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In a previous paper (Kim and Bathe, 2013) [1], we introduced a scheme to improve finite element
displacement and stress solutions by the use of interpolation covers. In the present paper we show
how the scheme can be used to automatically improve finite element solutions. As in Ref. (Kim and Bathe,
2013) [1], we focus on the use of the low-order finite elements for the analysis of solids, namely, the
3-node triangular and 4-node tetrahedral elements with the use of interpolation covers. An error indica-
tor is employed to automatically establish which order cover to apply at the finite element mesh nodes to
best improve the accuracy of the solution. Some two- and three-dimensional problems are solved to
illustrate the procedure.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

In standard finite element analysis, the numerical solution is
improved by changing the locations of the mesh nodes, increasing
the mesh density, or as another option, using a more powerful ele-
ment. A scheme to proceed differently has been discussed in Ref.
[1]. This method uses interpolation covers over patches of ele-
ments to enrich the displacement interpolations and increase the
solution accuracy. The order of the interpolations can vary depend-
ing on what improvement in accuracy is needed. The scheme is clo-
sely related to the numerical manifold method proposed by Shi
[2,3]. We refer to Ref. [1] for a detailed description of the scheme
using interpolation covers and further references pertaining to its
development.

The scheme was established in detail to improve the stress solu-
tions when using the 3-node triangular element in two-dimen-
sional analyses and the 4-node tetrahedral element in three-
dimensional analyses. The use of these classical elements is attrac-
tive because these elements can be used to mesh very complex
geometries, and they are robust and lead to relatively small band-
widths, but almost always it would be of much value to have better
stress predictions [4,5].

The objective in the present paper is to use the scheme of Ref.
[1] and present a fully automatic procedure to adaptively choose
the orders of the interpolation covers with the aim to increase
the solution accuracy for meshes using the low-order elements.
Since the interpolation covers are compatible in displacements,
an arbitrary combination of covers and order of interpolations
can be chosen. Of course, an ideal adaptive scheme should give
more accuracy at a smaller computational cost than using the tra-
ditional approach of using a finer mesh or higher-order finite
elements.

In the adaptive interpolation procedure, we shall use cover or-
ders up to cubic, to provide a flexible adaptive range. We focus
our discussion on the analysis of problems in solid mechanics,
but similar ideas can directly be applied to the analysis of problems
in heat transfer, fluid flow and multiphysics.

In the following sections, we first briefly review the scheme
using interpolation covers to improve the accuracy of solutions,
we then present the adaptive scheme to automatically choose
the covers, and finally we give example solutions to illustrate the
performance of the method.

2. The finite element formulation enriched with covers

In this section, we briefly review the finite element formulation
enriched with covers for low-order elements, merely to provide the
foundation for the sections to follow. A detailed description also
referring to other related research works is given in Ref. [1].

Let us assume that a mesh of 3-node triangular (or 4-node tet-
rahedral) elements has been used to obtain a displacement and
stress solution of a two-dimensional (or three-dimensional) prob-
lem in solid mechanics. Fig. 1(a) shows a node i, the two-dimen-
sional elements connected to that node and the linear
interpolation function hi used in the solution. We define Ci to be
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Fig. 1. Schematic description of sub-domains for enriched interpolations: (a) usual linear nodal shape function, (b) cover region or elements affected by the interpolation
cover, and (c) an element.
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the support domain of hi and call Ci the cover region, as seen in
Fig. 1(b).

To enrich the standard finite element interpolation for the solu-
tion of a variable u, we use interpolation cover functions, that is,
over each cover region Ci, we assign an additional and enriching
interpolation. Let ui be the usual nodal variable for the solution
of u, then we use, correspondingly, the polynomial bases of degree
p over the cover region Ci given by

Pp
i ½u� ¼ ui þ xi yi x2

i xiyi y2
i � � � yp

i

� �
ai ð1Þ
In Eq. (1), the coordinate variables ðxi; yiÞ are measured from node i
and the vector ai ¼ ai1 ai2 � � �½ �T lists additional degrees of free-
dom at node i for the cover region Ci. A normalization of the degrees
of freedom can here be introduced by using aij=ðbhÞq for the terms of
order q, where bh is a characteristic element length scale of the
elements used.
Fig. 2. Ad hoc in-plane analysis, plane stre

