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Abstract: Normal mode analysis plays an important role in relating the conformational dynamics of proteins to their

biological function. The subspace iteration method is a numerical procedure for normal mode analysis that has enjoyed

widespread success in the structural mechanics community due to its numerical stability and computational efficiency

in calculating the lowest normal modes of large systems. Here, we apply the subspace iteration method to proteins to

demonstrate its advantageous properties in this area of computational protein science. An effective algorithm for choos-

ing the number of iteration vectors in the method is established, offering a considerable improvement over the original

implementation. In the present application, computational time scales linearly with the number of normal modes com-

puted. Additionally, the method lends itself naturally to normal mode analyses of multiple neighboring macromolecular

conformations, as demonstrated in a conformational change pathway analysis of adenylate kinase. These properties, to-

gether with its computational robustness and intrinsic scalability to multiple processors, render the subspace iteration

method an effective and reliable computational approach to protein normal mode analysis.

q 2009 Wiley Periodicals, Inc. J Comput Chem 31: 66–74, 2010
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Introduction

Normal mode analysis (NMA) plays an important role in relating

the conformational dynamics of proteins to their biological func-

tion.1 In classical NMA,2,3 protein atomic degrees of freedom are

treated explicitly in solving the generalized eigenvalue problem

in a biologically relevant conformation, typically for the lowest

twenty to one hundred normal modes that represent the largest

conformational fluctuations of the molecule. In the analysis of

conformational transitions, numerous normal mode analyses may

be performed for the same protein in nearby conformations.4

NMA provides a considerable computational advantage over

molecular dynamics because of the elimination of time-integra-

tion and explicit solvent degrees of freedom. Nevertheless, sig-

nificant effort has been directed towards further improving the

computational efficiency of NMA to enable its application to

ever-larger supramolecular complexes including viral capsids,

molecular motors, and the ribosome (ref. 5 and references

therein). Particular attention has been directed to the develop-

ment and application of coarse-grained protein models such as

elastic network and related models,6,7 whereas somewhat less

attention has been paid to the development of algorithms that

improve the computational efficiency of all-atom protein NMA

itself. Such developments are of interest because they preserve

the explicit representation of atomic degrees of freedom and

their solvent-mediated interactions as modeled by implicit sol-

vent force-fields. The explicit representation of atomic interac-

tions is important to model accurately a number of biological

processes, including interactions between proteins and nucleic

acids,8 as well as small molecules in rational drug design.9

Additionally, the role of allosteric regulation of binding affinity

and catalysis by at-a-distance mutations remains an interesting

and open area of research that may require all-atom modeling to

understand fully.10

The subspace iteration method was originally developed for

the solution of frequencies and mode shapes of macroscopic

structures such as buildings and bridges using finite element

analysis (FEA).11,12 In those applications, relatively few frequen-

cies and corresponding mode shapes were sought, such as the

lowest 10–20 eigenpairs in models containing a total of 1000–
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10,000 degrees of freedom. Since its development, however, the

subspace iteration method has been used extensively in the FEA

of considerably larger systems reaching millions of degrees of

freedom, and naturally has attracted significant attention for

improvements as a result (see for example refs. 13–20).

The subspace iteration method is a particularly attractive

approach to protein NMA because the procedure (1) is designed

specifically for the calculation of the lowest eigenpairs of large

systems; (2) uses previously calculated eigenvectors from nearby

conformations to speed up significantly the solution of eigen-

pairs in nearby conformations of interest; (3) is computationally

robust; and (4) is amenable to parallel-processing.

