � length � height)

Degrees of
freedom

Half-bandwidth

W-MESH1 12 � 52 � 52 107,484 2067
W-MESH2 12 � 72 � 72 204,984 2847
W-MESH3 12 � 86 � 86 291,798 3393

Table 4
Finite element meshes used to solve the ring problem.

Name Number of elements
(radius � axis � circumference)

Degrees of
freedom

Half-bandwidth

R-MESH1 14 � 14 � 320 216,000 675
R-MESH2 18 � 18 � 360 389,880 1083
R-MESH3 22 � 22 � 380 603,060 1587

Table 5
CPU time for calculating the smallest p ¼ 100 eigenvalues of the beam problem when
using the associated eigenvalue problem; mesh used is B-MESH1 (n ¼ 534;357 and
m = 243); if the associated eigenvalue problem is not used, 15 iterations are
performed and 1540 s are used.

tols Number of iterations performed or
number of iterations allowed in the
associated eigenvalue problem

Total number of
iterations
performed

Total
CPU
time (s)

10�1 9 17 1583

10�2 10 18 1639

10�3 11 18 1630

10�4 12 19 1687

10�5 13 20 1735

10�6 15 22 1826

3 15 1542
4 15 1480
5 15 1471
6 16 1539

Table 6
CPU time for calculating the smallest p ¼ 100 eigenvalues of the wall problem when
using the associated eigenvalue problem; mesh used is W-MESH1 (n ¼ 107;484 and
m = 2067); if the associated eigenvalue problem is not used, 12 iterations are
performed and 1282 s are used.

tols Number of iterations performed or
number of iterations allowed in the
associated eigenvalue problem

Total number of
iterations
performed

Total
CPU
time (s)

10�1 4 12 1140

10�2 5 13 1219

10�3 6 14 1272

10�4 7 15 1318

10�5 10 18 1452

10�6 13 21 1531

3 12 1156
4 12 1140
5 13 1219
6 14 1272

Table 7
CPU time for calculating the smallest p ¼ 100 eigenvalues of the ring problem when
using the associated eigenvalue problem; mesh used is R-MESH1 (n ¼ 216;000 and
m = 675); if the associated eigenvalue problem is not used, 11 iterations are
performed and 977 s are used.

tols Number of iterations performed or
number of iterations allowed in the
associated eigenvalue problem

Total number of
iterations
performed

Total
CPU
time (s)

10�1 4 12 944

10�2 6 13 992

10�3 7 14 1038

10�4 8 15 1080

10�5 9 16 1056

10�6 12 19 1213

3 12 956
4 12 944
5 12 949
6 13 1012

Table 8
Speed-up of the enriched method when compared to the basic method for the beam
problem.

Numerical model p Speed-up

50 4.95
B-MESH1 (n ¼ 534;357 and m = 243) 100 3.62

150 2.93

50 5.41
B-MESH2 (n ¼ 1;016;037 and m = 363) 100 3.23

150 2.75

50 4.54
B-MESH3 (n ¼ 1;520;493 and m = 507) 100 3.18

150 2.73
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when the number of iterations reaches a prescribed number of
iterations. We experimented with both options, see Section 4.

3. A simplified convergence analysis

In the previous section we discussed the new scheme and
merely stated that if the subspace iteration converges, the required
eigenpairs have been obtained. Here we examine in a simple way
the iteration properties to obtain insight into how the forward
turning vectors accelerate the convergence of the iterations.

The first (conceptual) step is to consider the iterations in the
basis of eigenvectors [4,10,11]

Xk ¼ UZk ð24Þ
whereU ¼ ½u1; . . . ;un� and since XT

kMXk ¼ I, it follows that ZT
kZk ¼ I.

Introducing this change of basis into Eq. (7) leads to

KZa
kþ1 ¼ Za

k ð25Þ
where Za

k of order n� rk corresponds to the first rk vectors in Zk. We
assume here, for simplicity, that q ¼ 2p, pk ¼ 0, hence rk ¼ p, and
that all the turning vectors are employed for use of corresponding
forward turning vectors. The subspace Ekþ1 is then the subspace

spanned by fZa
kþ1;Z

a
kþ1g with Za

kþ1 ¼ K�1Za
kþ1.