Fig. 3. Sequence of meshes used for the
With the above definitions, the enriched cover approximation of
a field variable u for an element is

u ¼
X3

i¼1

ðhiui þHiaiÞ ð2Þ

where

Hi ¼ hi xi yi x2
i xiyi y2

i � � � yp
i

� �
ð3Þ

and the sum is taken over the three local finite element nodes. Eq.
(2) can be written more compactly as the interpolation

u ¼
X3

i¼1

hiPp
i ð4Þ

Hence, instead of using the traditional interpolation hi ui, we now
use the interpolation hiPp

i , where Pp
i contains the usual nodal vari-

able ui plus the cover bases times additional nodal variables, as in
ss conditions with E = 2e5 and m = 0.3.

analysis of the ad hoc test problem.



Fig. 4. Plots of von Mises stress field: (a) exact solution, and solutions with Mesh 2 using (b) linear element, (c) linear covers, (d) quadratic covers, and (e) cubic covers.
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Eq. (1). Since the traditional interpolation functions hi give displace-
ment compatibility between elements, Eq. (4) shows that this com-
patibility is also preserved in the cover scheme for any order of
covers applied at the nodes. Here it is important to note that the or-
der p can of course vary from node to node, and if p = 0, there is no
interpolation cover used for that node.

Indeed, our objective in this paper is to propose a scheme for
choosing the order of the interpolation covers to reach an improve-
ment in solution accuracy at a reasonable cost.

Some important features of the basic scheme were discussed in
Ref. [1], and specifically how to ensure a positive definite coeffi-
cient matrix by applying the Dirichlet boundary conditions as
usual and without covers at the nodes on such boundaries. We will
proceed in this way throughout the solutions given below.

We should note that the proposed scheme only enriches the
interpolation for the solution variable u, and only to some degree
(given by the maximum cover order used). Furthermore, the
scheme does not enrich the interpolation of the geometry, for
which always only the original mesh of low-order elements is em-
ployed. Hence, there are limitations as to how much the solution
accuracy can be increased, in particular when there are complex
curved boundaries (of course, the geometry interpolation could
also be enriched in a further development of the scheme, see
Concluding Remarks). Indeed, we will illustrate in the example



Fig. 5. Plots of pressure field: (a) exact solution, and solutions with Mesh 2 using (b) linear element, (c) linear covers, (d) quadratic covers, and (e) cubic covers (where sp

denotes pressure).
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solutions, see Section 4, that the underlying mesh should already
be a reasonable mesh giving already, overall, a reasonably accurate
solution. The enrichment scheme is then used to only ‘‘somewhat’’
increase the accuracy of the displacement and stress predictions.
3. The procedure to improve the displacement and stress
predictions

Our goal is to establish an algorithm that determines appropri-
ate cover orders to improve the solution accuracy when a reason-
able solution has already been obtained but that solution is judged
to be not of sufficient accuracy, in particular regarding the stress
prediction. The complete solution process is as follows:

Assume that we have performed an analysis as usual – we have
chosen a reasonable finite element mesh and obtained a solution,
where in this paper we only consider meshes of 3-node triangular
and 4-node tetrahedral elements in 2D and 3D analyses,
respectively.

The solution results are next improved as follows. A simple er-
ror indicator is employed to identify in which regions the relative
errors are larger than a prescribed (relative) allowable value. Then,
corresponding to the level of error, either no interpolation cover,
linear, quadratic or cubic interpolation covers are applied to obtain
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Fig. 6. Ad hoc problem: convergence of the global stress jumps and errors in the
von Mises stress field.
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a more accurate solution. If the solution is considered to be still not
sufficiently accurate, a next solution improvement is obtained by
applying more and higher-order covers, and the process can be re-
peated until the estimated error is smaller than the allowable error
value or until the highest order of interpolation cover (here se-
lected to be a cubic cover) has been applied to all nodes.

Since the most accurate solution would usually be obtained
with the cubic interpolation covers applied to all nodes, it is clear
that, for a given mesh, there is a limit to the solution accuracy that
can be obtained. We illustrate this fact below. Hence it is important
that a reasonable initial (original) mesh is used and that the re-
quired solution accuracy is not too far from the accuracy obtained
with that mesh.

