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The analysis of plates can be achieved using the quadratic MITC plate or MITC shell elements. The plate
elements have a strong mathematical basis and have been shown to be optimal in their convergence
behavior, theoretically and numerically. The shell elements have not (yet) been analyzed mathematically
in depth for their rates of convergence, with the plate/shell thickness varying, but have been shown
numerically to perform well. Since the shell elements are general and can be used for linear and nonlinear
analyses of plates and shells, it is important to identify the differences in the performance of these ele-
ments when compared to the plate elements. We briefly review the quadratic quadrilateral and triangu-
lar MITC plate and shell elements and study their performances in linear plate analyses.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The analysis of plates and shells is ubiquitous and the develop-
ment of effective finite elements has attracted a large amount of
research, see for example Refs. [1–3]. While, practically, optimal
plate finite elements are now available, the development of effec-
tive shell elements is a much more difficult task [3].

Numerous plate finite elements have been proposed. These can
be used for small displacement analyses. However, in case the
plate structure carries also membrane forces, it is most expedient
to model the structure as a shell. Furthermore, when the response
includes large displacements, a shell element to model the struc-
ture is best used since during the response the structural behavior
changes from that of a plate to that of a shell.

Since a plate is, in fact, a simple flat shell, in practice, frequently
shell elements are used to model the bending of plates, even for
infinitesimally small displacement solutions. In this way, the same
element is employed for all plate and shell analyses, which makes
the modeling of such structures uniform and effective.

The first shell element developments were based on superim-
posing plate bending and membrane plane stress stiffness matrices
[1,2]. While such elements can be effective for some applications,
they need to be used with care since proper curved shell behavior
is not represented and the discretization may not converge as the
element size decreases, see Ref. [3] for an example.
ll rights reserved.
Some powerful shell elements for specific applications were
developed using restricted shell theories, like assuming small
Gaussian curvatures, and small displacements, but these discreti-
zation schemes are limited in that they can only be used for certain
limited applications. Such elements are hardly used in practice.

General and effective shell elements are the mixed-interpolated
tensorial components, or MITC, elements proposed in Refs. [4–9].
These elements are based on choosing appropriate strain interpo-
lations for a given displacement interpolation and then tying the
strain interpolations to the displacements at specific tying points,
see also Refs. [2,3,10,11]. Hence the final degrees of freedom are
as for the displacement-based elements. The theoretical basis of
the MITC shell elements has been published [2–14] and the ele-
ments have been tested numerically in the solution of various
well-chosen test problems [3–11,13–16]; for the problems used
and convergence measures, see in particular [3,16,17]. However,
a mathematical convergence analysis including the effect of the
shell thickness has, so far, been out of reach. Indeed, deep mathe-
matical analyses of shell elements have only been achieved when
performed on simple specific shell geometries, boundary condi-
tions, and loadings, see e.g. Refs. [18,19]. The reason is that a gen-
eral analysis would have to consider any shell geometry, thickness,
loading and boundary conditions. Such an all-encompassing math-
ematical analysis is extremely difficult to perform.

In this paper we focus on the MITC plate and MITC shell ele-
ments that are based on quadratic displacement interpolations.
We do not consider the four-node bilinear MITC4 shell element be-
cause the same element is used for plates and shells [2]. The MITC
plate elements, see Refs. [2,20–22], constructed in principle like

http://dx.doi.org/10.1016/j.advengsoft.2009.12.011
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the shell elements, have a strong mathematical basis for linear
plate analyses and show optimal convergence behavior, indepen-
dent of the plate thickness, in mathematical analyses and numeri-
cal tests [23–26]. The disadvantage of these elements is that they
have internal nodes that only carry rotational degrees of freedom.
The use of these internal nodal rotations renders the quadratic
MITC plate elements difficult to extend to shell and large deforma-
tion analyses. Also, in practice, the same degrees of freedom are
best used at each node of an element.

It should be realized that, intrinsically, the development of
effective shell elements is much more difficult than the develop-
ment of plate elements because of the curvature effects in a shell,
and the sensitivity of shells to curvature, boundary and loading
conditions [3,15]. Of course, once a shell element has been devel-
oped, the element is usually also tested in plate solutions. Consid-
ering the use of the MITC shell elements and the fact that the MITC
plate elements have an optimal convergence behavior, a natural
question to ask is therefore ‘‘How much more powerful are the
MITC plate bending elements when compared to the MITC shell
elements in the linear analysis of plates?”