For the analysis, let us consider a matrix Nk defined by [4,11]

Nk ¼

1 0 � � � 0
0 1 � � � 0
..
. ..

. ..
.

0 0 � � � 1
nðkÞqþ1;1 nðkÞqþ1;2 � � � nðkÞqþ1;q

nðkÞqþ2;1 nðkÞqþ2;2 � � � nðkÞqþ2;q

..

. ..
. ..

.

nðkÞn;1 nðkÞn;2 � � � nðkÞn;q

26666666666666666664

37777777777777777775

: ð26Þ



Table 9
CPU time used in each iteration for calculating the smallest p ¼ 100 eigenvalues of the
beam problem when using the basic method and the enriched method; mesh used is
B-MESH3 (n ¼ 1;520;493 and m = 507); 0 denotes establishing the starting iteration
vectors and performing a single iteration in the basic method, as described in
Section 2.1, for the associated eigenvalue problem; 00 denotes performing the M-
orthonormalization of the iteration vectors.

Basic subspace iteration
method

Enriched subspace iteration method

Total
number of
iterations
performed

Average
CPU time
(s) in each
iteration/
Total CPU
time (s)

Iteration
number

Number
of
turning
vectors
used in
iteration

Cumulative
number of
converged
vectors
after
iteration

CPU time
(s) used in
iteration/
Rounded
cumulative
CPU time
(s)

44 583/
25,664

0 367/367

1 100 439/805
2 84 429/1234
3 68 412/1646
4 49 388/2034
5 36 367/2401
00 308/2709
6 81 6 640/3349
7 47 26 598/3947
8 31 35 530/4477
9 28 42 502/4979
10 21 50 477/5456
11 16 57 451/5907
12 12 66 430/6338
13 7 77 400/6738
14 3 87 366/7104
15 1 91 337/7442
16 0 99 326/7768
17 1 109 305/8072
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Assuming that the iteration vectors in Zk are not deficient in the
vectors bei, i ¼ 1; . . . ; q, which are the eigenvectors corresponding

to the lowest q eigenvalues of K, the vectors zaðkÞi , i ¼ 1; . . . ; p, in
Za
k can be expressed as

zaðkÞi ¼ cðkÞi nðkÞi þ dðkÞi rðkÞi ð27Þ

with the ith column vector nðkÞi in Nk, some coefficients cðkÞi and dðkÞi ,

and a residual vector rðkÞi . We also note that since the vectors in Za
k in

the basic subspace iteration with p iteration vectors converge to the
smallest p eigenvectors sought [11], we have that, for i ¼ 1; . . . ; p,

nðkÞi ! bei; cðkÞi ! 1 and dðkÞi ! 0 as k ! 1: ð28Þ

Let us now assume that dðkÞi is small, equal to eðkÞi � 1. The cor-

responding vectors zaðkþ1Þ
i , i ¼ 1; . . . ; p, in Za

kþ1 are then

zaðkþ1Þ
i ¼ cðkÞi K�2nðkÞi þ eðkÞi K�2rðkÞi ð29Þ

and we have

kk2i zaðkþ1Þ
i � beik2

kzaðkÞi � beik2
¼ kcðkÞi k2i K

�2nðkÞi þ oðeðkÞi ÞrðkÞi � beik2
kcðkÞi nðkÞi þ oðeðkÞi ÞrðkÞi � beik2

¼ kk2i K�2nðkÞi � beik2
knðkÞi � beik2

þ oðeðkÞi Þ

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
j¼qþ1

ki
kj

� �4
ðnðkÞj;i Þ

2

Pn
j¼qþ1ðnðkÞj;i Þ

2

vuuuut þ oðeðkÞi Þ

6 ki
kqþ1

� �2

þ oðeðkÞi Þ ð30Þ
where we used that cðkÞi ¼ 1þ oðeðkÞi Þ with oðeðkÞi Þ denoting ‘‘of order

eðkÞi ”.

