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A Simple and Effective Pipe Elbow
Element—Linear Analysis

The formulation of a new, simple, and effective displacement-based pipe bend element is
presented. The displacement assumptions are axial, torsional, and bending displace-
ments that vary cubically along the axis of the elbow with plane sections remaining plane,

and a generalization of the von Karman pipe radial displacement patterns to include the
ovalization effects. The amount of ovalization varies cubically along the elbow with full
compatibility between elbows. The pipe bend element has been implemented, and the re-
sults of various sample analyses are presented, which illustrate the effectiveness of the

element.

1 Introduction

The structural integrity and cost of pipelines are of major concern
in the nuclear, oil, and various other industries. Pipelines can be
subjected to severe thermal, seismic, and other mechanical loads, and
for these reasons, an increasing amount of attention has been given
to their analyses [1).

In the analysis of pipelines it is convenient to distinguish between
the straight and curved portions of the pipe. The straight portions
of the pipeline can, in general, be adequately represented by simple
beam elements with circular cross sections. However, the bend com-
ponents of the pipe are much more difficult to analyze, because, in
addition to undergoing the usual beam deformations, the pipe bends
also ovalize. This ovalization affects the flexibility of a pipe bend a
great amount and must be properly modeled in the analysis [2-8].

Because of the importance and the difficulties that lie in the anal-
ysis and design of pipe bends, much research has been devoted to the
study of their structural behavior. In these investigations, during
recent years, also various simple to complex finite-element models
of pipe bends have been proposed. However, all these structural
models have serious limitations either with regard to their accuracy
in predicting pipe stresses and displacements or the cost of using
them.

The simplest and widely used approach in the linear analysis of
pipelines is to model a pipe bend using simple curved beam theory
and scale the stiffness constants and calculated stresses using factors
that account for the ovalization of the pipe cross section and the pipe
internal pressure [5]. If the effect of the internal pressure can be ne-
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glected, the constants used in this analysis are, in essence, the von
Karman flexibility and stress-intensification factors [6]. These con-
stants were derived by von Karman for in-plane loading and later by
Vigness using the von Karman analysis procedure for out-of-plane
loading [2] with a number of assumptions. A major point is that von
Karman considered a differential length of the elbow in which the
internal bending moment is constant. Therefore, if the factors are
applied to a complete elbow, it is assumed that the ovalization is
constant along the pipe bend. The conditions of a varying magnitude
in the internal bending moment and the fact that there may be no
ovalization at the end of the elbow cannot be taken into account with
accuracy.

Because of the limitations of the foregoing beam analysis of pipe
bends various refined analytical and finite-element models have been
proposed [5,7]. In essence, these models use shell theory to describe
the behavior of the pipe bend. Clark and Reissner proposed equations
that treat pipe bends as part of a torus and proposed an asymptotic
solution for the stress and flexibility factors [8]. This approach re-
moves some of the assumptions of the von Karman analysis but is not
effective in the analysis of general pipelines. The greatest potential
for the general analysis of pipe bends lies in the use of the finite-ele-
ment method {9]. Pipe elbows are currently being modeled using
three-dimensional elements, general shell elements, and special
elbow-shell elements [10-13]. Using either three-dimensional or
general shell elements, in theory, any elbow can be modeled very ac-
curately by using a fine enough finite-element mesh. However, in
practice, such an analysis of a simple elbow involves typically of the
order of a thousand finite-element equilibrium equations that need
be operated upon, which means that the linear analysis of a single
elbow is very costly, the nonlinear analysis of a single elbow is pro-
hibitively expensive and the nonlinear analysis of an assemblage of
elbows is clearly beyond the current state-of-the-art of computational
tools.

In order to reduce the number of finite-element variables special
elbow-shell elements have been proposed [12]. Although these ele-
ments are more cost-effective in use, they still involve a relatively large
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Fig. 1 Coordinate systems and displacements of elbow

number of solution variables and are subject to some major short-
comings, for example, the axial variation of the magnitude of ovali-
zation is still neglected [12], or the rigid-body mede criterion is not
satisfied [13].