The objective in this paper is to address this question by com-
paring numerically the performance of the quadratic MITC plate
and MITC shell elements in the linear analysis of plates. In the next
sections we first briefly review the plate and shell elements, and
we then study the relative performance of the elements in some
typical plate analyses. We focus on the comparison of the triangu-
lar MITC7 plate and MITC6 shell elements, and the quadrilateral
MITC9 plate and MITC9 shell elements in numerical tests. The ele-
ments of even higher order are hardly used in engineering practice
Fig. 1. Nodal degrees of freedom, interpolation functions for the covariant strain
[27]. A mathematical convergence analysis of the MITC shell ele-
ments when used in linear plate analyses could be the objective
of another paper.
2. The MITC plate and MITC shell elements

As well known, displacement-based shell elements using the
Reissner/Mindlin kinematical assumption and the plane stress
assumption for the stress state are not effective because they lock
in shear and membrane behavior [2]. The basic idea in the formula-
tion of the MITC elements is to use the usual displacement interpo-
lations for plates and shells, as for displacement-based elements,
and ‘judiciously’ choose a corresponding strain interpolation. The
unknown parameters attached to the strain interpolations are then
tied to the strain components obtained from the displacement
interpolations at ‘judiciously’ chosen tying points. In this way, the
strain parameters are eliminated and the only degrees of freedom
of the element are the usual displacement and rotation degrees of
freedom at the nodes, as for the displacement-based elements [2].

This process of formulating elements can be used when
employing Reissner/Mindlin plate theory to reach plate elements,
and when using ‘the basic shell model’ underlying general shell
elements [3,11,12] to reach shell elements. In the first case, the
MITC plate elements and in the second case the MITC shell ele-
ments are obtained.

The key to success of an MITC element formulation lies in the
‘judicious’ choices for the strain interpolations and the tying points
for a given displacement interpolation. In essence, these choices
components, and the tying points for the triangular elements considered.
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shall extract from the displacement-based strains, that make the
element almost useless, those components that render the element
to be effective: for plate elements, the aim is to remove shear lock-
ing, and for shell elements, the aim is to remove shear and mem-
brane locking, where membrane locking in shell analysis is
usually a more severe problem. At the same time, consistency in
all strain terms needs to be preserved.

It should be realized that the MITC formulation is quite different
from the ‘enhanced assumed strain’ formulation or ‘method of
incompatible modes’ [28]. Both techniques start with the displace-
ment formulation and aim to improve its predictive capability. But,
whereas in the MITC formulation, the strain assumptions inher-
ently used in the displacement formulation are improved by not
including certain terms of the displacement-based strain space,
in the enhanced assumed strain formulations, new strain fields
are added to those already inherently used in the displacement
formulation. If this addition of strain terms actually results in a
subtraction, in some cases, the same element matrices may be
reached. However, more generally, the resulting elements are
different and considerably more computations are required in
the enhanced assumed strain formulations. Furthermore, an
Fig. 2. Nodal degrees of freedom, interpolation functions for the covariant strain compo
use the improved MITC9 shell element and not the original MITC9 shell element [7].
enhanced assumed strain formulation may be unstable in large
deformation analysis when the same formulation is stable in linear
analysis, see for example Ref. [29].

The formulation of the MITC elements corresponds in fact to an
application of the Hu–Washizu variational principle [2,4,13,14].
However, this fact in itself, of course, does not mean that a
formulated element is effective. The efficiency of an element needs
to be analyzed mathematically, as far as possible, and tested
numerically.

As mentioned already, the elements we consider here have been
published before. Hence, in the following sections we only focus on
the specific items of the element formulations that are needed for
the understanding of our numerical results.

2.1. Interpolation schemes for MITC plate and shell finite elements

Figs. 1 and 2 show the nodes, nodal degrees of freedom, and
summarize the interpolations used for the MITC plate and MITC
shell elements that we test numerically in this paper. We note that
the MITC7 and MITC9 plate elements have an internal node with
only rotational degrees of freedom, whereas the MITC6 and MITC9
nents, and the tying points for the quadrilateral elements considered. Note that we
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shell elements carry the same degrees of freedom at each node: for
plate analysis, the transverse displacement and two section rota-
tions. The MITC plate and shell elements are therefore clearly dif-
ferent. Note that in-plane strains are assumed in the MITC shell
elements to avoid membrane locking, but such scheme is not used
(and not needed) for the MITC plate elements.