Of course, the traditional way to proceed is to remesh or use
higher-order elements, mostly only in certain regions, when a bet-
ter solution accuracy is needed. Depending on the analysis pur-
sued, the cover scheme may use less or more computational time
than using the traditional approach, but the method has the advan-
tage that no new elements or nodes are created, no new nodal loca-
tions are used, and no special transition elements between lower
and higher-order elements are introduced. Hence, the use of the
scheme requires significantly less human effort in preparing the in-
put data for reaching a more accurate solution.

In order to establish an effective adaptive cover scheme, we
need to estimate the local solution quality at the mesh nodes
and determine which orders of covers should be applied. Hence,
a reliable indicator of the solution error is needed. Various mathe-
matically formulated ‘a posteriori’ error estimation methods have
been proposed over many years to evaluate the overall quality of
a finite element solution by establishing error measures of global
energies and of local quantities [6]. However, so far no estimation
scheme is available that is proven to always give an ‘effective
upper bound’ to the actual error (in the sense that the estimate
is always only a little larger than the actual error), the scheme is
‘general’ (in the sense that it is applicable to all problems), and
the scheme is ‘computationally efficient’ (in the sense that the er-
ror is calculated with much less computational effort than simply
solving the problem using an extremely fine mesh). For this reason,
mathematically formulated error measures are hardly used in
engineering practice. The basic difficulty is of course that an error
to the exact solution is to be estimated when the exact solution is
unknown. In nonlinear analyses, an additional difficulty is that
there may be multiple solutions.
Instead of trying to measure the solution error, another ap-
proach is to use element measures to establish effective elements.
Then the element sizes are selected such that the change in a spe-
cific solution quantity (e.g. the gradient of a field) is about constant
for each element. In this case, a sequence of meshes is used until
the solutions hardly change, see for example Ref. [7]. However,
such approaches do not directly lend themselves for use in the cov-
er scheme that we envisage here, since we need an error indicator.

For the scheme to be proposed here, also a global energy-based
error measure is not of value because it cannot be used to measure
the local solution accuracy, and we need to focus on local error
measures. An explicit local error indicator gm for element m is gi-
ven by [6]

g2
m ¼ c1h2kRk2

L2ðmÞ þ c2hkJk2
L2ð@mÞ ð5Þ

where R denotes the interior element residual calculated from the
differential equilibrium equations, J denotes the jump in the stress
across the element edges, and h is the element size. In Eq. (5), the
values of the constants c1 and c2 are generally unknown, since these
depend on the exact solution which is not known, and would need
to be estimated. However, the estimator shows that we have second
order convergence for the residual R norm squared and first order
convergence for the stress jump J norm squared with respect to h.
Assuming that the constants c1 and c2 have about the same magni-
tude, and a reasonably fine mesh is used, we can neglect the ele-
ment residual and focus on the element stress jumps. This
approach indeed was used in the construction of the stress band
plots to indicate solution errors [4,6,8].

The requirements we would like to fulfill with the selected error
indicator are:

� The indicator should be simple and computationally efficient;
that is, inexpensive to compute when measured on the total
computational time used for the solution.
� The indicator should asymptotically converge as the actual

error converges.
� The indicator should directly tell where covers are best applied

and what cover orders are best used, and that for a large range
of problems.
� No parameter should be used in the definition of the error

indicator.

Based on these requirements, we do not use Eq. (5) but instead
calculate the largest stress jump for a scalar stress quantity of
interest (say s) as

Jsi :¼ max
m2mcðiÞ

shðmÞ
i

n o
� min

m2mcðiÞ
shðmÞ

i

n o
ð6Þ

where shðmÞ
i denotes the nodal stress evaluated at node i for element

m and we search over all elements connected to the node i. Hence
mc(i) denotes the set of elements participating in cover Ci, i.e.

mcðiÞ :¼ m : Ci \ Em–;f g ð7Þ

Note that the jump Jsi is always positive.
To study the behavior of the stress jump values when covers are

applied and when compared to the actual error at the nodes, we
consider the ad hoc problem given in Fig. 2 (see also Refs. [1,4]).

The figure gives the domain considered, and the exact displace-
ments and corresponding body forces. In the testing of finite element
schemes, we apply the body forces, calculate the displacement and
stress results and compare these with the exact values.

