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A Simple and Effective Pipe Elbow 
Element—Interaction Effects 
Our elbow element presented in an earlier communication is enhanced to account 
for interaction effects between elbows and rigid flanges, elbows of different cur­
vatures, and elbows joining straight pipe sections. The interaction effects are 
modeled by including the appropriate additional strain terms in the stiffness matrix 
formulation and by using a penalty procedure to enforce the continuity of the 
derivatives in the pipe skin radial displacements. The enhancement in the 
formulation has been implemented and the results of various sample analyses are 
presented. 

1 Introduction 

In a previous communication, we presented a basic elbow 
pipe element [1], which we formulated using the 
displacement-based finite element method. The essential 
ingredients of the formulation are the specific displacement 
assumptions used and the stress and strain components in­
cluded in the evaluation of the strain energy of the element. 

The displacements used to formulate the element are, first, 
axial, torsional, and bending displacements with the as­
sumption that the cross section of the elbow remains plane. 
Considering the element in Fig. 1, we have the cubic dis­
placement interpolation 

«/ (r,s,t) = £} hkuf + tYi akhk V), 

+sYlakhkV
k
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with 

where 

V? = 6kx°Yk 
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r,s,t = isoparametric coordinates [2] 
«, = Cartesian displacement of material point (r,s,t) 

hk(r) = isoparametric interpolation functions [1,2] 
Cartesian displacements of nodal point k 
rotations at nodal point k 
outer radius of element at nodal point k 
component i of unit vector °\k, in direction t at 
nodal point k 
component i of unit vector °V*, in direction s at 
nodal point k 
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The displacement interpolations in equation (1) correspond 
to the displacements of a beam with a circular cross section 
which does not distort either in or out of its plane. 

The second displacement assumption is that the elbow can 
ovalize with the displacement patterns, see Fig. 2, 

4 Nc Nd 

w{ (/-,</>) = X) ( LI hkc
k
msin2m<i) + £ hkd

k
mcos2m<t>) 

k=l x
 m = l m=l ' 

in-plane bending out-of-plane bending 

(3) 

where the assumption is that (see reference [1]) 

dw$ 

~d$ 
(4) 

and the ck
m and dk

m k = 1 ,2,3,4, are the unknown generalized 
ovalization displacements. Depending on the pipe geometry 
and the type of loading, it can be sufficient to include only the 
first, or first two, terms of one (or both) double sum­
mation^). In the implementation of the element, we have 
allowed Nc to be 0 (no ovalization), 1, 2, or 3, and similarly 
for Nd [1]. The total displacements of the element are the sum 
of the displacements presented in equations (1) and (3). 
Hence, for example, with Nc and Nd equal to 3, a typical 
nodal point k carries the unknown displacements 

u* = [uk uk uk 6k 6k 6k\ ck ck
2 c

k \ dk d\ dk] (5) 

The element stiffness matrix of the elbow was obtained by 
including in the strain energy the usual longitudinal and shear 
strains corresponding to a curved circular cross section beam 
whose cross section does not distort and the strains due to 
ovalization. Using the coordinate axes defined in Figs. 1 and 
2, the ovalization strains included were 

V ^ n n ) OV 
wR 

R — acos<l> 
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d1\ , x i r d wn v. 
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Fig. 1 Geometry of pipe elbow element 

EXTRADOS 
(<f> = 180°) 

Fig. 2 Displacement of deformed cross section, 
mode; tvf is shown negative.) Pipe mean radius is a. 

ELBOW AXIS 

(First von Karman 

The basic assumption in using the foregoing strain com­
ponents only is that, in essence, each differential length of the 
elbow can ovalize independently, although by virtue of using 
equation (3), the ovalization displacements are continuous 
within an element and across element boundaries. Therefore, 
the interaction effects in the ovalization between elbows of 
different curvatures, an elbow and a straight pipe section, and 
an elbow and a rigid flange cannot be properly modeled. As 
we pointed out in [1], to render the element applicable to such 
situations, it is necessary to extend the basic formulation. 

The objective in this paper is to amend our element form­
ulation given in [1] in a very simple way to also account for 
interaction effects. This is achieved by including in the 
formulation additional important strain terms formulation 
that are identified using thin shell theory, and using a penalty 
procedure to enforce the required continuity conditions. 

In the next section of this paper, we discuss the additional 
strain terms that are included in the formulation so that the 
element is applicable to the modeling of interaction effects. 
The presentation shows that it is then also necessary to en­
force continuity in the derivatives of the ovalization dis­
placements Wj- with respect to the longitudinal membrane 
coordinate rj. This continuity is imposed using a penalty 
procedure as discussed in Section 3. The amendments in the 
formulation of the element have been implemented in the 
computer program ADINAP, and in Section 4 we give the 
results obtained in the analyses of some problems. 