The MITC7 plate and MITC6 shell elements use the same inter-
polation polynomials for the transverse shear strain field. However,
the coefficients in the interpolation functions are different because,
for the MITC7 plate element, the coefficient for the interpolation of
the transverse shear strain using the element center (r = s = 1/3) is
evaluated by
(a)

Fig. 3. Square clamped plate problem under uniform pressure (L = 1.0, E = 1.7472 � 107 a
(c) 4 � 4 mesh of triangular elements, N = 4.
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Fig. 4. Convergence curves for the square clamped plate problem. The s-norm
~ertjA ¼ ðert jTA þ ertjTB þ ertjTCÞ=3;
~estjA ¼ ðest jTA þ estjTB þ estjTCÞ=3;

ð1Þ

where the over-curl denotes the interpolation value used, and the
displacement-based strains do not carry the curl.

As shown in Fig. 2, the MITC9 plate and MITC9 shell finite
elements have different interpolation functions and tying
points for the transverse shear strains. For the MITC9 plate
element, the transverse shear strain ~ert at the element center is
evaluated by

~ert jC ¼ ðertjA þ ertjBÞ=2: ð2Þ
(b) (c)

nd v = 0.3). (a) Problem solved; (b) 4 � 4 mesh of quadrilateral elements, N = 4; and

t/L = 1/100
t/L = 1/1000
t/L = 1/10000
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is used. The solid lines represent the theoretical convergence in Eq. (5).
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Fig. 5. Convergence of rotations for the square clamped plate problem. The solid lines represent the theoretical convergence in Eq. (3).

t/L = 1/100
t/L = 1/1000
t/L = 1/10000

.leetalp9CTIM.leetalp7CTIM.lellehs6CTIM MITC9 shell el.

log (h)

lo
g 

(r
el

at
iv

e 
er

ro
r)

-1.5 -1 -0.5 0
-5.5

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

log (h)

lo
g 

(r
el

at
iv

e 
er

ro
r)

-1.5 -1 -0.5 0
-5.5

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

log (h)

lo
g 

(r
el

at
iv

e 
er

ro
r)

-1.5 -1 -0.5 0
-5.5

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

log (h)

lo
g 

(r
el

at
iv

e 
er

ro
r)

-1.5 -1 -0.5 0
-5.5

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

Fig. 6. Convergence of gradient of transverse displacement for the square clamped plate problem. The solid lines represent the theoretical convergence in Eq. (3).
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Considering these figures, the not-shown strain components are
interpolated in a symmetric manner.

We should note that for the MITC7 and MITC9 plate element for-
mulations, instead of the integral tying over the element surfaces
prescribed theoretically for the MITC7 and MITC9 plate element
formulations, we use Eqs. (1) and (2), which was used and shown
to be effective in Ref. [21].

We also note that, in this study, the shear correction factor k
with value k = 1 is used for all MITC plate and MITC shell finite ele-
ment solutions [2].
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Fig. 8. Distribution of the normalized transverse shear stress-xz along AB (t/L = 1/10,000). The stress is sampled at the mid-points of the element edges.
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Fig. 7. Distribution of the normalized transverse shear stress-xz along AB (t/L = 1/10,000).
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Fig. 9. Distribution of the normalized transverse shear stress-yz along AB (t/L = 1/10,000). The stress is sampled at the mid-points of the element edges.
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Fig. 10. Distribution of the normalized transverse shear stress-xz along DC (t/L = 1/10,000). The stress is sampled at the mid-points of the element edges.
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Fig. 11. Distribution of the normalized transverse shear stress-yz along DC (t/L = 1/10,000). The stress is sampled at the mid-points of the element edges.
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2.2. Convergence estimates

The theoretical convergence behavior of the MITC plate and
MITC shell elements ideally reached in practice by the elements
considered in this study (but not yet proven to hold for the MITC
shell elements), is given by

~h�~hh

��� ���2

1
ffi ch4

;

~rw� ~rwh

��� ���2

0
ffi ch4

;

ð3Þ

where ~h and ~rw are the rotation vector and the gradient vector of
the transverse displacement of the exact solution

~h ¼
hx

hy

� �
and ~rw ¼

w;x

w;y

� �
; ð4Þ

and~hh and ~rwh are the vectors of the finite element solution. In Eq.
(3), ||�||1 and ||�||0 denote the Sobolev norms [2,3], h is the element
size and c is a constant, different in each equation.