The objective in this paper is to present the formulation of a new
elbow element that is simple and effective and predicts accurately the
significant deformations and stresses in various curved pipe segments.
The elbow element is a four-node displacement-based finite element
with axial, torsional, and bending displacements and the von Karman
ovalization deformations all varying cubically along the elbow length.
The formulation of the element is a very natural extension and gen-
eralization of von Karman’s pioneering analysis [6]. In essence, von
Karman analyzed in his work a differential length of pipe using the
Ritz method to calculate the flexibility and stress-intensification
factors. Because of the lack of the digital computer, von Karman could
only consider in the Ritz analysis the hoop direction of the pipe, but
it is interesting to note that von Karman “urges us engineers to be-
come familiar with the Ritz method, because the method is simple and
ideal to develop approximate solutions to complex practical problems”
(quoted from reference [6]). The formulation of the new elbow element
presented here extends the work of von Karman in that we use the
Ritz method (the displacement-based finite-element method) to take
also the axial variation of ovalization accurately into account, and
relax some other von Karman assumptions. The actual analysis pre-
sented here is only possible because the digital computer is available
and the analysis is performed efficiently using finite-element nu-
merical procedures [9].

In this paper we consider only the linear analysis of piping systems.
However, the full potential of the element lies in the geometric and
material nonlinear analysis of pipes, because the element is very
cost-effective and indeed allows an accurate nonlinear dynamic
analysis of assemblages of pipe bends. The nonlinear formulation of
the element, to be presented later, is based on the procedures given
in [14, 15].

In the next section of this paper we briefly review the von Karman
analysis with emphasis on the important concepts that we employ in
the finite-element formulation of the new pipe elbow element. This
formulation is presented in Section 3 of the paper. The elbow element
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has been implemented in the computer program ADINAP [16], and
in Section 4 we present the analysis results of some problems that
demonstrate the validity of the element.

2 The Theory of von Karman

The formulation of the pipe elbow element can be regarded as an
extension of the von Karman analysis, the major concepts of which
are for completeness briefly summarized in this section.

2.1 von Karman Assumptions. In his analysis of pipe elbows
von Karman recognized that in addition to the usual curved beam
theory strain components, two additional strain components also need
be considered that are due to the ovalization of the cross section; see
Fig. 1. These strain components are a pipe cross-sectional circum-
ferential strain, (€z)o», Which is due to the deformation of the cross
section, and a longitudinal strain, (€,,)v, which is due to the change
in the curvature of the pipe itself. Corresponding to the usual strain
components, the von Karman analysis is based on the following major
assumptions.

1 Plane sections originally plane and normal to the neutral axis
of the pipe are assumed to remain plane and normal to the neutral
axis.

2 The longitudinal strains are assumed to be of constant magni-
tude through the pipe wall thickness.

3 The circumferential strains are assumed to vanish at the middle
surface of the pipe wall, and are due to pure transverse bending of the
pipe wall. Hence the pipe wall thickness is assumed to be small in
comparison to the pipe external radius; i.e., §/a <« 1.

4 The pipe external radius is assumed to be much smaller than
the radius of the pipe bend; i.e., a/R « 1.

5 The effect of Poisson’s ratio is neglected.

Using assumption 3, a relation can be written between the radial
and circumferential displacements of the middle surface of the pipe
wall,

we=— d_wE 1)
d¢
where w; is the radial displacement, w; is the tangential displacement
and ¢ measures the angular position considered as shown in Fig. 1.

2.2 von Karman Analysis. In his analysis von Karman estab-
lished the strain energy in an element of pipe that is subjected to a
constant bending moment, and used the Ritz method to estimate the
amount of ovalization.

Using the assumptions previously summarized, the longitudinal
strains due to the distortion of the cross section are

wRr
ov = — 2
(€qn) R (2)

where R is the pipe bend radius and wp, is the local displacement of
the pipe wall in the bend radial direction, see Fig. 1. Also, the tan-
gential strain component is
d2w
+ ——2'] ¢ 3)

d¢

where a is the radius of the pipe and { is the local coordinate in the
pipe wall, see Fig. 1.

Using equations (1)—(3) and assumptions 1-5, the total strain en-
ergy of an elbow of angle « is

EadR e
V== j;
2% d 2
X{j; ’.— (%)a cos¢+l%(wesin¢+-d%cos¢n do,
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1
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Transactions of the ASME

)



V-

Tablg 1 Number of ovalization shape functions to be
used in Ritz analysis (and elbow formulation)

Geometric range Number of functions N
A205 1

0.16 <A <05 2

0.08 < A <0.16 3

0.04 <A <0.08 4

where 6 is the pipe wall thickness, E is the Young’s modulus of the
material and A« is the cross-sectional angular rotation. In equation
(4) TERM 1 corresponds to the curved beam theory longitudinal
strain, and TERM 2 and TERM 3 correspond to the straining that
is due to ovalization.