2 Strain Terms Used in our Elbow Formulation 

Considering the skin of the elbow to be a doubly curved 
thin shell [3], we can identify the following important strain 
terms, which have not been included in our original 
formulation and which are due to a variation of ovalization 
along the longitudinal axis of the elbow, 

«.) - - [ ( 5^) ,S , ] f <8> 
and 

Wrt)ou \R_acosJ d0 (9) 

In equations (8) and (9), the superscript " / " refers to the fact 
that these strain terms need be included in the formulation if 
interaction effects are important. 

The strain term in equation (8) is due to longitudinal 
bending of the pipe skin and can directly be evaluated using 
the interpolation of wf given in equations (3) and (4). 
However, since this term contains the second derivative of the 
pipe skin radial displacement, it is necessary to enforce in the 
finite element formulation continuity in the first derivative 
[2], This is achieved using a penalty procedure as described in 
Section 3. 

The shear strain term in equation (9) is a function of 
dw^/dd and therefore only requires continuity in vv{, which is 
already assured in the formulation. 

Using the strain expressions in equations (8) and (9) and the 
displacement interpolation in equations (3) and (4), we can 
now directly amend the strain-displacement matrix given in 
reference [1]. Namely, to include the foregoing strain terms in 
our elbow formulation, we simply need to add to the matrices 
B*„i and B£„3 defined in reference [1], and the following 
contributions, respectively, 
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where, 

«-,<=-[ 

* - [ 
(Rn-acos(t>)6n 

2 

(m) sin(m<t>){ 

cos (m<t>) 

(14) 

(15) 
(R„— a cos0)0„. 

The foregoing expressions are for a curved pipe. If a straight 
pipe is considered, the term [2/(R„ —a cos<j>)0„] needs to be 
replaced by [2/1] where /is the total length of the element. 

3 Imposition of Continuity on Derivative of Pipe Skin 
Radial Displacement 

The objective is to enforce continuity on the first derivative 
of the ovalization displacement wi between elements without 
introducing additional degrees of freedom. In the classical 
analysis of beam structures, this continuity is achieved by 
introducing beam rotational degrees of freedom. However, 
we can enforce the continuity in our formulation without the 
use of rotational degrees of freedom using a penalty 
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procedure. The basic technique in this method is to add the 
constraint to be achieved in the solution, say, 

CONSTRAINT = 0 (16) 

to the variational indicator of the problem in the following 
form, 

then substituting into equation (17) and invoking the 
stationarity condition on II results into the following penalty 
matrix 

!£ = «$>/[ 1 GFd<t> 

U=U-W+ 
a r : 

~2 Jo 
(CONSTRAINT)2 d<j> (17) where 

where U and W are the total strain energy and total potential 
of the external loads, respectively, and a is the penalty 
parameter. The solution obtained using equation (17) with 
511 = 0 will satisfy the condition in equation (16) to the 
required accuracy provided a is selected to be sufficiently 
large [2,4-6]. 

Considering our elbow element, we want to be able to 
impose the constraints corresponding to two different con­
ditions: first, the fixity condition when an element is clamped 
to a rigid flange and, second, the continuity condition when 
elements are joined. 

3.1 Fixity Condition. When an element is fixed or clamped 
to a rigid flange, as shown schematically in Fig. 3(a), the 
boundary conditions are that at x = 0 there is no ovalization 
and dw^/dx = 0. Hence, we have, corresponding to equation 
(3) 

(Rn — acos(j))dn 

GF = [;. .a\aUk,b\bk
2b

k 

dhk 
a l = -2m 

bi=2m 

dr 

dr 

cos 2m<t> 

sin 2m<j> 

and Kp is defined corresponding to the degrees of freedom 
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node k 
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(i?„ — a cos<£)0„ J dr 

=-i{i^ckJ^ 
£*, V ^ dr 

v^ ,dhk \ 
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(18) 

(19) 

The matrix K£ with a relatively large value of a is added using 
the usual direct stiffness matrix procedure [2] to enforce the 
constraint in equation (21). The study in Section 4 illustrates 
how an appropriate magnitude for a is chosen. 