We will also use the s-norm (||�||s) proposed by Hiller and Bathe
to measure convergence of mixed formulations [7–9,16,17].

~u�~uhk k2
s ffi ch4

; ð5Þ
where ~u denotes the exact solution and ~uh denotes the finite ele-
ment solution.

We will evaluate our numerical solutions with these three con-
vergence rate estimates. To measure the convergence of the finite
elements in the plate bending problems with various plate thick-
nesses, we study the relative errors defined as
E~h ¼
~href �~hh

��� ���2

1

~href

��� ���2

1

; E~rw ¼
~rwref � ~rwh

��� ���2

0

~rwref

��� ���2

0

and Es

¼
~uref �~uh

�� ��2
s

~uref

�� ��2
s

: ð6Þ

To calculate the quantities in Eq. (6), the finite element solu-
tions (~href ; ~rwref ; ~uref ) using very fine reference meshes are em-
ployed instead of the exact solutions. The calculation procedure
to evaluate the error measures using the reference and target
meshes is presented in Ref. [17].

In addition to giving the above convergence curves, we also pres-
ent results in shear stress predictions. As well known, the shear stres-
ses are very difficult to accurately calculate for thin plates and for the
‘continuous’ problem theoretically do not even converge in the L2

norm as t/L ? 0 [3]. Hence we simply plot the results along certain
sections of the plates to show visually the convergence behaviors.



(a)

(b)

(c)

Fig. 12. Circular plate problem under uniform pressure (R = L = 1.0, E = 1.7472 � 107, and v = 0.3). (a) Problem solved. (b) Meshes for the MITC9 plate and shell elements, N = 2
and 4. (c) Meshes for the MITC7 plate and MITC6 shell elements (the center nodes are not used for the MITC6 shell element), N = 2 and 4. The non-curved edges are due to
plotting straight lines between element nodes.
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Fig. 13. Convergence curves for the circular plate problem. The s-norm is used. The solid lines represent the theoretical convergence in Eq. (5).
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Fig. 14. Convergence of rotations for the circular plate problem. The solid lines represent the theoretical convergence in Eq. (3).

t/L = 1/100
t/L = 1/1000
t/L = 1/10000

.leetalp9CTIM.leetalp7CTIM.lellehs6CTIM MITC9 shell el.

log (h)

lo
g 

(r
el

at
iv

e 
er

ro
r)

-1.5 -1 -0.5 0
-5.5

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

log (h)

lo
g 

(r
el

at
iv

e 
er

ro
r)

-1.5 -1 -0.5 0
-5.5

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

log (h)

lo
g 

(r
el

at
iv

e 
er

ro
r)

-1.5 -1 -0.5 0
-5.5

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

log (h)

lo
g 

(r
el

at
iv

e 
er

ro
r)

-1.5 -1 -0.5 0
-5.5

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

Fig. 15. Convergence of gradient of transverse displacement for the circular plate problem. The solid lines represent the theoretical convergence in Eq. (3).
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3. Numerical study of the MITC plate and MITC shell elements

In this section, we give the numerical results of three
representative plate bending problems using the elements of
Figs. 1 and 2. We consider three linear problems of different
geometries (square, circular and skew plates). In each case,
we use very fine meshes with the MITC9 shell element to
establish the reference solutions. Three cases of plate thick-
ness-to-length ratios (t/L) are considered, t/L = 1/100, 1/1000
and 1/10,000.
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Fig. 16. Distribution of the normalized transverse shear stress-xz along AB (t/L = 1/10,000). The stress is sampled at the mid-points of the element edges. The analytical
solution is sxz = 4.04 � 10�5x.
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Fig. 17. Distribution of the normalized transverse shear stress-yz along AB (t/L = 1/10,000). The stress is sampled at the mid-points of the element edges. The analytical
solution is syz = 0.
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Fig. 19. Sixty-degree skew plate problem (L = 1.0, E = 1.7472 � 107, and v = 0.3). (a) Problem solved; (b) 8 � 8 mesh used for quadrilateral elements; and (c) 8 � 8 mesh used
for triangular elements.
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Fig. 18. Convergence of the normalized transverse shear stress-yz in the MITC9 shell element solutions. The analytical solution is syz = 0 .
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3.1. Analysis of a clamped square plate subjected to uniform pressure

We consider the plate bending problem shown in Fig. 3. The
square plate of dimension 2L � 2L, with uniform thickness t, is sub-
jected to a uniform pressure. All edges are clamped.