Since zðkþ1Þ
i is the best approximation to the eigenvector bei in

the subspace Ekþ1, we finally obtain

kzðkþ1Þ
i � beik2

kzðkÞi � beik2
6 ki

kqþ1

� �2

þ oðeðkÞi Þ; i ¼ 1; . . . ;p: ð31Þ

We can therefore conclude that using q ¼ 2p and pk ¼ 0, pro-
vided the iteration vectors in Xk are ordered appropriately, are
not deficient in the eigenvectors, and in each iteration all turning

vectors are used, the iteration vectors xðkÞ
i , i ¼ 1; . . . ; p, converge

with the rates ðki=kqþ1Þ2. The rates of convergence of the corre-

sponding eigenvalues are ðki=kqþ1Þ4, i ¼ 1; . . . ; p, because these are
calculated from the Rayleigh quotient.

We illustrate the convergence of the new scheme in a simple
example using the diagonal matrix K ¼ diagð1;2; . . . ;12Þ and
M ¼ I, and seeking the smallest p ¼ 3 eigenvalues. For the solution,
we set q ¼ 2p and pk ¼ 0, and all turning vectors are used in the
iterations. We also compare the results with those from the basic
subspace iteration method with the number of iteration vectors
q ¼ 2p. In both cases, six random vectors are used as the starting
vectors.

Fig. 2 shows the relative errors of the calculated eigenvalue

approximations, denoted as er ¼ ðkðkÞi � kiÞ=ki when using the sub-
space iteration method with and without the enrichment. In the
figure, the dashed lines are the theoretical rates of convergence.
We see that the computed rates (slopes in Fig. 2) follow quite clo-
sely the theoretically predicted rates and the rate of convergence
from the solution using the enriched subspace iteration method
is about two times the rate of convergence of the basic subspace
iteration method.
4. Illustrative example solutions

The objective in this section is to demonstrate the performance
of the enrichment scheme through some example solutions. The
observed computational cost of the enriched method is compared
to the observed cost of the basic method, using each time q ¼ 2p
iteration vectors. In both cases, the computational expense com-
pared is the CPU time required to calculate all p eigenvalues with
tolc ¼ 10�6 for convergence, with the time used for the factoriza-
tion of the stiffness matrix K and the Sturm sequence check not
included. In the enriched subspace iterations we use tolt ¼ 10�8,
see Section 2.1.

The solutions are obtained using a laptop with a single core
Intel 2.40 GHz CPU and 24 GB RAM. In each case, we use the simple
scheme to establish the starting iteration vectors described in
Section 2.1.

We consider three problems: a clamped-clamped beam struc-
ture with mass density q ¼ 7800 kg=m3, Young’s modulus
E ¼ 2:11� 1011 N=m2 and Poisson’s ratio m ¼ 0, a wall structure
with q ¼ 3000 kg=m3, E ¼ 7:0� 1010 N=m2 and m ¼ 0:3 and a ring
structure with q ¼ 7800 kg=m3, E ¼ 2:11� 1011 N=m2 and
m ¼ 0:3, as shown in Figs. 3–5, respectively. The beam problem is
taken from Ref. [5]. The structures are modeled using three-
dimensional 8-node brick elements, and in all cases using the con-
sistent mass matrix. We calculate the solutions with three different
mesh sizes for each problem, see Tables 2–4, to investigate
whether the solution time increases linearly with the number of
the required eigenpairs. Here, the half-bandwidth means the mean
half-band width of the stiffness matrix K after factorization [4].



(a)

(b)
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Fig. 6. CPU time for calculating the smallest p eigenvalues of the beam problem
when using the basic method and the enriched method; meshes used are (a) B-
MESH1 (n ¼ 534;357 and m = 243), (b) B-MESH2 (n ¼ 1;016;037 and m = 363) and
(c) B-MESH3 (n ¼ 1;520;493 and m = 507).

Table 10
Speed-up of the enriched method when compared to the basic method for the wall
problem.