3.2 Continuity Condition. At the intersection of two elbow 
elements, as shown in Fig. 3(b), the ovalization is 
automatically continuous because the same ovalization 
degrees of freedom pertain to both elements. In addition, we 
have the continuity condition 

cos 2m<j> CONSTRAINT -[ (R„ —acos 4>)6n 

-\dW[ 

J dr 

(20) 
r 2 1 dwt 

Y (Rn + l-acos4>)6n + i] dr 
(27) 

The constraint in equation (18) simply means that the 
ovalization degrees of freedom at node / must be set equal to 
zero, whereas the constraint in equation (19) is imposed with a 
penalty parameter. Using, in accordance with equation (16), 

We impose this condition using the penalty method already 
employed in Section 3.1. Substituting into equation (17) from 
equation (27), we now obtain the penalty matrix 
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(a) ELBOW WITH A RIGID FLANGE AT NODE 

29 

/ •«— 

OVALIZATION BOUNDARY CONDITIONS 

AT 

AT 

x = 0 

x = L 

dw* 

dx = 0. 

= 0.5 in. (CORRESPONDING TO UNIT 
OVALIZATION IN FIRST 
VON KARMAN MODE) 

ANALYSIS PARAMETERS 

L = 4.8 in. 

a =8.0 in. 

S =0.37 in. 

E= 2.8 x|07 psi 

Fig. 4 Straight cantilever pipe test problem, E = Young's modulus 

ELEMENT (n) 

ELEMENT (n + l) 

r 

(b) ELBOWS OF DIFFERENT RADII JOINED AT NODE i 

Fig. 3 Interactions considered In analyses 

and for the common node (/) of the two elements, 

2 "I dh{n) 

am = { - [ 

+ [ 

(R„—acos4>)6„J dr 

2 - l t f V + 1) 

(R„+l~acos<l>)d„+i J dr - ] 
n + l J 

! 2m cos 2m 0 
r = - 1 J 

(34) 

-[ [ 
2 I dhjn) 
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L (Rn+\ -acos<t>)d„+l J dr \r=-\) 
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This penalty matrix corresponds to the degrees of freedom 

= [• («) an) 1.(1) (n) JtW cr cf 4 4 df A») 

node A: of element (n),k^2 

4.1 Analysis of a Straight Pipe. The straight cantilever pipe 
shown in Fig. 4 was analyzed for a prescribed ovalization at 
its right end. The purpose of this analysis was to investigate 
the effects of the element size and penalty parameter size on 
the response predicted, and thus arrive at some guidelines for 
the use of the element in modeling more complex piping 
systems. 

Figure 5 shows the response predicted in the analysis when 
using four equal size elements. It is seen that, although 
dWf/dx is continuous, the second derivative of wf with respect 
to x is strongly discontinuous at the junction of the first and 
second elements. Hence, the bending strain (in equation (8)) 
displays a large jump at this point and a finer finite element 
mesh is required at the fixed end if the stress distribution is to 
be predicted accurately. 

The appropriate element size for stress continuity between 
elements is evaluated by recognizing that in the stiffness 
matrix the bending strain contribution due to equation (8) 
should be at least as large as the shearing strain contribution 
in equation (9). This condition gives that for an element in 
which the terms in equations (8) and (9) are important, we 
want 6/1 > 1/4 where / is the element length. Figure 6 shows 
the response predicted using a fine finite element idealization 
for which this criterion is satisfied. It is seen that in the 
predicted response, the second derivative of wf is now con­
tinuous. It is also impoprtant to note that the ovalization 
displacement wf has changed very little from the response 
given in Fig. 5. 

To investigate the effect of the size of the penalty parameter 
a, the 16-element model of the cantilevered pipe was analyzed 
using the values of a listed in Fig. 7. As expected, when a is 
very small, the fixity condition at x = 0 is not properly im­
posed and when a is very large, the complete element stiffness 
matrix is singular. However, for a large range of a (see Cases 
2 and 3) an identical response is predicted. In practice, it is 

Ci c2 c3 di d2 d3 

node / 

. . cf+l) cf+i) cf+1) df+1) df+i) df+i) 

node k of element (n +1), k?t 1 

4 Sample Analyses 

We have implemented the foregoing enhancements to our 
elbow formulation in the computer program ADINAP [7]. 
The following analysis results are presented to indicate the 
applicability and effectiveness of these enhancements. 

(36) 

effective to choose a equal to the largest value in the stiffness 
matrix corresponding to the ovalization degrees of freedom 
and this is done automatically in the program. 

4.2 Analysis of a Flanged Pipe Bend. The flanged pipe 
bend shown in Fig. 8 was analyzed using the finite element 
model given. Figures 9-13 show the computed response for 
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Fig. 5 Predicted response of cantilevered pipe using four equal 
elements 
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Fig. 6 (cont.) 
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Fig. 5 (cont.) 
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ELEMENT I 

Fig. 7 Effect of size of penalty parameter on predicted response of 
cantilevered pipe 
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x(in.) 
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x(in.) 