Due to symmetry, only a quarter of the plate is modeled (the re-
gion ABCD shown in Fig. 3) with the following symmetry and
boundary conditions imposed: hy = 0 along BC, hx = 0 along DC,
w = hx = 0 along AB and w = hy = 0 along AD. Note that, along the
clamped edges, the soft boundary condition is used and a strong
boundary layer does not exist [30]. Fig. 3 also shows the mesh pat-
terns used for N = 4, the finer meshes are simply obtained by uni-
formly subdividing the elements. The reference mesh of MITC9
shell elements for the calculation of the norms in Eq. (6) is given
by N = 96.

Figs. 4–6 present the curves of the three convergence measures
discussed in the previous section. The MITC9 shell finite element
gives uniform optimal (almost ideal) convergence curves for all
the cases of thickness t considered.
Figs. 7–11 give the distributions of transverse shear stresses,
normalized by the absolute value of the maximum bending stress,
for the severe case of t/L = 1/10,000. Of course, these shear stresses
are small and difficult to predict accurately. The stresses have been
calculated by simply evaluating the shear strains at the points indi-
cated, directly as obtained by the MITC interpolations given in Figs.
1 and 2. Hence no stress smoothing or extrapolation from Gauss
points, or other points, has been performed.

Fig. 7 shows the transverse shear stress sxz along the edge AB of
the square plate calculated at the element nodes. Except for the
solutions of the MITC9 shell element, oscillations in the predicted
stress are observed. Fig. 8 shows that, when the stress is sampled
at the mid-points of the element edges, the MITC9 plate element
also gives a reasonable approximation.

Considering all results given in Figs. 7–11, the MITC9 shell
element predicts in this problem solution the transverse shear
stresses with best accuracy.

The oscillations in the shear stresses shown in Fig. 7 are typical
of all subsequent solutions as well, and hence we only show in
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Fig. 20. Convergence curves for the 60� skew plate problem. The s-norm is used. The solid lines represent the theoretical convergence in Eq. (5).
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Fig. 21. Convergence of rotations for the skew plate problem. The solid lines represent the theoretical convergence in Eq. (3).
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Fig. 22. Convergence of gradient of transverse displacement for the skew plate problem. The solid lines represent the theoretical convergence in Eq. (3).
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further results the values calculated at the mid-points of the ele-
ment edges.

3.2. Analysis of a simply-supported circular plate subjected to uniform
pressure

We consider a circular plate of thickness t and radius R,
loaded with a uniform downward pressure, see Fig. 12. The plate
is simply-supported along its edge. Using symmetry conditions
along AB and AC only one quarter of the plate is modeled (the
region ABC shown in Fig. 12). Only w is fixed along BC, hence
the soft boundary condition is used [30]. Fig. 12 also shows the
mesh patterns used for N = 2 and N = 4, the finer meshes are sim-
ply obtained by uniformly subdividing the elements and repre-
senting the circular boundary increasingly more accurately. The
reference mesh of MITC9 shell elements used for the calculation
of the norms in Eq. (6) is given by N = 96. But this is a rather
simple problem and the analytical solutions for the stresses are
available.

Figs. 13–15 present the curves of the three convergence
estimates.

Figs. 16 and 17 show the predicted distribution of the trans-
verse shear stresses along the radial direction for the case t/
L = 1/10,000. The stresses are evaluated as described in Section
3.1 and are normalized by the magnitude of the maximum bend-
ing stress. In this problem, the MITC9 shell element performs
well but a rather fine mesh is needed for convergence in
Fig. 18. The fine mesh is required to represent the circular
boundary with sufficient accuracy. The performance of the MITC9
plate element is acceptable, but for the meshes used the element
does not converge well in the prediction of the transverse shear
stress sxz.
3.3. Analysis of a simply-supported 60� skew plate subjected to
uniform pressure

Fig. 19 shows the 60� skew plate we consider. The plate is sub-
jected to a uniform downward pressure. All edges are simply-sup-
ported with w = 0 at the edges, that is, the soft boundary condition
is imposed [30].

