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The method of finite spheres: a summary of recent developments
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Abstract

We summarize the recent developments in the method of finite spheres focusing on the issues of computational

efficiency and reliability.
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1. Introduction

A review of the literature on meshless techniques re-
veals that the current trend is towards application of the
techniques to solve diverse problems in science and en-
gineering and none of the methods is computationally
as efficient as the traditional finite element/finite volume
techniques. However, for a meshless technique to be even-
tually successful and generally applicable, it must also be
reasonably efficient compared with the traditional finite el-
ement techniques. With this goal in mind we developed the
method of finite spheres [1]; a truly meshless technique.

The key to a computationally efficient meshless tech-
nique lies in the choice of effective interpolation functions,
efficient ways of performing the numerical integration and
effectiveness in the incorporation of the boundary condi-
tions.

In the following sections we summarize the method of
finite spheres and report upon some efficiency improve-
ments. We illustrate that a pure displacement-based formu-
lation ‘locks’ in the limit of incompressible deformation
and present a mixed formulation based on displacement
and pressure interpolations.

2. The displacement-based method of finite spheres

In the method of finite spheres the discretized equations
of the governing differential equations are formed by inte-
grating the Galerkin weak form over d-dimensional spheres
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(d =1, 2 or 3) centered around nodes and forming a cover-
ing for the analysis domain, see Fig. 1. The spheres may lie
entirely within the domain (interior spheres) or may have
nonzero intercepts with the domain boundary (boundary
spheres).

The interpolation uses the Shepard partition of unity
functions, ¢?(x), multiplied by polynomials (or other func-
tions), pm(x). Therefore, the global approximation space,
V4, contains functions like

N
Vh = Zzhlmalm (H
1=1

m

where N spheres are used for interpolation. The subscript
‘h’ represents a measure of the size of the spheres and Ay,
is the basis function corresponding to the m-th degree of
freedom «;,,, at node 1,

him = @ (X)Pm (X). 2)

Some shape functions at a node are shown in Fig. 1(b).
The approximation properties of these shape functions are
described in detail in reference [1].

The Shepard functions are generated using a simple
‘normalization’ scheme

Wi(x)
N

> Wi(x)
J=1

P)(x) = 3)

where Wi(x) represents a radial function compactly sup-
ported on the sphere centered at node I. The choice of
the weighting function is very important to ensure that low
cost partitions of unity are obtained without sacrificing the
accuracy of the solution. In our work we have chosen cubic
spline functions.
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Fig. 1. The method of finite spheres. (a) Domain discretized using spheres. (b) Some interpolation functions (hyo and hy;) on a square
(two-dimensional) domain. hyg is the Shepard function at node I, while hy; = hjg(x — xy)/11. X is the x-coordinate of node I and 1y is the

radius of the sphere centered at node 1.

We consider the analysis of linear elastic solids and
write the Galerkin weak form as [2]:
Find u;, € Vy, such that

a(uy, vi) = F(vy) Vv € Vi 4

where a(-,-) is the bilinear form corresponding to the
problem; F(-) is the linear form corresponding to the
applied loading; wy, is the numerical displacement solution
in Vj and vy is any element in the space Vy,.

The discrete set of equations corresponding to the i-th
degree of freedom, resulting from the Galerkin weak form,
is of the following type:

Y KB =fi+ i )
J

where K;; is a stiffness term; g; is the nodal unknown
corresponding to the j-th degree of freedom and f; is
the forcing term due to the applied loading. The term f;
vanishes for interior spheres due to the property of compact
support of the interpolation functions and is nonzero but
‘known’ for a sphere on the Neumann boundary.

In reference [1] it is shown that for a node on the
Dirichlet boundary, by the chain rule of differentiation,

fi=) KB — f; (6)
J

where IEU is an additional stiffness term arising at the
Dirichlet boundary and f; is an additional forcing term
(this term vanishes if zero displacements are specified on
the Dirichlet boundary).

The efficiency of our meshless technique depends
largely on the numerical integration scheme used to evalu-
ate the integrals in the Galerkin weak forms. Compared to
the finite element/finite volume techniques, the integrands
are nonpolynomial (rational) functions, the domains of in-
tegration are more complex to deal with and they overlap
giving rise to general ‘lens’ shaped regions [3]. Hence, for
two-dimensional problems, we have derived product rules
of cubature with arbitrary polynomial accuracy on general
annular sectors, on boundary sectors and also on the ‘lens’
[3].