Fig. 3 shows a sequence of meshes used for the analyses. The
finer meshes (Mesh 4, Mesh 5, etc.) can be directly inferred from
the patterns shown. Figs. 4 and 5 show the calculated von Mises
stress and the pressure when using Mesh 2, as covers are applied.
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Fig. 7. Von Mises stress prediction by the proposed adaptive scheme using (a) Mesh 2, (b) Mesh 3, and (c) Mesh 4.

Table 1
Comparison of percentage errors in 1 and 2-norms for von Mises stress and pressure. Nodal values are used. The maximum desirable error is 2%.

Mesh Relative errors in 1-norm Relative errors in 2-norm

kesVM k1=ksVMk1 kespk1=kspk1 kesVM k2=ksVMk2 kesp k2=kspk2

Linear element Adaptive covers Linear element Adaptive covers Linear element Adaptive covers Linear element Adaptive covers

2 51.0 5.1 81.0 3.5 59.3 8.4 80.0 3.1
3 22.2 0.9 33.9 0.7 36.4 1.2 44.7 0.7
4 8.2 0.9 11.0 0.7 18.6 1.0 20.5 0.6
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The figures illustrate how the stress jumps decrease and in fact al-
most disappear as the order of covers is increased.

Fig. 6 shows the convergence of the globally-representative (or
global, for short) nodal stress jumps and actual errors in the calcu-
lated von Mises stress, where the global quantities are defined as
Js ¼ 1
N

XN

i¼1

Jsi ; es ¼ 1
N

XN

i¼1

es
i ð8Þ

N denotes the number of nodes used in the mesh, and we consid-
ered the magnitude of errors, i.e. es

i ¼ si � sh
i

�� �� using the exact stress



(a) (b)

(c)
Fig. 8. Two-dimensional tool jig problem, (a) problem description, E = 72e9, m = 0.3, (b) reference von Mises stress plot, and (c) meshes used in the cover solutions and the
higher-order 6-node element solutions.
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si and the averaged computed stress sh
i at node i. For the results in

Fig. 6, simply the mesh refinements (as given in Fig. 3) are used
without covers.

As seen in the figure, both global quantities converge, but the
actual errors are smaller and converge faster than the stress jumps.
The observed convergence orders in this problem solution are
approximately

Js � OðhaJ Þ
es � Oðhae Þ

(
with aJ ¼ 0:8; ae ¼ 1:6 ð9Þ

While we have no mathematical proof that the actual errors are al-
ways smaller than the stress jumps as defined in Eqs. (6) and (8), we
have observed such behavior in all our analyses and it is a reason-
able result because we establish in Eq. (6) the maximum stress jump
at the node.

Based on the given theoretical and numerical observations, we
use Jsi in establishing the indicator that shall tell what interpolation
cover to apply to node i. Let

Ms
i ¼

Jsi
cesmean

ðh=LcÞb ð10Þ

where smean is the calculated mean stress (using absolute values)
over the complete domain, ce is a specified small constant so that
cesmean is an accuracy tolerance for the jump, Lc is a characteristic
length, and (h/Lc)b is used to have in Ms

i an order of convergence
close to the order of convergence of the actual error. Here, the value
of b needs to be chosen by the user. Relating the relative element
size h/Lc in two- and three-dimensional analyses to the number of
nodes in the mesh, we can use h=Lc � N�1=2 and h=Lc � N�1=3,
respectively, so that the indicatorMs

i is a dimensionless value inde-
pendent of domain size as well as the material data.

To choose the order of a cover p(i) at a node i, we then use the
following scheme:
pðiÞ ¼

0 if Ms
i < c0

1 if c0 6Ms
i < c1

2 if c1 6Ms
i < c2

3 if c2 6Ms
i

8>>><>>>: ð11Þ

where ck, k = 0, 1, 2 denote ‘adaptivity threshold constants’ to be set
by the user.

With this adaptivity indicator any stress quantity of interest can
be used, but in this work, we employ jumps of the von Mises stress
and the pressure so that, both, the deviatoric stress and the pres-
sure enter in the selection of the cover. Usually we use
Ms

i ¼ M
sVM
i þMsp

i

� �
=2, but it is important to realize that the value

corresponding to one stress may be much larger than for the other
stress. In such a case, it may be necessary to apply Eq. (11)
separately for the von Mises stress and pressure with different
constants, and then use the highest cover value obtained for the
node.