The original development of the method was based on the

earlier use of the Ritz method, and relates to the works of

Bauer21 and Rutishauser.22 Key developments for its practical

use in structural engineering were the specific steps in the iter-

ation method, the construction of the starting iteration vectors,

the use of an effective number of iteration vectors, the use of

error measures, and the Sturm sequence check.11 A conver-

gence analysis of the subspace iteration method is given in

ref. 23. The method is also abundantly used in the solution of

linearized buckling problems,24 which is applicable to calcula-

tions of the stability of the cytoskeletal polymers filamentous

actin and microtubules, as well as viral capsids and other

supramolecular assemblies with mechanically related biological

function.7

An additional leading approach to NMA in the structural

mechanics community is the Lanczos method,25 advanced par-

ticularly by Paige 26 and others.27 Initially, the Lanczos method

exhibited instabilities due to loss of orthogonality of the itera-

tion vectors employed. This shortcoming, however, has been

largely overcome, and when implemented properly the method

is highly efficient. A particular asset of the method is that com-

putational effort scales about linearly (neglecting the effort for

the initial factorization) with the number of eigenpairs sought,

a property that is not generally satisfied by the traditional sub-

space iteration method. An important property of both the sub-

space iteration and Lanczos procedures is that they solve

directly for the eigenpairs sought instead of calculating inter-

mediate matrices first, as if all eigenvalues were desired. This

property contrasts with the approach of the Householder–QR

method,24 for example, which becomes prohibitively expensive

computationally and in memory as the size of coefficient matri-

ces increases. At present, the Lanczos and subspace iteration

methods are the two most widely used techniques for the solu-

tion of large eigenvalue problems in FEA, when coefficient

matrices are of order 10,000–10,000,000. For these reasons,

any significant improvements to these methods are of great

interest.

Recently, considerable effort has been directed towards using

parallel processing in FEA, in shared-memory and distributed-

memory processing modes. Whereas the Lanczos method can

intrinsically (largely) be parallelized only in the factorization of

the stiffness matrix and the forward reduction and back-substitu-

tion of the individual vectors, the subspace iteration method

allows in addition the parallel solution of multiple iteration vec-

tors which can result in a large computational benefit. However,

there is also interest in improving the method in other ways, and

in particular, for the solution of eigenproblems in which rela-

tively many eigenpairs need to be calculated.

As mentioned earlier, a key step in the subspace iteration

method is the establishment of effective starting iteration vec-

tors, which implies using an optimal number of iteration vectors.

The objective of the present work is to apply the subspace itera-

tion method to the normal mode analysis of proteins, and to

introduce a significant improvement upon the original implemen-

tation regarding the choice of the number of iteration vectors. In

the following sections, we first review briefly the standard sub-

space iteration method and discuss its inherent value for the so-

lution of frequencies and mode shapes of proteins. We, subse-

quently, present a new algorithm to establish an effective num-

ber of iteration vectors, illustrating the use of this algorithm in

some applications. A particularly important observation is that

computational effort increases linearly with the number of eigen-

pairs sought in the solutions obtained with the improved sub-

space iteration method, as in the Lanczos method. To focus on

our new development only, and to compare results obtained with

the traditional and improved methods, we employ a basic imple-

mentation without parallelization of the code, running in-core on

a single processor workstation. Moreover, we provide only rela-

tive solution times, which are largely independent of the

machine used. Although these times thereby represent practically

‘‘machine-independent’’ algorithmic improvements, actual solu-

tion times will naturally depend on the specific machine

employed and will decrease as computational hardware becomes

more efficient.

The Basic Subspace Iteration Method

We consider the generalized eigenvalue problem

Ku ¼ kMu (1)

where K and M are symmetric matrices of order n, K is positive

definite, and M is positive semidefinite. We seek the smallest p
eigenvalues k1, k2, . . . , kp and corresponding eigenvectors u1,

u2, . . . , up with the ordering

k1 � k2 . . . � kp: (2)

The eigenpairs (ki, ui) satisfy

Kui ¼ kiMui; i ¼ 1; . . . ; p (3)

and

uT
i Muj ¼ dij

uT
i Kuj ¼ kidij

(4)

where dij is the Kronecker delta. The basic equations used in the

subspace iteration method are as follows24:

Step 1: Establish q starting iteration vectors in X1
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Step 2: Iterate with k 5 1, 2, 3, . . ., until convergence

KXkþ1 ¼ MXk (5)

Kkþ1 ¼ X
T

kþ1KXkþ1

Mkþ1 ¼ X
T

kþ1MXkþ1

(6)

Kkþ1Qkþ1 ¼ Mkþ1Qkþ1Lkþ1 (7)

Xkþ1 ¼ Xkþ1Qkþ1 (8)

Step 3: Perform the Sturm sequence check.