Numerical model p Speed-up

50 3.25
W-MESH1 (n ¼ 107;484 and m = 2067) 100 3.82

150 3.69

50 3.15
W-MESH2 (n ¼ 204;984 and m = 2847) 100 3.45

150 3.53

50 3.23
W-MESH3 (n ¼ 291;798 and m = 3393) 100 3.59

150 3.50

Table 11
CPU time used in each iteration for calculating the smallest p ¼ 100 eigenvalues of the
wall problem when using the basic method and the enriched method; mesh used is
W-MESH3 (n ¼ 291;798 and m = 3393); 0 denotes establishing the starting iteration
vectors and performing a single iteration in the basic method, as described in
Section 2.1, for the associated eigenvalue problem; 00 denotes performing the M-
orthonormalization of the iteration vectors.

Basic subspace iteration
method

Enriched subspace iteration method

Total
number of
iterations
performed

Average
CPU time
(s) in each
iteration/
Total CPU
time (s)

Iteration
number

Number
of
turning
vectors
used in
iteration

Cumulative
number of
converged
vectors
after
iteration

CPU time
(s) used in
iteration/
Rounded
cumulative
CPU time
(s)

35 593/
20,757

0 294/294

1 100 309/603
2 81 308/912
3 65 298/1210
4 56 288/1497
5 44 262/1760
00 304/2065
6 78 3 601/2666
7 22 18 590/3256
8 14 40 542/3798
9 16 55 481/4279
10 16 66 432/4712
11 13 83 404/5116
12 19 97 350/5466
13 22 102 313/5779
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To establish how many iterations might best be performed
using the associated eigenvalue problem (using the associated
lumped mass matrix) before switching to the solution using the
consistent mass matrix, we first solve the beam, the wall and the
ring problems using the finite element meshes B-MESH1,
W-MESH1 and R-MESH1, respectively. Tables 5–7 show the results
obtained when p ¼ 100. When solving the associated eigenvalue
problem, we applied the two different stopping criteria mentioned
in Section 2.2.

As shown in Table 5, for the beam problem, the most efficient
solution is reached when the maximum number of iterations
allowed in the associated eigenvalue problem is equal to 5. For
the wall and ring problems, however, it is most efficient to use
the tolerance stopping criterion with tols ¼ 10�1, see Tables 6
and 7. From these numerical experiments, we can conclude that
it is probably reasonable to stop solving the associated eigenvalue
problemwhen the error bounds for all required eigenvalue approx-
imations are below tols ¼ 10�1 or a maximum of 5 iterations has
been reached. This is also reasonable because then about one-
third of the total number of iterations might be performed using
the associated eigenvalue problem. We use this stopping criterion
in the following example solutions. However, we also note that in
each case the solution time saved by considering in the first itera-
tions the associated eigenvalue problem is not large. Hence in prac-
tice, we may actually not first consider this problem but directly
solve the generalized eigenvalue problem in all iterations.
4.1. Solution of beam problem

Table 8 shows the speed-up obtained using the enriched
subspace iteration method, defined as the CPU time used in the
basic method divided by the CPU time used in the enriched
method. The enriched method is about 3–5 times faster than the
basic method, depending on the number of degrees of freedom
used and the number of eigenpairs sought. For the case B-MESH3
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Fig. 7. CPU time for calculating the smallest p eigenvalues of the wall problem
when using the basic method and the enriched method; meshes used are (a) W-
MESH1 (n ¼ 107;484 and m = 2067), (b) W-MESH2 (n ¼ 204;984 and m = 2847)
and (c) W-MESH3 (n ¼ 291;798 and m = 3393).

Table 12
Speed-up of the enriched method when compared to the basic method for the ring
problem.

Numerical model p Speed-up

50 3.37
R-MESH1 (n ¼ 216;000 and m = 675) 100 3.26

150 3.44

50 3.41
R-MESH2 (n ¼ 389;880 and m = 1083) 100 3.20

150 3.44

50 3.17
R-MESH3 (n ¼ 603;060 and m = 1587) 100 3.01

150 3.07

Table 13
CPU time used in each iteration for calculating the smallest p ¼ 100 eigenvalues of the
ring problem when using the basic method and the enriched method; mesh used is R-
MESH3 (n ¼ 603;060 and m = 1587); 0 denotes establishing the starting iteration
vectors and performing a single iteration in the basic method, as described in
Section 2.1, for the associated eigenvalue problem; 00 denotes performing the M-
orthonormalization of the iteration vectors.

