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Abstract-In some earlier communications we presented the formulation of a simple pipe elbow element 
for linear analysis. In this paper we extend this formulation to include some nonlinear effects, 
Elastic-plastic conditions can be modeled, and some kmematic nonhnearities (due to large displacement 
beam behavior) can also be represented. The results of some sample solutions are gtven to illustrate the 
use of the element. 

1. INTRODUCTION 

In some recent papers we presented the formulation of 
a simple pipe elbow element[l-31. In these commu- 
nications we only considered the linear analysis of 
pipes, but it was already pointed out that a main 
objective in the development of the element was to 
obtain a simple and effective tool for nonlinear anal- 
ysis of piping structures. More specifically, our objec- 
tive was to provide an element that can be employed 
economically to model assemblages of pipe bends and 
straights for nonlinear static and dynamic analyses. 

In principle, already a large number of different 
approaches are available for the nonlinear analysis of 
piping structures (see, for example, Ref. [4] for a sur- 
vey of various approaches). Most notably finite ele- 
ment shell models can be employed to obtain very 
accurate solutions. However, the cost of analysis of a 
single pipe bend using these shell models can be very 
high and the analysis of assemblages of pipe bends and 
straights would be prohibitively expensive. 

Apart from the costs of preparing and analyzing a 
refined shell model of a piping assemblage, it is gener- 
ally recognized that frequently for the design of a 
piping structure the solution accuracy provided by 
such analysis is not necessary. For this reason consid- 
erable research efforts have been placed on the devel- 
opment of simplified analysis techniques. For linear 
analysis of piping structures these simplified 
methods-in very wide use-are based on simple 
curved beam theory and correction factors to estimate 
the flexibility of elbows and stress intensifications. 

For more general nonlinear analysis a similar ap- 
proach is hardly possible because the flexibilities and 
stresses of the structural components depend on the 
level and history of deformations, and distribution of 
plasticity, which requires that the complete stress dis- 
tribution in a bend be predicted to sufficient accuracy. 
Alseas for all complex nonlinear static and dynamic 
analyses-the response solution must be calculated 
using an incremental formulation[5]. 

The basic aim in the development of our elbow 

element is to establish an element that is simple and 
computationally cost-effective and yet provides 
sufficiently accurate stress distributions to allow 
elastic-plastic analysis of pipe assemblages. The ele- 
ment should be theoretically sound and its formu- 
lation be well-understood and transparent as to the 
assumptions involved; the element should have good 
predictive capability but by its very nature will have 
limitations in its applicability. 

Considering the analysis limitations of the element, 
it would be possible to extend the range of applica- 
bility, but such refinements must be chosen in a very 
careful manner and with considerable ingenuity so as 
not to unduly increase the complexity and cost of the 
element. Namely, with too complex an elbow element, 
the analysis of pipe bends may be performed more 
economically using shell elements, in particular when 
an element such as the DKT plate/shell element (with 
the Ilyushin yield criterion) is employed[6]. 

Based on the above thoughts our objectives in the 
development of the element can be summarized as 
follows: 

0 The element should be “easy in description and 
program input” to the analyst. Here, a beam-type 
formulation with input descriptions at centre-line 
nodal points only is clearly effective. 
l The primary objective is to predict the 

flexibility of an elbow accurately whereas (in 
elastic-plastic analysis) stress distributions are only 
calculated as a means to reach that goal. 
l The element should be computationally 

effective, i.e. give high accuracy stress predictions 
relative to the cost of analysis, and sufficiently accu- 
rate for a relatively wide range of analyses. 
l The element should be able to model the inter- 

action effects between elbows of different curvatures, 
elbows and straights and the effects of flanges on 
elbows. This is necessary because we want to use the 
element to analyse complete pipe assemblages. 
l The theoretical formulation should be sound 

and transparent so that the assumptions involved are 
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clear. The element must satisfy all finite element 
convergence criteria, must not possess spurious zero 
energy modes and must be applicable to linear and 
nonlinear static and dynamic analyses. 

In the next sections we summarize the basic formu- 
lation of our current elbow element. We then report 
on some solutions obtained with the element in 
nonlinear analysis. This paper describes our first 
developments on the element for nonlinear analysis, 
and we therefore conclude by summarizing some 
further developments that we are pursuing with the 
element. 

2. SUMMARY OF BASIC ASSUMPTIONS 

The formulation of the element for linear analysis 
was presented in earlier communications and we shall 
not repeat here that information. However, the basic 
kinematic assumptions for linear analysis are also 
those for nonlinear analysis and it is of value to 
summarize them in this presentation. 

Figure 1 shows a pipe elbow element and the 
displacements and stresses to which we refer in the 
formulation. 