Hence, the procedure consists of three distinct solution steps.

First, the q starting iteration vectors in X1 are established, q [
p, where X1 is a matrix of dimension n 3 q. Second, iteration is

performed using eqs. (5)–(8), for k 5 1, 2, . . . until the conver-

gence tolerance below is satisfied, where Qk11 and Lk11 store

the eigenvectors and eigenvalues corresponding to the subspace

matrices Kk11 and Mk11. Finally, the Sturm sequence check is

performed.

Let kðkÞi be the approximation for ki calculated in the (k 2
1)th iteration, we have convergence to an accuracy of 2 3 s dig-
its in the eigenvalues when for i 5 1, . . ., p (see ref. 24)

1�
kðkÞi

� �2

q
ðkÞ
i

� �T
q
ðkÞ
i

2
64

3
75
1=2

� 10�2s (9)

where q
ðkÞ
i is the vector in the matrix Qk corresponding to kðkÞi .

The eigenvectors will only be accurate to s digits and the theo-

retical convergence rate of the vectors is ki/kq11. Thus, there is

a higher convergence rate for a smaller eigenvalue and its corre-

sponding eigenvector. Although these convergence rates corre-

spond to the theoretical values,23,24 they are usually also

observed in actual computations. The Sturm sequence check is

carried out to ensure that the lowest p eigenpairs, that is, (ki,
ui), i 5 1, . . ., p, have indeed been calculated.11,24 If the Sturm

sequence check is not passed, the iteration is continued with a

larger number of iteration vectors.

Considering eqs. (5)–(8), it is seen that the method can be

programmed efficiently for parallel computations. The factoriza-

tion of the coefficient matrix and the forward reductions and

back-substitutions of each individual vector can be parallelized.

In addition, the solution of the q vectors can be distributed to

different processors and also the computation of the subspace

matrices Kk11 and Mk11 can be parallelized.

An important difference between the coefficient matrices of

structural FE assemblages and of proteins is that the latter have

much larger bandwidths because of long-range nonbonded electro-

static, and to a lesser extent van der Waals, interactions that intro-

duce broad coupling between protein atoms. Thus, for a given

number of degrees of freedom, the factorization of the matrix and

solution of the vectors in eq. (5) constitute a much larger computa-

tional effort than in standard FE solutions. Although parallel proc-

essing can be very important for this reason, we do not address

this computational issue further in the present work.

Using the earlier equations, it is critical to establish effective

starting iteration vectors for two reasons. First, if the subspace of

these vectors contains the exact eigenvectors, theory states that a

single iteration will result in the exact eigenvalues and vectors

sought. Here, we simply use the algorithm of ref. 11 (also given in

ref. 24), to construct the starting iteration vectors. In cases where

better starting vectors are known from an existing solution, such

as in conformational change pathway analyses of proteins where

eigensolutions may be performed numerous times for small

changes in protein conformation,4 the algorithm of ref. 24 is used

only for the first eigensolution. Thereafter, the previous solution

from the nearest-neighbor conformation provides the starting iter-

ation vectors for the next eigensolution. Second, an effective value

of q needs to be used because the convergence rate to an eigenvec-
tor is given by ki/kq11. If q ([p) is small, a relatively large num-

ber of iterations are required to converge. In contrast, if q is large,

fewer iterations are required for convergence, but each iteration is

computationally more costly. Thus, use of an optimal value of q is

highly desirable. Calculation of an effective value of q for the fre-

quency and mode shape solutions of proteins is addressed in the

next section.