Basic subspace iteration
method

Enriched subspace iteration method

Total
number of
iterations
performed

Average
CPU time
(s) in each
iteration/
Total CPU
time (s)

Iteration
number

Number
of
turning
vectors
used in
iteration

Cumulative
number of
converged
vectors
after
iteration

CPU time
(s) used in
iteration/
Rounded
cumulative
CPU time
(s)

29 596/
17,278

0 323/323

1 100 342/665
2 80 338/1002
3 74 326/1329
4 62 310/1639
00 305/1945
5 79 5 618/2563
6 33 19 595/3158
7 16 36 547/3705
8 14 48 500/4205
9 13 67 461/4666
10 13 86 407/5074
11 21 99 348/5422
12 20 103 309/5731
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with p ¼ 100, Table 9 gives the computational cost per iteration
with the number of forward turning vectors actually used and
the convergence history. We note that the average computational
time used per iteration is higher in the basic method because the
converged vectors are still included in the iterations.

Fig. 6 gives the CPU times used in the basic method and the
enriched method. We see that the CPU time increases almost lin-
early with the number of frequencies and mode shapes required
and that the slopes of the curves are smaller for the enriched
method.

4.2. Solution of wall problem

In this problem solution the finite element matrices have a large
half-bandwidth. The speed-up is also significant, an improvement
of a factor larger than 3 is obtained, see Table 10. For the case
W-MESH3 with p ¼ 100, Table 11 gives the computational cost
per iteration with the number of forward turning vectors actually
used and the convergence history. We again note that the average
computational time used per iteration is higher in the basic
method.

Fig. 7 shows the CPU times used in the basic method and the
enrichedmethod. As in the previous example solutions, we observe
that regardless of n, the computational cost increases almost in lin-
ear proportion to the required eigenpairs, and that the slopes of the
curves are smaller for the enriched method.

4.3. Solution of ring problem

Table 12 shows the speed-up achieved by the enriched sub-
space iteration method, and we see that the speed-up factor is lar-
ger than 3. For the case R-MESH3 with p ¼ 100, Table 13 gives the
CPU time required per iteration with the number of forward turn-
ing vectors actually used and the convergence history. We again
observe that in the enriched method, the computational cost per
iteration gradually decreases and the total number of iterations
performed is smaller.



(a)

(b)

(c)

Fig. 8. CPU time for calculating the smallest p eigenvalues of the ring problem
when using the basic method and the enriched method; meshes used are (a) R-
MESH1 (n ¼ 216;000 and m = 675), (b) R-MESH2 (n ¼ 389;880 and m = 1083) and
(c) R-MESH3 (n ¼ 603;060 and m = 1587).
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Here, we also see approximately a linear increase in the CPU
time and the slopes of the curves are smaller in the enriched
method, see Fig. 8.
5. Concluding remarks

The objective in this paper was to present a novel effective
scheme to accelerate the Bathe subspace iteration method, espe-
cially for obtaining many eigenpairs of very large eigenvalue prob-
lems. The basic subspace iteration method was developed when
only a relatively small number of frequencies and mode shapes
were used for dynamic analyses, however, the demands in analyses
have increased very much. In today’s finite element practice, one
hundred or more frequencies and mode shapes may be used.
We showed that the use of forward turning vectors in the sub-
space iterations is inexpensive and significantly speeds up the con-
vergence of the iteration vectors. Wemeasured speed-ups of 3–5 in
some example solutions using a single core laptop machine. This
speed-up is clearly significant, but the idea of using the ‘‘turning
of iteration vectors” in the Bathe subspace iteration method might
be further explored to possibly reach an even greater efficiency.

While we focused in the paper on the case of using the consis-
tent mass matrix (because of its wide use), the improvements in
the subspace iteration method can also directly be employed in
the case of a lumped mass matrix, and we expect then too a signif-
icant speed-up.