As mentioned above, the user needs to choose b and the constants
ck, and some guidelines are here useful. Considering the convergence
in the ad hoc example, as a model problem with Lc = 1, we first use the
sequence of meshes shown in Fig. 3 to obtain the mean values (aver-
aged over all nodes) of stress jumps using the linear elements with no
covers. Then we obtain the solutions and curves of ‘actual errors’
using no covers, and linear and quadratic covers on the same meshes
with the covers applied at all nodes. The value of b for a cover is chosen
to turn the convergence curve slope of the ‘no cover solutions measur-
ing stress jumps’ downwards to the slopes of the convergence curves
of the above-mentioned ‘actual errors’ and the adaptivity constants
are obtained based on shifting the curve of the ‘no cover solutions
measuring stress jumps’ downwards to the convergence curves of
the ‘actual errors’. To obtain those shifts the solutions at a reasonable
refinement are used. The measured respective values, thus obtained,
are approximately b = 0.8, 1.3 and 2, and c0 = 0.4, c1 = 0.9 and c2 = 3.6,
using Lc = 1. Of course, these values cannot have general applicability
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Fig. 9. Von Mises stress results: (a) enriching solutions using the proposed adaptive interpolation, and (b) solutions using the 6-node elements.
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but for this ad hoc problem approximately optimal convergence rates
are obtained, see Ref. [1]. Hence when using well-constructed meshes
in the solution of other problems, these constants determined in the
solution of the ad hoc problem might be used in the first instance
when no better values are available, and we shall do so in the exam-
ple solutions of Section 4.

The above scheme and results are rather simple, and different
threshold slope adjustments and threshold constants should



Fig. 10. Plots of (left) von Mises stress and (right) pressure along the evaluation line AA, see Fig. 8(a), using (a) Mesh 1, (b) Mesh 2, (c) Mesh 3.
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probably be used in regions of stress concentrations, edges and
corners, since the ad hoc problem contains no stress singularities.

As an illustration, Fig. 7 shows results obtained with the scheme
and the above given constants for the ad hoc problem using
Meshes 2–4. As seen, the order of covers is automatically deter-
mined to improve the accuracy, and the required enrichment nat-
urally decreases as the mesh is refined. Table 1 gives some
quantitative comparisons of the solution errors in the 1- and
2-norms [4]. As shown in the figure and the table, provided the
mesh is fine enough, like Mesh 3, the required solution accuracy
is reached by predominantly using high-order covers, while if the
mesh is not sufficiently fine, like Mesh 2, the required solution
accuracy is not reached even though the highest order covers are
used almost over the complete domain. The Mesh 2 results are
not sufficiently accurate although the stress jumps in Figs. 4 and
5 can hardly be seen. Therefore, it is important to use a reasonably
fine mesh in the complete solution process, but that will generally
be the case in engineering practice.



Table 2
Computational results for the two-dimensional tool jig problem.

Linear element Adaptive scheme Quadratic element

Mesh 1
sVM at point P (error in%) 4761 (�63%) 12068 (�8%) 14469 (10%)
DOFs (mK) 150 (13) 1436 (137) 510 (69)
Computation time (s) 0.0 0.6 0.0
Cond (K) Usual bases 1.5e5 2.8e10 1.3e4

Normalized bases 2.1e9

Mesh 2
sVM at point P (error in%) 7837 (�41%) 13318 (1%) 13064 (�0.9%)
DOFs (mK) 526 (26) 3262 (179) 1918 (197)
Computation time (s) 0.1 1.3 0.6
Cond (K) Usual bases 1.1e6 6.2e9 7.6e4

Normalized bases 7.8e7

Mesh 3
sVM at point P (error in%) 10435 (�23%) 13271 (0.6%) 13146 (�0.3%)
DOFs (mK) 1950 (57) 7954 (272) 7422 (645)
Computation time (s) 0.3 3.5 14.2
Cond (K) Usual bases 6.7e6 1.9e8 3.6e5

Normalized bases 2.3e7

Mesh 4
sVM at point P (error in%) 11663 (�12%) 13135 (�0.4%) 13225 (0.3%)
DOFs (mK) 6654 (121) 11818 (278) 25918 (2419)
Computation time (s) 1.5 6.0 666.4
Cond (K) Usual bases 2.5e7 4.3e8 1.3e6