The Algorithm to Calculate the Number of

Starting Iteration Vectors

An important observation regarding proteins is that the magni-

tudes of their eigenvalues increase nearly linearly with increas-

ing wave-number,28,29 as shown for T4-lysozyme in Figure 1.

This characteristic of proteins may be used to find an effective

value of q for the subspace iteration method.

Assume that we order the iteration vectors in Xk naturally so

that they correspond to increasing eigenvalues, with the first

vector corresponding to k1. Then the last iteration vector to con-

verge is the pth vector in Xk and its rate of convergence is kp/
kq11. Additionally, after the ith iteration, the norm of the vector

Figure 1. The lowest one hundred eigenvalues (ki) of T4-lysozyme

(Protein Data Bank ID 3LZM).30 (The first six zero eigenvalues cor-

respond to rigid body modes.)
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difference between the pth M-orthonormalized eigenvector and

its current approximation (the ‘error vector e’) is given by

jjeðcurrentÞjj ¼ kp

�
kqþ1

8>>:
9>>;

i

jjeðinitialÞjj (10)

where ke(initial)k is the initial error vector. To reach s-digits of

accuracy in the eigenvector we need

kp

�
kqþ1

8>>:
9>>;

i

jjeðinitialÞjj � 10�s (11)

and, therefore, require l iterations for the vector to converge,

where l is given by

l ¼
ln 10�s

�
jjeðinitialÞjj

8>>:
9>>;

ln kp

�
kqþ1

8>>:
9>>;

: (12)

Next, we use the fact that the eigenvalue magnitudes increase

linearly and assume that for different values of q, the norm of

the initial error vector for the pth iteration vector is the same.

Additionally, the first six eigenvalues are zero. This implies that

the K matrix is singular. To use the subspace iteration method,

we perform a shift q on the K matrix to have a positive definite

matrix, see ref. 24. We use q to be a very small value, q 5
21E-6. Therefore, kp/kq11 is approximately equal to (p 2 6 2
q)/(q 2 5 2 q). Since q is very small, it can be neglected and

kp/kq11 is approximated as (p 2 6)/(q 2 5). Then eq. (12) gives

us directly

l ¼
ln 10�s

�
jjeðinitialÞjj

8>>:
9>>;

ln ðp� 6Þ
�

ðq� 5Þ
8>>:

9>>;
(13)

However, an operation count tells that the following number of

numerical operations are needed for l iterations with q vectors24

TCC ¼
ln 10�s

�
jjeðinitialÞjj

8>>:
9>>;

ln ðp� 6Þ
�

ðq� 5Þ
8>>:

9>>;
2nmqþ 2nq2 þ 3nq
� �

(14)

where TCC is the Total Cost of Computation for l iterations, n
is the order of the K and M matrices, and m is the half-band-

width (assumed to be full) of the K matrix. As the column

heights of K vary, an average or effective value for m must be

used.24 Although we refer to TCC in eq. (14), in reality we only

have the total number of arithmetical operations. As our only

purpose is to find an effective value of q for each p, and we

also know that

c ¼ ln 10�s

�
jjeðinitialÞjj

8>>:
9>>;

where c is an unknown constant, we may use

TCC ¼ c

ln ðp� 6Þ
�

ðq� 5Þ
8>>:

9>>;
2nmqþ 2nq2 þ 3nq
� �

: (15)

Minimizing this expression with respect to q we find an

approximation for the best q to obtain the p eigenvalues and

vectors in the least amount of computational time. Because a

closed-form solution does not exist, we solve for q by iteration.

Note that this analysis does not provide the actual computational

effort required (since the constant c is unknown) but only that

the minimum is obtained when using the value of q given by

minimizing TCC in eq. (15).

Figure 2 shows the normalized actual solution time and TCC

to calculate the lowest 100 eigenvalues with six digits of accu-

racy for T4-lysozyme using different numbers of iteration vec-

tors. The iteration times are normalized by the maximum actual

iteration time and, since the constant c in eq. (15) is unknown,

TCC is scaled such that the iteration times are equal at the mini-

mum of TCC.