We did not discuss and show solutions using parallel processing
and instead focused on the basic improvements reached without
parallel processing. However, the equations used show that the
computations in the enriched subspace iteration method can be
directly parallelized as in the original basic subspace iteration
method [5]. With the parallel processing the enriched subspace
iteration method presented in the paper will likely provide a very
effective solution scheme.

Appendix A. Calculation of the amount of vector turning and
the turning vectors

In this Appendix A we provide an efficient algorithm to estimate
the amount of turning and to calculate the turning vectors.

In iteration k, after evaluating Xa
kþ1 first calculate matrices Akþ1,

Bkþ1, Ckþ1, which are all of order rk � rk, and Dkþ1 of order pk � rk

Akþ1 ¼ ðXa
kÞTMXa

kþ1; ð32Þ

Bkþ1 ¼ ðXb
kÞ

T
MXa

kþ1; ð33Þ

Ckþ1 ¼ ðXa
kþ1Þ

T
MXa

kþ1; ð34Þ

Dkþ1 ¼ UT
kMXa

kþ1 ð35Þ
and then construct Yk of order n� rk by following the steps
in part (a) and thereafter in part (b):

(a) Calculate in reverse order the amount of turning of the iter-
ation vectors in Xa

kþ1, and choose the vectors for which the
measure used is larger than the tolerance tolt, i.e., for
i ¼ rk; rk � 1; . . . ; 2; 1, with initially tk ¼ 0, first let
l ¼ tk þ 1; ð36Þ

hl ¼ i ð37Þ
and then calculate for m ¼ 1; . . . ; l,

j ¼ hm; ð38Þ

rlm ¼ Cðkþ1Þ
ij � ðaðkþ1Þ

i ÞTaðkþ1Þ
j � ðbðkþ1Þ

i ÞTbðkþ1Þ
j

� ðdðkþ1Þ
i ÞTdðkþ1Þ

j �
Xm�1

k¼1

rlkrmk

rkk
ð39Þ

where aðkþ1Þ
i , bðkþ1Þ

i and dðkþ1Þ
i are ith column vectors in Akþ1,

Bkþ1 and Dkþ1, respectively. If rll=C
ðkþ1Þ
ii 6 tolt go to the next

value of i. If rll=C
ðkþ1Þ
ii > tolt we proceed as follows

tk ¼ l; ð40Þ

vtk ¼ xaðkþ1Þ
i ð41Þ

and now go to the next value of i.
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(b) Next, let tk be the last value reached in the above loop in part

(a). We now construct Yk ¼ xbðkÞ
1 ; . . .xbðkÞ

rk�tk
;v1; . . . ;vtk

h i
and

calculate for i ¼ 1; . . . ; tk,
l ¼ hi; ð42Þ

exi ¼ vi � Xa
ka

ðkþ1Þ
l �Ukd

ðkþ1Þ
l �

Xrk�tk

j¼1

yðkÞ
j bðkþ1Þ

j;l

�
Xrk�tkþi�1

j¼rk�tkþ1

yðkÞ
j ððyðkÞ

j ÞTMviÞ; ð43Þ

yðkÞ
rk�tkþi ¼

exiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiexT
i Mexi

q : ð44Þ

Note that the matrix Akþ1 and some parts of the matrix Bkþ1

can be used in the calculation of Kkþ1, and the matrices Ckþ1

and Dkþ1 can be used in the construction of Mkþ1, i.e.,

Kkþ1 ¼
UT

k

ðXa
kþ1Þ

T

YT
kþ1

2664
3775K Uk Xa

kþ1 Ykþ1

h i

¼
Kk sym:

0 Akþ1

0 YT
kþ1MXa

k YT
kþ1MYk

264
375

ð45Þ

where the entries in the first rk � tk rows of the two matrices
Bkþ1 and YT

kMXa
kþ1 are the same, and
Mkþ1 ¼
UT

k

ðXa
kþ1Þ

T

YT
kþ1

2664
3775M Uk Xa

kþ1 Ykþ1

h i

¼
I sym:

DT
kþ1 Ckþ1

YT
kþ1MUk YT

kþ1MXa
kþ1 YT

kþ1MYkþ1

264
375:

ð46Þ
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