The only variable in equation (4) is the displacement w;. To esti-
mate this displacement von Karman assumed for in-plane bending
of the elbow

N
wg= 3 c;sin2n¢
n=1

(5)

and performed a Ritz analysis to obtain the parameters ¢;. The va-
lidity of the von Karman trial functions in equation (5) has been
substantiated by experiments [2—4].

Considering the von Karman analysis, a geometric pipe factor A,
where A = R8/a?, plays an important role in the determination of the
number of trial functions that should be included in the analysis.
Table 1 summarizes the number of trial functions that need be used
for different values of X in order to obtain satisfactory results.

Considering the von Karman analysis, it may be noted that as-
sumptions 2, 4, and 5 are not used in the formulation of the elbow
element presented in the next section.

3 Finite-Element Formulation of the Elbow Element

The analysis of a general assemblage of finite elements consists in
essence of the formulation of the equilibrium equations of each in-
dividual element and the subsequent application of general solution
procedures that are independent of the type of element considered
[9]. Therefore, in the following discussion, we only need to focus our
attention on the derivation of the equilibrium equations of a typical
elbow element.

Using the principle of virtual work (or principle of minimum total
potential energy) to derive the equilibrium equations that govern the
linear response of a general finite element, we obtain [9]

KU=R (6)

where K is the stiffness matrix of the finite element corresponding to
the element nodal point degrees-of-freedom listed in U,

K=f 87 ¢ Bdv
14

and R is the effective nodal point load vector [9]. In equation (7) B is
the strain-displacement matrix, and C is the corresponding stress-
strain matrix [9]. Considering the pipe elbow element we therefore
only need to establish the B matrix and discuss how the integration
in equation (7) is performed efficiently.

3.1 Evaluation of the Strain-Displacement Matrix. Using
the concepts of finite-element analysis, we need to describe the ge-
ometry and variations of internal element displacements of a typical
pipe element in terms of its nodal point quantities. Fig. 2 shows a
generic pipe elbow element with the assumed four nodal points. To
establish the geometry and displacement interpolation functions of
the element, assume first that the pipe cross section does not ovalize.
In this case the coordinate and displacement interpolations are as used
in the isoparametric finite-element formulations of beam, plate, and
shell elements discussed in [15, 17-20). For completeness of the for-
mulation of the elbow element we briefly summarize first the iso-

(7)
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Fig. 2 Geometry of pipe elbow element

parametric beam element formulation that does not include ovali-
zation.

3.1.1 Element Geometry and Displacement Interpolations As-
suming no Ovalization. The basic assumption in this formulation
is that plane sections originally normal to the center-line axis of the
pipe element remain plane but not necessarily normal to the center-
line axis. Thus we can write the following equations for the coordinates
of a point in the element before and after deformation:

4 4 4
xi(r, s, t) = k): hy x5+t k}: azhy (V& +s kz aghy 'V
=1 =1 =1

1=1,2,3 (8)

where

r, s, ¢ = isoparameteric coordinates [9]
Ix; = Cartesian coordinate of any point in the pipe ele-
ment
hy(r) = isoparametric interpolation functions
Ix# = Cartesian coordinate of nodal point k
a;, = outer radius of element at nodal point k
IVt = component i of unit vector V%, in direction ¢ at
nodal point k
V% = component i of unit vector ‘V%, in direction s at
nodal point k&,

and the left superscript ! denotes the configuration of the element;
i.e., [ = 0 denotes the original configuration, whereas [ = 1 corresponds
to the configuration in the deformed position.

The interpolation functions h(r) used in equation (8) are derived
in [9, pp. 127-130], and are summarized in Fig. 3. In the application
of equation (8) it must be noted that the structural cross section
considered is hollow, meaning that equation (8) is only applicable for
the values of s and ¢ that satisfy the equation

(1—6—k2532+t251 )
ag
where 6, and a, are the wall thickness and the outside radius of the
element at nodal point k. This fact is properly taken into account in
the numerical integration to obtain the stiffness matrix of the element
(see Section 3.3).