Normalized bases 7.1e7

Fig. 11. Plate with a hole: (a) problem description, E = 72e9, m = 0, and (b) meshes used.
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4. Illustrative examples

In this section we give various solutions obtained using the
scheme presented above. We consider two-dimensional and
three-dimensional solutions, of course, obtained using the constant
strain 3-node triangular and 4-node tetrahedral elements, respec-
tively. In each case we use the data for steering the scheme, iden-
tified and used in the solution of the ad hoc problem in Section 3.
To study the computational effectiveness we also compare the
solution times used to reach a specified accuracy when employing
the automatic enrichment procedure compared to simply using
higher-order elements, albeit each time for the complete domain.
All solutions were obtained using the program STAP, see Ref. [4],
in which the enrichment scheme has been implemented with the
standard low-order elements, using a PC machine with a single
core. In the following we report solution times for which only rel-
ative values are important.

4.1. Two-dimensional simulations

With the above objectives, we present in this section some two-
dimensional analyses. In each analysis, we compare the numbers of
degrees of freedom (DOFs), the mean half-bandwidths mK, the con-
dition numbers of the global system matrices, and the solution
times used for the analyses.

4.1.1. 2D tool jig problem
We first consider a two-dimensional tool jig problem subjected

to a constant pressure load as shown in Fig. 8. This problem was
already solved in Ref. [1], and also considered in Ref. [9]. Since
the analytical solution is not available, we use a very fine mesh
of 40,000 9-node elements leading to 323,200 degrees of freedom
to obtain a reference solution. Using the proposed adaptive scheme
and 6-node quadratic elements, we compare the solution accura-
cies and computational costs using Meshes 1–4. The stress results
are compared at the evaluation point P and along the line AA
shown in Fig. 8(a).

Fig. 9(a) shows how the adaptive interpolation performed to in-
crease the accuracy in the von Mises stress. As seen in the figure,
the solutions are greatly improved by using the interpolation cov-
ers. It should be noted that the adaptive scheme appropriately dis-
tributes cover orders for the given meshes – if the mesh is very
coarse, like Mesh 1, then higher-order covers are mainly used,
while if the mesh is fine, like Mesh 4, then low-order interpolation



Fig. 12. Plots of calculated von Mises stress: (a) using the adaptive scheme, and (b) using quadratic elements.

Table 3
Computational results for the plate with a hole problem.

Linear element Adaptive scheme Quadratic element

Mesh 1
sVM at point P (error in%) 1458 (�77%) 6446 (3%) 5758 (�9%)
DOFs (mK) 222 (20) 2118 (198) 798 (85)
Computation time (s) 0.0 1.2 0.1
Cond (K) Usual bases 1.0e5 1.1e11 4.1e4

Normalized bases 2.0e10

Mesh 2
sVM at point P (error in%) 2662 (�58%) 6177 (�1%) 6189 (�1%)
DOFs (mK) 830 (47) 4390 (262) 3134 (243)
Computation time (s) 0.1 2.7 1.1
Cond (K) Usual bases 8.1e5 1.2e9 1.6e8

Normalized bases 8.8e6
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covers become predominant. Fig. 9(b) shows the analysis results
using the 6-node quadratic element. As seen, the von Mises stress
at the evaluation point P converges similarly when using the
quadratic element and the adaptive interpolations. Indeed, as
shown in Fig. 10, which gives the plots of von Mises stress and
pressure along the specified line AA, the overall stress results are



Fig. 13. Stress distributions along the perimeter of the hole: (a) von Mises stress, (b)
shear stress, and (c) normal stress; note the different scales used.

Fig. 14. Slantly-cut body with a round tunnel, (a) problem descript
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excellent using Meshes 2 and 3 with the adaptive scheme. Also, the
pressure results obtained using Meshes 1 and 2 are slightly better
with the adaptive scheme than when using the quadratic element.