As seen in Figure 2, prediction of the relative computational

cost of calculating the lowest eigenvalues with different numbers

of iteration vectors by eq. (15) is acceptable. Next we illustrate

the use of the value of q in the normal mode analyses of two

proteins.

Illustrative Solutions

In this section we use the subspace iteration method for the cal-

culation of the frequencies and normal modes of two proteins.

In each case we use the standard subspace iteration method as

published in refs. 11, 24 including the algorithm to construct all
starting iteration vectors. We use the standard value q 5 min

{2p, p 1 8}, referred to as the ‘‘traditional subspace iteration

method,’’ and this method with the value of q that minimizes

TCC in eq. (15), referred to as the ‘‘improved subspace iteration

method.’’ We intentionally do not use any other acceleration

techniques, such as given for example in ref. 13, to identify

clearly the improvements achieved solely by use of the value of

q derived earlier.

In each solution we employ the skyline solver of ref. 24 for

eq. (5). Although we recognize that a sparse solver could lead to

Figure 2. Normalized actual iteration time and normalized TCC to

calculate the first one hundred eigenvalues for T4-lysozyme (Protein

Data Bank ID code 3LZM).30
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significantly improved solution times,31 we do not expect our

fundamental observations regarding the performance of the

method to be affected. We note that the solution times given

always include all operations of the subspace iterations. Addi-

tionally, in an effort to present machine-independent conclusions

regarding performance of the algorithms, we present normalized

solution times instead of actual solution times, where normalized

time is equal to actual time divided by the maximum solution

time measured in each case.

G-actin

The initial structure of ADP-bound G-actin is taken from the

work of Otterbein et al.32 (Protein Data Bank ID 1J6Z; residue

numbers 4–372). The stiffness matrix of order 10,608 for this

protein was computed in CHARMM version 34b133 using the

implicit solvation model EEF1.34 Steepest descent minimization

followed by Adopted-Basis Newton–Raphson minimization is

performed in the presence of successively reduced harmonic

constraints on backbone atoms to achieve a final root-mean-

square (RMS) energy gradient of 2 3 1024 kcal/(mol 3 Å) with

corresponding RMS deviation between the X-ray and energy-

minimized structures of 1.4 Å (Fig. 3). Computations are per-

formed on an Intel Xeon 5120 with 1.86 GHz and 4 GB RAM

in single processor mode.

Considering the eigenvalue problem, different numbers of the

lowest eigenvalues with six digits of accuracy of this protein

have been obtained using the traditional and improved subspace

iteration methods. Figure 4 provides normalized solution times

versus the required number of lowest eigenvalues for G-actin,

and also provides in parentheses the number of iteration vectors

q used in the improved subspace iteration method in each case.

It is evident that a significant improvement in the subspace itera-

tion method is achieved by use of the calculated values of q.
As already noted, normalized solution times in Figure 4 are

defined as the actual solution times divided by the maximum so-

lution time encountered in the analysis. The maximum solution

time (13,939 seconds clock-time) in this case is the time

required to compute the lowest 300 eigenpairs with the tradi-

tional subspace iteration method. This solution time is quite

large for the reasons mentioned earlier.

Pertussis Toxin

The next protein examined is Pertussis Toxin (chains A–F). Ini-

tial coordinates are taken from the work of Stein et al.37 (Protein

Figure 3. G-actin-ADP. Schematic representation of the energy-

minimized molecular structure analyzed with subdomains colored

according to the definition of Kabsch et al.,35 Subdomain 1 is col-

ored blue, subdomain 2 is colored red, subdomain 3 is colored

green, and subdomain 4 is colored yellow. ADP is shown in van

der Waals representation. Figure rendered using Visual Molecular

Dynamics.36

Figure 4. Normalized solution times versus required number of the

lowest eigenvalues with six digits of accuracy for G-actin (Protein

Data Bank ID 1J6Z)32 using the traditional and improved subspace

iteration methods; the value of q used in each case with the

improved subspace iteration method is given in parentheses.