To obtain the displacement components at any point r, s, ¢ in the

pipe we have

ui(r, s, £) = 'x; — %; (10)
Thus, substituting from equation (8), we obtain
4 4 4
uilr,s, t)= Y hpub+t > akthf,-+s Y arhe V% (11)
k=1 k=1 k=1

where
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Fig.3 Degrees-of-freedom and interpolation functions of pipe without ova-
lization

-
Vii= 1V - ovk

VE = 1vh — oyh (12)

For the finite-element solution we express the components V¥ and
V¥ in terms of rotations about the global axes %;, { = 1, 2, 3; namely,
we have

= gk x Ov¥

Vi = gk x Oyk (13)

where 8* is a vector listing the nodal point rotations at nodal point
k, see Fig. 3,

(14)

Thus, substituting from equations (13) and (14) into equation (11),
we obtain an equation that gives the displacement components u;(r,
s, t) in terms of the nodal point displacements u¥ and rotations 6%, i
=1,2,3andk =1,2,3,4.

3.1.2 Element Displacement Interpolations Including Ovali-
zation. The displacement interpolations in equation (11) assume
that the cross section of the pipe does not deform. To include the ef-
fect of ovalization we use the displacement patterns suggested by von
Karman and others [2, 3, 5, and 6], and interpolate these displacement
patterns cubically along the length of the elbow, see Fig. 4. Considering
in-plane and out-of-plane action we use

wi(r, ¢) = Z 2 hyck sin 2m¢ + }: Z’, hid® cos 2m¢ (15)

m=lk= malk 1

]

in-plane bending out-of-plane bendmg

where the c£ and d%, k = 1, 2, 3, 4, are the unknown generalized
ovalization displacements. Depending on the pipe geometry, and the
type of loading, it may be sufficient to include only the first, or first
two, term(s) of one (or both) double summation(s) in equation (15),
as discussed in Section 2.2 (see Table 1). In the implementation of the
element we have allowed N, to be 0 (no ovalization), 1, 2 or 3, and
similarly for Ny.

The total pipe elbow displacements are the sum of the displace-
ments given in equation (11) and equation (15). Thus a typical nodal
point of a three-dimensional elbow element can have from 6 to 12
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Fig. 4 Ovalization modes used in elbow formulation

degrees of freedom at each node, depending on whether the ovaliza-
tion displacements are included, and which ovalization patterns are
used.

3.1.3 Displacement Derivatives. With the geometry and dis-
placement interpolations given in equations (8), (11), and (15), in
essence, standard procedures can be used to evaluate the appropriate
displacement derivatives that constitute the elements of the strain-
displacement matrix. Based on the discussion in Section 2.2 the
complete strain-displacement relations for both in-plane and out-
of-plane bending of the element can be written as

€nn
4 [B% B 8%
Ve = :;ul :os uk (16)
Y k=110 Bou2 Boua.
€&t
where
u® [u,uzu:,ﬂ"ﬂ"ﬂ"lc,czcsld"d g] (17)

In equation (16) all six ovalization patterns of equation (15) are in-
cluded, but we could use less ovalization degrees of freedom.

The displacement derivatives in B# correspond to the strains that
are due to the beam bending nodal point displacements and rotations.
Using equations (11)-(14) we have

el | eIl @ @4 @) ::
Ui =k>:1 he [0 @ @)% @)% !

ot (18)
he [0 @)% @)% @)% :
where we employ the notation
[0 —ovk ovy,
@ =ar | V4 0 -ovh (19)
i T 4R
[ o —ovh  ovh)]
@F=ar] OV 0 -0V (20)
~oVh oVh 0
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0

and

@)% =s@)% + @)% (21)
To obtain the displacement derivatives corresponding to the axes
9, i = 1, 2, 3 we employ the Jacobian transformation

(22)

where the Jacobian matrix, J, contains the derivatives of the coordi-
nates %;, i = 1, 2, 3 with respect to the isoparametric coordinates r
s, and ¢ [9]. Substituting from equation (18) into equation (22) we
obtain

oui uk
x| [ @b @h G ] |
QUi =% | haGURGDEGDE] | ., | @3
% | Ty 61 G2k 63 | | O
ou; 03
2%,
where

(Gm)ly = (il @hdhar + (Ui @i+ Jid @hdhe  (20)

Using the displacement derivatives in equation (23) we can now
directly calculate the elements of the matrix B*; namely, equation (23)
is used to establish the global strain components (corresponding to
the %x;, i = 1,2, 3, axes), and these components are transformed to the
local strain components €y, 75z, and v, to obtain the elements of the
matrix B*.