Table 2 gives a comparison of computational aspects, including
the solution times. For Meshes 1 and 2, the solution times are very
small. Then for Meshes 3 and 4 the times are considerably larger
using the quadratic element than applying interpolation covers
with about the same accuracy reached for the von Mises stress at
point P. In fact, if the required solution accuracy for the stress at
point P is a 2% error, then Mesh 2 is sufficient, and Meshes 3 and
4 are not needed. On the other hand, the use of the interpolation
covers improves a (very) little the solution accuracy using Meshes
3 and 4 while the computation time does not grow much with
increasing mesh density; hence, the analyst has more flexibility.
The condition numbers are reasonable for all coefficient matrices
used, and the normalization of the cover degrees of freedom results
into only small improvements (with bh set to the average element
size, in all problem solutions).

4.1.2. Plate with a hole
In this analysis we consider a plate with a large circular hole in

its center subjected to a pressure load, as shown in Fig. 11. We seek
the von Mises stress at point P and the stresses along the perimeter
of the hole using the standard 3-node linear element, with and
without covers, and using the 6-node quadratic element. Meshes
1 and 2 shown in the figure are used. The reference solution is ob-
tained using a fine mesh of 8,192 9-node quadrilateral elements,
which leads to 66,560 degrees of freedom.

Fig. 12 shows the calculated von Mises stress band plots. The
adaptive scheme with Mesh 1 uses mostly cubic covers, while with
Mesh 2 a significant number of lower order covers are used.
Assuming that a solution with no more than 3% error for the von
Mises stress at point P is sought, the quadratic element (using this
ion, E = 72e9, m = 0.3, and (b) tetrahedral element meshes used.



Fig. 15. Von Mises stress and pressure calculation results of the slantly-cut body problem, (a) adaptive scheme solutions, and (b) quadratic element solutions.
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element for the complete domain) requires Mesh 2, while this
accuracy is reached with both meshes using the cover scheme,
see Table 3. The computational times used with the adaptive
scheme are greater than those using the quadratic element, but
still small, so that in practice the solution times using the covers
are acceptable. As with the solutions in Section 4.1.1, the condition
numbers are reasonable and improved by the normalization of the
cover degrees of freedom.

Physical equilibrium requires snn = sns = 0 along the perimeter
of the hole, but the numerical solutions show significant errors if
the mesh is not fine enough. Fig. 13 shows the calculated stress dis-
tributions using Mesh 2. The solution is improved using covers,
especially for the normal stress.
4.2. Three-dimensional simulations

In this section we consider solutions of two three-dimensional
problems. While the use of linear covers can be more efficient than
the use of quadratic elements, the use of three-dimensional covers
higher than linear yields a rapidly increasing number of unknowns
and the solution times can increase significantly; however, the
same of course also holds when using traditional higher-order
elements.

4.2.1. Slantly-cut body
We consider a body cut slantly with a round hole subjected to a

constant pressure load as shown in Fig. 14, where also the two
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Fig. 15 (continued)

Fig. 16. Von Mises stress and pressure plots along the evaluation line AA (sp denotes pressure).
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Table 4
Computational results for the slantly-cut body problem.

Mesh 1 Mesh 2

Adaptive
scheme

Quadratic
element

Adaptive
scheme

Quadratic
element

DOFs
(mK)

7575
(2356)

4719
(2144)

14280
(4353)

11310
(5113)

Computation
time (s)

146 73 881 994

Cond (K) 1.8e7 1.8e8 2.2e11 8.5e11
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meshes used and the stress evaluation line AA (x = 3, y = �5) are
shown. The reference solution was obtained using a very fine mesh
of 163,166 10-node tetrahedral elements, leading to 738,129 de-
grees of freedom.

Figs. 15 and 16 show the von Mises stress and pressure results
obtained using the proposed adaptive scheme and quadratic ele-
ments. As seen in Fig. 16, the adaptive scheme provides good accu-
racy using Mesh 2, while the quadratic element mesh does not
provide sufficient accuracy in some areas. We also note that the
adaptive scheme uses more degrees of freedom but less solution
time for Mesh 2, see Table 4. With the quadratic elements, a finer
Fig. 17. Three-dimensional machine tool jig, (a) problem
mesh is needed to obtain an accurate result, but then the solution
time would significantly increase. The computation times given in
Table 4 show the effectiveness of the method since the adaptive
scheme yields for Mesh 2 a smaller half-bandwidth.
4.2.2. Three-dimensional tool jig
We consider a three-dimensional tool jig subjected to the pres-

sure load shown in Fig. 17. In this example, we employ three differ-
ent mesh patterns, Mesh A1, Mesh A2 and Mesh B1. The reference
solution was obtained using a mesh of 16,000 27-node brick ele-
ments leading to 423,360 degrees of freedom.