Figure 5. Pertussis toxin. Schematic representation of the energy-

minimized molecular structure analyzed with subdomains colored

according to the definition of Stein et al.,37 S1 is colored green, S2

is cyan, S3 is purple, S4 is red, and S5 is yellow. Figure rendered

using Visual Molecular Dynamics.36
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Data Bank ID 1PRT). Like for G-actin, CHARMM version

34b133 with the implicit solvation model EEF134 is used to

obtain the energy minimized structure (Fig. 5) and calculate the

Hessian, which has dimension of order 26,664. Steepest descent

minimization followed by adopted-basis Newton–Raphson mini-

mization is performed in the presence of successively reduced

harmonic constraints on backbone atoms to achieve a final root

mean square (RMS) energy gradient of 3 3 1024 kcal/(mol Å)

with corresponding RMS deviation between the X-ray and

energy-minimized structures of 1.6 Å. Computations are also

performed on an Intel Xeon 5120 with 1.86 GHz and 4 GB

RAM in single processor mode.

Figure 6 shows the measured normalized solution times ver-

sus the required number of the lowest eigenvalues for this mole-

cule, and also gives in parentheses the number of iteration vec-

tors q used in the improved subspace iteration method in each

case. Again, significant computational savings are achieved

when the improved iteration method is used.

Adenylate Kinase

To illustrate the benefit of employing the subspace iteration pro-

cedure to analyze conformational change pathways of proteins,

we apply the procedure to the open-to-closed transition of ade-

nylate kinase (PDBIDs 4AKE38 and 1AKE39 for the open and

closed conformers, respectively)(Figs. 7a and 7b). In the absence

of molecular dynamics or other all-atom trajectory, we employ

the elastic-based FE model applied previously to protein NMA

to generate the conformational change pathway.7 The initial

model is defined by the open conformation of the protein. Fol-

lowing ref. 7 the molecular volume is defined by the solvent

excluded surface (SES) using MSMS ver. 2.6.1.40 This SES is

then decimated to a coarsened surface using the surface simplifi-

cation algorithm QSLIM,41–43 as implemented in MeshLab.44

Finally, the decimated SES is imported into the finite element

analysis program ADINA ver. 8.5 (Watertown, MA), where the

molecular volume is meshed automatically using 3D four-node

tetrahedral elements.7 The protein is assumed to behave as a lin-

ear, isotropic material with homogeneous mass density of

1420 kg/m3, elastic Young’s modulus of 4.9 GPa, and Poisson

ratio of 0.3. The mass density is obtained from the molecular

weight and molecular volume of the open conformation. The

Young’s modulus is obtained by fitting thermal fluctuations of

a-carbon atoms in the finite element model to those obtained

using the Rotation Translation Block procedure45,46 at room

temperature in CHARMM, where one block per residue and the

implicit solvation model EEF134 are employed.

The conformational change pathway of adenylate kinase is

generated according to the procedure of Tama, Miyashita, and

Brooks.47 Starting from the initial, open conformation, K and M

matrices are generated for the FE model using ADINA. The tra-

ditional subspace iteration procedure is then used to calculate

the first 100 eigenpairs of the model with four digits of accuracy

for the eigenvalues. The FE model interpolation functions are

used to interpolate the eigenvectors, ui
k, corresponding to the

FE nodal positions to their values, Ci
k, at the positions of the a-

carbons, where i and k denote the number of the eigenvector

and conformation, respectively. To generate the next conforma-

tion, the difference vector between the positions of the a-carbons
in the kth conformation and those of the closed conformation,