The elements of the matrices Bf,;, BY,5, B%,3, and B%,, correspond
to the entries labeled TERM 2 and TERM 3 in equation (4).

Thus, using equation (15) to interpolate w;, we have

a, as ag
Bju = R—h"— 0 o (25)
a cos ¢ 0 0 o
where
a; = m cos (m¢) cos ¢ + sin (m¢) sin ¢
¢ = angular position in the cross section; see Fig. 1
m=2l
and
3 he
Bouz = —; [b1 b2 b3 (26)
a
where
. b= =-m(m?2 —1) cos (m¢)¢ 27
and
dy do das
B,y = (R b 0 0 0 (28)
= a cos ¢, 0 0 0
where
d; = —m sin (m¢) cos ¢ + cos (m¢) sin ¢, (29)
and
L
Bouvs = _2' [51 62 53] (30)
a
where
b = m(m2 — 1) sin (mo)¢ (31)
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Fig.5 Analysis of cantilever straight pipe using a one element model

3.2 Stress-Strain Matrix. The stress-strain matrix used in the
analysis corresponds to plane stress conditions in the £ — g plane, i.e.,
we use

Oun 1 0 0 v €nn
1—-v

O E 0 2 0 N | 2t
= 32
P . (32)

-
Ot 0 0 ) 0 IFvne
Ot v 0 0 (333

where E is the Young’s modulus and » the Poisson ratio of the mate-
rial.

3.3 Numerical Integration. To evaluate the stiffness matrix
in equation (7) we are using numerical integration. In linear analysis
it may be possible and more effective to evaluate some of the inte-
grations required in closed form, but in general nonlinear analysis
numerical integration must be employed. Since our final objective
is to use the element in nonlinear analysis, we choose to employ in all
analyses numerical integration.

Much emphasis has been given in recent years to reduced numerical
integration in the use of low-order beam and plate elements [17,21].
The use of reduced integration is necessary in those cases, because
if the stiffness matrices of very thin low-order elements are evaluated
accurately, the elements display much too stiff a behavior. Using re-
duced integration in the evaluation of the low-order element stiffness
matrices can drastically improve some analysis results, but may also
introduce spurious zero or very small eigenvalues that result in solu-
tion difficulties, and make it difficult to assess the reliability of the
solution results in general (and particularly nonlinear) analysis. On
the other hand, using the higher-order element presented in this paper
reduced numerical integration is not needed for an accurate response
prediction, and a reliable and effective solution is obtained using
high-order integration (see also Section 4.1) [18,20].

Considering the assumed displacement distributions for the elbow
element, the Newton-Cotes formulas can be employed for the nu-
merical integration with the following integration orders: 3-point
integration through the wall thickness, 5-point integration along the
elbow, and, using the composite trapezoidal rule around the circum-
ference, 12-point integration for in-plane loading, and 24-point in-
tegration for out-of-plane loading [9]. This integration order around
the circumference assumes that all 3 ovalization patterns are included
in the analysis; less integration stations can be employed if a smaller
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Fig. 6 Plpe bend and finite-element model used

number of ovalization degrees of freedom are used. Also, instead of
the Newton-Cotes formulas, Gauss numerical integration could be
employed. The choice of the integration scheme is particularly crucial
in nonlinear analysis and we will be presenting more details on the
numerical integration in future communications.

4 Sample Analyses

The elbow element has been implemented in the computer program
ADINAP. The following analysis results are presented to indicate the
applicability and effectiveness of the element. In all analyses the
Newton-Cotes integration described in Section 3.3 was employed, and
the pipe geometric factor used was A = R8/(a2v'1 — »2) {12].

4.1 Analysis of a Straight Pipe. The straight cantilever pipe
in Fig. 5 was analyzed to demonstrate the effectiveness of the element
in the analysis of thin structural members. The element formulation
includes shear deformations at a pipe cross section and it is instructive
to evaluate this assumption in the solution of this problem. In the
analysis one element was used to model the complete pipe.