Of particular difficulty in the solution of this plate problem are
the boundary layers and the stress singularity at the obtuse corner
B. To approximately resolve the boundary layers we use the graded
mesh patterns shown for N = 8 in Figs. 19b and c. The same bound-
ary layer length meshing is used for all cases t/L considered. The
reference solution for the calculation of the norms in Eq. (6) is ob-
tained using the MITC9 shell element with N = 128.

Figs. 20–22 present the curves of the three convergence esti-
mates. We note that, except for the gradient of the transverse dis-
placement, the optimal rate of convergence is not obtained, which
however may be partly due to not resolving the boundary layers
well enough.

For the transverse shear stress calculations we consider the
plate with t/L = 1/100, since the case t/L = 1/10,000 is too severe
for the purpose of this paper. Figs. 23 and 24 show the predicted
distributions of the transverse shear stresses along the edge AB.
The stresses have been calculated as described in Section 3.1 and
are normalized by the magnitude of the bending stress (syy) at
the center of the plate. We notice that the stress sxz is quite well
predicted using the MITC7 plate, and MITC6 and MITC9 shell ele-
ments, but the stress syz is more difficult to predict accurately.
We show some detailed results using the MITC9 shell element in
Figs. 25 and 26.

The solutions in Figs. 25b and 26 are most interesting in that a
very steep stress gradient is calculated; the final positive stress
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Fig. 24. Distribution of the normalized transverse shear stress-yz along AB (t/L = 1/100). The stress is sampled at the mid-points of the element edges.
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Fig. 23. Distribution of the normalized transverse shear stress-xz along AB (t/L = 1/100). The stress is sampled at the mid-points of the element edges.
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Fig. 25. The convergence of the normalized transverse shear stresses along AB in the MITC9 shell element solutions. (a) Distribution of stress-xz. (b) Distribution of stress-yz.
The stresses are sampled at the mid-points of the element edges.
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gradient near B properly obtained when using very fine meshes,
see Fig. 26, can hardly be seen in Fig. 25b. Such boundary layers re-
sult into the fact that uniform L2 convergence of the transverse
shear stresses cannot be expected [3].

In Ref. [30], the zero value for the transverse shear stress syz is
predicted to occur at the location x = 1.99897. The results given in
Fig. 26 are close to the value.
4. Conclusions

The objective in this paper was to compare the performance of
the quadratic MITC plate bending and MITC shell elements in some
typical linear analysis plate bending test problems. Both element
families are based on the Reissner–Mindlin kinematic assumption.
While the plate elements have a strong mathematical basis and
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have been proven, and shown in some numerical tests, to be opti-
mal in their performance, irrespective of the plate thickness, the
shell elements have largely been formulated based on intuition,
some revealing mathematical analysis, and the performance in test
problems. The analysis of shells is so complex that general mathe-
matical proofs of convergence of shell finite element discretiza-
tions are very difficult to establish.

Since shell elements are generally also used to analyze plates, it
is of great interest to compare the performance of the MITC plate
and MITC shell elements.

Based on the problem solutions given in this paper, we have
found that the MITC7 plate element performs somewhat superior
to the MITC6 shell element. This is to be expected since the MITC7
plate element carries additional degrees of freedom. However,
overall the shell elements perform as well as the plate elements.
Indeed, the MITC9 shell element is performing surprisingly well,
and better or equal to the plate elements. The MITC9 shell element
convergence rates show virtually optimal convergence, with small
constants, and the element also performed well in predicting
transverse shear stresses. These stresses are usually orders of mag-
nitude smaller than the bending stresses and are very difficult to
predict accurately; indeed, uniform L2 shear stress convergence
does not exist for the continuous plate problems and can therefore
also not be expected for the finite element discretizations.

Using the MITC9 shell element, we also solved for the response
of a skew plate and calculated the transverse shear stresses near
the obtuse corner where a strong singularity exists. Good conver-
gence was achieved and the solution shows the difficulty to calcu-
late shear stresses accurately.

A valuable endeavor would be to mathematically analyze the
quadratic MITC shell elements when used in the linear analysis
of plate bending problems. Such an analysis may reveal properties
that we have so far not discovered and, indeed, may lead to im-
proved discretization schemes for shell solutions.
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