Drk, is projected onto the eigenvectors corresponding to the a-
carbons, ci

k 5 bk Drk � Ci
k, where bk is a parameter between

zero and one4,47 (Supporting Information). ci
k is the contribution

of the ith eigenvector to the displacement of the a-carbons in the

kth step. Positions of all non-a-carbon atoms are updated using

the FE displacement interpolation functions in the current con-

formation. This procedure is repeated until the root-mean-

square-difference (RMSD) between the current positions of a-
carbons and those of the closed conformer is less than or equal

to 1 Å. In this approach to generating the conformational change

pathway, the eigenvectors of the current conformation are used

as the starting vectors for the eigenvalue problem of the next

conformation, excluding the first step, which is also excluded

from the solution time per conformation presented below

because it constitutes a small and invariant component of the

total solution time in each case. An initial conformational

change pathway of 1843 conformations is generated, from which

subsets of 1001, 101, 11, and 1 conformation are chosen with

nearly constant differences in RMSD between a-carbon positions

of each successive conformation and the closed conformation

(Supporting Information) (Fig. 7c). Computations are performed

on an Intel Xeon E5405 with 2.00 GHz and 16 GB RAM in sin-

gle processor mode.

The solution time per conformation for the subspace iteration

procedure decreases monotonically with increasing number of

conformations employed in the conformational change pathway

(see Fig. 8). Normalized time is equal to the actual solution time

divided by the maximum solution time measured in the 100 nor-

mal mode case. As an increasing number of conformations is

employed, normal mode solutions from neighboring conforma-

tions become increasingly better choices for the starting normal

Figure 6. Normalized solution times versus required number of the

lowest eigenvalues with six digits of accuracy for one of two mole-

cules from pertussis toxin (Protein Data Bank ID 1PRT; Chains A-F)
37 using the traditional and improved subspace iteration methods; the

value of q used in each case with the improved subspace iteration

method is given in parentheses.
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modes of neighboring conformations, resulting in the observed

decrease in solution time per conformation. This result is true

whether 20 or 100 eigenvectors are solved for (see Fig. 8), and

is additionally expected to be independent of the number of

degrees of freedom in the model. Although it is of interest to

understand the detailed solution-time properties of the subspace

iteration procedure in conformational change pathway analysis

(e.g., dependence of solution time per conformation scaling with

model size, number of normal modes computed, etc.), such anal-

ysis is reserved for future work.

Important Properties of the

Subspace Iteration Method

In evaluating the effectiveness of any numerical procedure, it is

clearly valuable to make a thorough comparison with existing

methods.2,25,48 In the present case, such comparison is unfortu-

nately complicated by a number of factors, including the

requirement that each method employs the same convergence

tolerance and is implemented in the optimal manner. Even then,

results would depend on whether the computation is performed

in- or out-of-core, the type of parallel processing used, the

degree of energy-minimization performed in the use of some

methods, and so on. While such a comparison would clearly be

of value, it is outside the scope of the present work. Neverthe-

less, we would like to point out several important properties of

the subspace iteration procedure, and in particular contrast these

properties with corresponding properties of the Lanczos method.

The subspace iteration procedure converges monotonically

and robustly to the number of frequencies and mode shapes

sought. In each subspace iteration, inverse iteration is performed

on a q-dimensional subspace and a Rayleigh–Ritz analysis

extracts the ‘‘best’’ approximations to the p normal modes

sought. ‘‘Best’’ here refers to minimization of the Rayleigh quo-

Figure 7. (a) Schematic representation of the open conformation of

adenylate kinase (Protein Data Bank ID 4AKE38). (b) Schematic rep-

resentation of the closed conformer of adenylate kinase (Protein Data

Bank ID 1AKE).39 (c) Schematic representation of the open-to-closed

transition. The root-mean-square-difference between the positions of a-
carbons in the closed conformer and that of the red, yellow, green,

violet, and blue conformations is 7.14, 5.25, 3.5, 1.75, and 0 Å,

respectively. Figures rendered using Visual Molecular Dynamics.36

Figure 8. Normalized actual solution time per conformation for the

subspace iteration method versus the number of conformations ana-

lyzed in the conformational change pathway of adenylate kinase

using 100 and 20 normal modes.
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tient on the subspace.23,24 As the q-dimensional subspace is

rotated towards the least dominant p-dimensional subspace

within each iteration, the NM approximations become increas-

ingly accurate. If only low accuracy in the normal modes is

needed, only a few subspace iterations may be required.