In Fig. 2 we present the analysis of a square cantilever
plate in plane strain conditions with uniformly distributed
loading on its top surface (see Fig. 2(a)). In Fig. 2(b) we
show the convergence in strain energy when a uniform
h-type refinement (with a biquadratic local basis) is per-
formed corresponding to two values of the Poisson’s ratio,
v, equal to 0.3 and 0.4999. The strain energy of the ref-
erence solution is obtained by solving the same problem
using a 50 x 50 mesh of 9-noded finite elements (u/p
elements in the case of the almost incompressible analysis).

We observe that corresponding to a Poisson’s ratio of
0.3, we obtain an excellent convergence rate (as the dis-
cretization is refined) since C? continuous shape functions
are used. This implies that fewer nodes are required for the
same accuracy in solution. By actually comparing compu-
tational costs and performing rough theoretical estimates,
we concluded, that for two-dimensional elastostatic prob-
lems as these, the method of finite spheres is about five
(or say ten) times slower than the traditional finite element
techniques, see [3].
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Fig. 2. Analysis of a cantilever plate (L = 2.0) in plane strain. Uniformly distributed load of magnitude w = 1.0 per unit length is
applied. Poisson’s ratio v = 0.3 and 0.4999. In (b) the convergence in strain energy (E;) with decrease in radius of support (h) is shown
for two different Poisson’s ratios 0.3 and 0.4999. The pure displacement-based formulation is observed to lock when v = 0.4999. A
mixed formulation using both pressure and displacement interpolations remedies locking (refer to the text for an explanation of the
symbols used). E is an accurate estimate of the strain energy (reference solution).
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Fig. 3. (a) A square cantilevered plate (L = 2.0) in plane strain was used as a model problem for the numerical inf-sup test (described in
the text). In (b) the results of the numerical inf-sup test are shown for two discretization schemes that pass the numerical inf-sup test.

Another important observation from Fig. 2(b) is that
(with no surprise) the displacement-based formulation
‘locks” when the Poisson’s ratio is increased to 0.4999

[2].

3. Displacement/pressure mixed formulation

In order to remedy the problem of locking, we have
developed a mixed formulation based on displacement and
pressure interpolations [4].

To label the various mixed interpolation function spaces
we introduce the following notation. Let P, and Q, denote,
respectively, the space of complete polynomials of degree
‘n’ and complete tensor product polynomials of degree ‘n’
in R? (e.g. P; = span{l, x, y} and Q; = span{l, x, y, xy}).

In the method of finite spheres we use the following in-
terpolation spaces: PS = Y 1 %P, and Q5 = "I ¢9Q,
and refer to a mixed interpolation scheme using, for ex-
ample, P for displacement interpolation and Py for pres-
sure interpolation simply as the ‘P—P§ interpolation’. In
Fig. 2(b) we see that a P;—Q7 mixed interpolation scheme
alleviates the problem of locking in this example.

To obtain a stable and optimal procedure for the selected
interpolation, the mixed formulation should satisfy, among
others, the ellipticity condition (readily satisfied in this
linear analysis) and the inf-sup condition [2]

(qn, div vy)
€ vevy, |1gnllollVall1

@)

=m=>y>0

where vy is a positive constant independent of h, q, and vy
are elements of the pressure and displacement interpolation



S. De, K.J. Bathe / First MIT Conference on Computational Fluid and Solid Mechanics 1549

spaces, Q) and V), respectively. Here the inf-sup parameter,
vn, is computed for a sequence of discretizations as the
square root of the smallest eigenvalue of the following
generalized eigenvalue problem:

G, = AShoy (8

where (qn, divvy) = WIG,Vy, |Igll} = WIG,W,, and
[[va|[? = VIS, Vy. The vectors Wy, and V), are the nodal
variable vectors for a given discretization. In Fig. 3(b) we
show the behavior of the inf-sup parameter with increase
in refinement for two schemes that pass the inf-sup test.
A square cantilever plate in plane strain condition is used
as the model problem. We discuss various other mixed
interpolation schemes in [4].

4. Concluding remarks

We have summarized our latest developments in the
method of finite spheres in this paper. While considerable

advance in computational efficiency has been achieved, the
technique is still not as efficient as the traditional finite el-
ement techniques. The preprocessing cost is, however, less
and therefore there is some advantage. Further improve-
ments in efficiency are still possible, especially if much
more efficient integration rules can be developed.
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