ELEMENT I 

Fig. 6 Predicted response of cantllevered pipe using fine finite 
element Idealization (same response obtained using 16 elements of 
length 0.3 in. or 6 elements of 0.3 in. and 1 element of 3.0 in.) 

•y 
Fig. 7 (cont.) 
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R = fo° """ 
\375 mm 

8 • 12.5 mm 

28 = 275 mm 

E = 200 GPo 

) ° 0.28 

(o) PIPE BEND CONSIDERED 

ELEMENT I 

NODE \.J±J |0 
OVAL. BOUND. CONDITIONS 

dw, 
w. ' " 

dwr 
AT NODE 19 " j f - ' 0 

CONTINUITY AT NODES 4,7,10,13816 

dx 

(b) FINITE ELEMENT MODEL USED (SIX 4-N0DE ELEMENTS) 

Fig. 8 Whatham pipe bend, E = Young's modulus, v --
ratio 

Poisson's 
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10 \ 
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ADINAP, No Flanges ~-

ADINAP, Flanged Elbow 

i Measured Flexibil ity, by WHATHAM 

_ l _ _ l _ _1_ 
2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 4 5 0 5 0 0 

R (mm) 
Fig. 9 Predicted flexibility factors for Whatham pipe bend 
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Fig. 11 Predicted circumferential stresses at 9 = 45 deg and at out­
side surface in analysis of Whatham pipe bend, R = 250 mm 

-2 

- 3 

NO END EFFECTS, 
ADINAP 
FLANGED PIPE, ADINAP 

FLANGED PIPE, 
Experimental Stresses 
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Fig. 12 Predicted longitudinal stresses at 0 = 45 deg and at outside 
surface in analysis of Whatham pipe bend, R = 375 mm 

°Vr, 
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Experimental Stresses 
by WHATHAM. 
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Fig. 10 Predicted longitudinal stresses at 9 = 45 deg and at outside 
surface in analysis of Whatham pipe bend, R = 250 mm 
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by WHATHAM. 
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Fig. 13 Predicted circumferential stresses at 9 = 45 deg and outside 
surface in analysis of Whatham pipe bend, R = 375 mm 
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NO FLANGES 

3 ELEMENTS 

4 ELEMENTS 

WITH FLANGES 

6 ELEMENTS 

7 ELEMENTS 

AT ENDS A STJ 

10 ELEMENTS 

GEOMETRIC PARAMETERS 

R/a = 307 , a/S = 20.8 , R/L = 2.0 , L / t = 9.0 , i) = 0.3 

r—i 1 | 1 r-
Ref. [ I ] , CASE I /No Flanges 

EI VV 

X - (~Ma~) R 
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_£[DE6.] CURVED PIPE 

Fig. 14 Pipe bends and finite element models used 

STRAIGHT x " i 
PIPE 

Fig. 15 Predicted ovalization response of bends defined in Fig. 14. 
Ovalization measured at <t> = 90 deg. 

two different bend radii and give also experimental results [8]. 
It is seen that the correspondence between the computed and 
experimental flexibility factors and longitudinal stresses is 
good, but there is less good corrrespondence between the 
measured and computed circumferential stresses. 

4.3 Analysis of a Second Pipe Bend. The pipe bend shown 
in Fig. 14 was analyzed in reference [1] and in previous studies 
[9, 10]. In these analyses, interaction effects were not con­
sidered. Figure 15 shows the response predicted when now 
including interaction effects using the idealizations described 
in Fig. 14. For comparison, also the response predicted using 
a finite element shell idealization of the piping system with 
flanges at A and B is shown. The shell element used in these 
analyses is the triangular flat 18 degrees of the freedom 
element described in [11]. The following shell element mesh 
was used: 12 layers of elements around half the circumference 
(one layer being two triangles), 9 layers for the 90 deg bend, 
and 3 layers for the straight. Thus, a total of 216 and 288 shell 
elements were used to model Case I/flanges at A and B and 
Case II/flanges at A and B, respectively. Figure 15 shows that 
the ovalizations predicted using our elbow element are close to 
the ovalizations calculated with the shell element 
idealizations. Considering the response of the piping struc­
tures, we note that the ovalizations of the piping systems are 
reduced very significantly when the interaction effects are 
included. 

Conclusions 

Our elbow element presented in reference [1] has been 
enhanced to also account for interaction effects with rigid 
flanges and straight piping sections. The interaction effects 
are included in a novel, but very simple and efficient manner 
using a penalty function formulation. The results of some 

sample solutions have been presented which indicate the 
applicability of the element. However, the total element 
formulation is based on a number of assumptions and further 
detailed studies of the element performance are required in 
order to identify the limit of range of problems for which the 
element can be employed. 
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