Solution time in the Lanczos method scales approximately

linearly with the number of eigenpairs computed. The traditional

subspace iteration does not typically display this scaling when

many frequencies and mode shapes are calculated (e.g., [20)

and a single processor is employed. In the present work, how-

ever, we observed that the subspace iteration method with the

improved selection of the number of iteration vectors also

resulted in linear scaling of solution time with the number of

normal modes sought. As expected, we additionally observed a

significant decrease in computational time when the NMA was

performed on multiple neighboring conformations, because the

method uses normal mode solutions from neighboring conforma-

tions to accelerate subsequent solutions. This is an important

property of the subspace iteration procedure that is not a prop-

erty of methods that start with individual vectors, such as the

Lanczos algorithm. Additional acceleration might be achieved

for NMA of single conformations by exciting principally the di-

hedral angles to choose starting vectors that span a subspace

that is closer to the required least dominant subspace than the

algorithm employed here.11,24 In addition, acceleration tech-

niques published previously could be implemented.13,18

A final important computational property of any NMA proce-

dure is the possibility to use parallel processing (with shared and

distributed memory), such as implemented for the Lanczos

procedure in the publically available program ARPACK.49

Although the calculations in the subspace iterations [eqs. (1)–

(5)] lend themselves naturally to parallel processing, the actual

benefits achievable in comparison to the Lanczos procedure,

which operates sequentially on individual vectors, remains to be

established. Use of a combination of the basic steps in the sub-

space iteration and Lanczos methods, using the best ingredients

of each technique and taking into account parallel processing,

would be of interest to reach a more effective method. Further

investigation is required to identify the appropriate next steps to

take in this research direction.

Conclusions

The objective of this article was to present the application of the

subspace iteration method to the normal mode analysis of pro-

teins and to provide an algorithm for the calculation of an effec-

tive number of iteration vectors. We demonstrated use of an

algorithm to calculate the number of iteration vectors q to find p
eigenpairs that improves the effectiveness of the subspace itera-

tion method significantly for proteins. The algorithm results in

computation time scaling linearly with the number of eigenpairs

sought, as demonstrated for G-actin and pertussis toxin. The

subspace iteration method is well suited to protein NMA

because relatively small subsets of the total available normal

modes are typically sought and numerous analyses may be per-

formed for relatively similar conformations in conformational

change pathway analyses.4 In such cases, the previously calcu-

lated eigensolution provides an excellent set of initial iteration

vectors for the subsequent solution, as demonstrated here for the

open-to-closed conformational change of adenylate kinase. The

subspace iteration method is additionally attractive because it is

robust, in that it converges monotonically to the desired eigen-

value solution for any positive semidefinite stiffness matrix. This

is of significant utility in all-atom protein NMA for two reasons.

First, energy minimization to tight tolerance in the energy gradi-

ent is time-consuming and often challenging due to the rugged

energy landscape of proteins, and second, energy minimization

often distorts the protein structure such that it deviates signifi-

cantly from the experimental crystal structure. For these reasons,

and due to its relative computational efficiency, the robust Rota-

tional Translational Blocks procedure45,46 has gained significant

popularity. However, this procedure assumes single or larger

blocks of residues to be rigid, in contrast with the present imple-

mentation that retains all atomic degrees of freedom. Although

the significant reduction in number of degrees of freedom in the

former approach renders its computational efficiency high, an

interesting area of future research concerns the integration of

computationally robust NMA methods with efficient reduced

degree-of-freedom approaches that retain internal residue flexi-

bility, as initially proposed in ref. 45. Incorporation of such

procedures into the finite element method would enable simulta-

neously calculations of protein mechanical response, as well

as NMs.
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