Fig. 5 compares the analysis results obtained with the elementary
beam theory solution for different length to diameter ratios. As ex-
pected, the displacements and stresses predicted using ADINAP are
very close to those of elementary beam theory neglecting shear de-
formations for large length-to-diameter ratios, because in those cases
the shear deformations contribute negligibly to the tip displacement
of the pipe. Hence, it can be concluded that the element is effective
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Fig. 8 Longitudinal stress at Inside surface of bend in Fig. 6 (no end con-
straints)

when shear deformation effects can be neglected, which is the case
in thin-walled pipes.

4.2 Analysis of a Pipe Bend. The pipe structure shown in Fig.
6 was analyzed using ADINAP because the analysis results could be
compared with the results presented by Sobel [12]. Using ADINAP
the pipe bend was modeled using three equal elbow elements as shown
in Fig. 6.

In his work Sobel used the state-of-the-art tools provided in the
MARC computer program to analyze the bend. Based on an extensive
convergence study, Sobel concluded that 32 or 64 of the MARC
pipe-bend segment elements need be used to model the bend.

In the first analysis using ADINAP the ovalization degrees of
freedom at nodes 1 and 10 (and 2 to 9, see Fig. 6) were left free to
simulate the conditions that were assumed in the analysis by Sobel.
Figs. 7 to 9 show some stress components calculated using ADINAP
and the corresponding results obtained by Sobel using the MARC
program and the Clark and Reissner shell theory. The ADINAP
analysis was performed using the 1, 2, and 3 in-plane bending ovali-
zation terms of equation (15). Good correspondence between the
ADINAP, MARC, and Clark and Reissner shell theory results is ob-
served. It is also noted that in the ADINAP analysis all three terms
of ovalization had to be included for an accurate response prediction,
which corresponds to the recommendation given in Table 1. In the
subsequent analysis of this bend we therefore included all the terms
of ovalization.

In the second analysis using ADINAP the ovalization degrees of
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Fig. 11 Radial displacement w; at ¢ = 90° of bend In Fig. 6 subjected to
a concentrated force (3 ovalization modes)

freedom were set equal to zero at the two ends of the pipe. Fig. 10
shows the variation of ovalization along the pipe bend predicted in
this analysis, using 3, 6, and 24 equal elements to model the bend. As
expected the finite-element results converge (neglecting the initial
overshoot/undershoot) to the analytical solution that is based on the
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Fig. 12 Longitudinal stress at outside surface and at § = 45° of Smith and
Ford bend subjected to 2n in-plane bending moment
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Fig. 13 Hoop stress at outside surface and at § = 45° of Smith and Ford bend
subjected to an In-plane bending moment

von Karman theory. It should be noted that this theory does not ac-
count for elbow end-effects and using this theory there is a stress
singularity at @ = 0° and 90°; therefore, the present elbow element
cannot be used to predict the stresses accurately at the elbow ends.

In the third analysis, the pipe structure was subjected to a con-
centrated transverse load instead of the concentrated moment. Fig.
11 shows the predicted ovalization again using 3, 6 and 24 equal ele-
ments to model the bend. It is seen that the finite-element results
converge (again neglecting the initial overshoot/undershoot) to the
ovalization predicted by the von Karman theory.

4.3 In-Plane and Out-of-Plane Bending Analysis of a Second
Pipe Bend. The second pipe bend shown in Figs. 12-15 was analyzed
for in-plane and out-of-plane bending using the same finite-element
mesh as was employed in the previous analysis (see Fig. 6(b)). Some
longitudinal and hoop stress results calculated with ADINAP are
shown for the in-plane bending in Figs. 12 and 13, and for the out-
of-plane bending in Figs. 14 and 15. The computed results are com-
pared in the figures with experimentally obtained values [22] and good
correspondence is noted.

5 Conclusions

The formulation of a simple and versatile pipe elbow element has
been presented. The element has been implemented and the solution
results of various sample analyses have been presented. Since the
element has been formulated using basically beam theory plus an
allowance for ovalization of the elbow cross section, the element
cannot capture the full three-dimensional shell behavior of elbows,
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Fig. 14 Longitudinal stress at outside surface and at § = 45° of Smith and
Ford bend subjected to an out-of-plane bending moment

if activated. However, the element predicts the significant displace-
ments and stresses accurately for a large range of pipe geometries, and
for the same accuracy, the use of the element leads to very much less
expensive solutions than other previously published computational
tools.

The approach employed in the formulation of the elbow element
shows much promise for the development of a simple and effective
element that can also model accurately elbow end-effects, internal
pressure effects and, in particular, nonlinear material and geometric
behavior.
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