We use Mesh A1 and Mesh A2 for the adaptive scheme and
Mesh B1 for the quadratic element solution. For a result compari-
son, a stress evaluation window is defined in Fig. 17.

Fig. 18 shows the band plots of calculated von Mises stress and
pressure. Note that the colormap for pressure does not span the en-
tire range of pressure variation in order to be able to see some de-
tails. Fig. 19 shows the stress results on the stress evaluation
window (the rectangle ABCD), in which averaged stresses at nodal
points are employed for the plots (hence the stresses are smooth).
According to the figures and Table 5, the solution obtained using
Mesh A2 with the adaptive covers is not only more accurate but
description, E = 2e9, m = 0.3, and (b) meshes used.



Fig. 18. Results of tool jig analyses, (a) adaptive scheme solutions using Meshes A1 and A2, and (b) quadratic element solution using Mesh B1.
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also more efficient than the solution obtained using Mesh B1 with
the quadratic element. In order to improve the stress results using
the quadratic element, the mesh needs to be refined.

The von Mises stress result in Fig. 19 using the quadratic ele-
ment looks better than when using covers with Meshes A1 and
A2 because a symmetric mesh pattern has been used in Mesh B1,
but for Mesh A2 the result is still reasonable.
5. Concluding remarks

The objective in this paper was to present a novel scheme to im-
prove the finite element solutions when 3-node triangular ele-
ments and 4-node tetrahedral elements are used, respectively, in
the two- and three-dimensional analyses of solids. Based on an
error estimation technique, the scheme automatically selects the
orders of the interpolation covers in the procedure presented in
Ref. [1]. While the scheme actually improves the displacements
and stresses, we focused in this paper on the results obtained for
the stresses.

The procedure assumes that a reasonable traditional mesh has
been used to obtain a first stress solution, and then applies en-
riched displacement interpolations using covers to improve the
solution results. In the computations, the nodal point locations
and mesh are not changed but simply the displacement interpola-
tions are enriched over the cover regions pertaining to the nodes of
the mesh. Different orders of enrichments can be applied over the
nodal cover regions, and in this paper we presented a scheme to
automatically select the order (ranging from ‘no cover’ to a ‘cubic
cover’) depending on the approximate error, in a relative sense,



0 0.5 1 1.5 2
6.5

7

7.5

8

8.5

9

0

100

200

300

400

500

600

700

800

900

0 0.5 1 1.5 26.5

7

7.5

8

8.5

9

-80

-60

-40

-20

0

20

40

60

80

Fig. 19. Comparison of calculated von Mises stress and pressure on the stress evaluation window ABCD.

Table 5
Computational results for the two-dimensional tool jig problem.

Adaptive scheme
Mesh A1

Adaptive scheme
Mesh A2

Quadratic
element Mesh B1

DOFs (mK) 8868 (888) 23,700 (1852) 35,085 (3333)
Computation

time (s)
28 1288 1491

Cond(K) 2.2e8 1.7e8 3.2e8
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measured at the node. The use of the procedure can decrease the
computational effort but, in particular, can save human effort,
since no new mesh is established. To illustrate the performance
of the procedure we presented the results of various example
solutions.

While there are these attractive attributes, we also pointed out
that the initial (original) mesh must be reasonable; namely, the
solution error can only be improved to some extent since the inter-
polation covers are only applied to improve the displacements
(and hence stresses) and not the geometry. Throughout the analy-
sis, the geometry is represented by the original mesh of triangular
or tetrahedral elements. Also, some constants need to be chosen by
the analyst for the scheme to automatically select the orders of
interpolation covers. We proposed in the paper a rationale to select
a set of reasonable constants.

Further developments of the scheme might focus on using also
interpolation covers to improve the geometry interpolation, and to
improve the method for the selection of the constants needed for
the automatic solution, in particular for three-dimensional solu-
tions. Of course, there are then many different areas where the
scheme might be used and further developed, specifically for the
analysis of plates and shells, see for example Ref. [10], fluid flows,
and multi-physics problems.
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