2.1 Finite element kinematic assumptions 
The elbow element is basically formulated as a 

curved beam of hollow circular section with the 
cross-section of the beam allowed to ovalize. The 
ovalization varies along the beam with full com- 
patibility between elbows and straight sections. Using 
the notation and equations given in [l-3,5], the basic 
equations describing the usual beam displacement 

4 4 
u,(r,s,t)= 1 h,uf+t Cri,h,V: 

k=l k=l 

+ s i n, h, V:,; i= 1,2,3 (1) 
k=l 

behavior of the elbow in infinitesimal displacement 
analysis are: 

with 

Vk = Ok X ovk. vk = Ok X ovk I? T (2) 

where r, s, t = isoparametric coordinates; u, = Car- 
tesian displacements of material point (r, s, t); 
hk(r) = isoparametric interpolation functions; 
uf = Cartesian displacements of nodal point k; 
8’ = rotations at nodal point k; & = outer radius of 
element at nodal point k; ‘ik = a + 6/2; 6 = thickness 
of pipe skin; “Vtt = component i of unit vector “vf, in 
direction t at nodal point k; and ‘Vt, = component i 
of unit vector “Vt, in direction s at nodal point k. 

The assumed displacements for ovalization are: 

w&, 4) = i 
( 

2 h,cksin2m$ 
k=l m=l 

L___ ____ ___ ;__I 

m-plane bending 

+ 5 hk dicos2m4 (3) 
IfI=, > 

L_______ _________ __J 
out-of-plane bending 

NODE 

AUXILIARY 
NODE 

0 ’ xp , xp 

Fig. I. Displacement and stress conventions and coordinate systems for pipe elbow elements. 



A simple and effective pipe elbow element-some nonlinear capabilities 661 

where the assumption is that (see Ref. [l]) and 

d Y 
w;= -VJ 

and wC and wr are the displacements of the pipe skin 
into the 5 and c directions, respectively. The ci and 
dk, k = 1,2,3,4, are the unknown generalized oval- 
ization displacements. Depending on the pipe geom- 
etry and the type of loading, it may be sufficient to 
include only the first, or first two, terms of one (or 
both) double summation(s). In the implementation of 
the element, we have allowed N, to be 0 (no oval- 
ization), 1, 2 or 3, and similarly for Nti Without prior 
knowledge on how many ovalization degrees of free- 
dom to include it is recommended to use N, and/or 
Nd equal to 3. The total displacements of the element 
are the sum of the displacements presented in eqns (1) 
and (3). Hence, for example, with N, and Nd equal to 
3, a typical nodal point k carries the unknown 
displacements 

where the geometry and displacement variables are 
defined in Fig. 1. 

Considering the above strain terms we recognize 
that the longitudinal strain c9,, is calculated from the 
second derivative of the pipe skin radial displacement 
wI. Hence, for convergence, continuity in dw(/dO 
between adjacent elements has to be imposed and we 
enforce this continuity using a penalty procedure. 
The detailed algorithm for this task is presented in 
Ref. [2]. This algorithm is used to enforce the 
appropriate conditions on wi between elbows of 
different curvatures, elbows and straight sections, 
and elbows and rigid flanges. 

u k7 = [uf uk uk Ok Ok 0” ck ck ck dk dk dk]. 23123123123 (5) 

We may note that the displacement assumptions 

3. NONLINEAR FORMULATION 

The basic equations used for the incremental 
formulation for non-linear analysis are given in Ref. 
(5). The formulation consists of the following kine- 
matic and constitutive descriptions. 

given in eqns (1) and (3) correspond to a beam of 
circular cross-section that only distorts in its cross- 
sectional plane, hence warping is not accounted for. 
Also, we only allow the beam to ovalize in the 
specific patterns given in eqn (3). 

3.1 Kinematics 

Clearly. additional interpolations could be in- 
cluded to account for warping and more complex 
ovalization; however, then the element is bound to 
become computationally more expensive and when 
such refinement in the model is required, it is deemed 
more effective to use a full shell element idealization. 

It is important to note that the cubic interpolation 
of all displacement components means that the rigid 
body mode criterion is directly satisfied and that the 
interpolations are very effective for a large displace- 
ment total Lagrangian formulation. Also, the fact 
that we use a cubic interpolation of displacements 
means that the element does not lock and reduced 
numerical integration is not necessary. We discuss 
the use of numerical integration in Section 3.3. 

We have implemented the element for a total 
Lagrangian formulation with the assumptions that 
for the beam behavior the strain displacement matri- 
ces given in Ref. [5, p. 3651 are used. Hence, the 
element accounts for large beam displacements and 
rotations but only small strains. However, for the 
ovalization action, we assume small displacements 
and use the strain terms given in eqns (6)-(8) 
corresponding to the initial configuration of the 
element. 

The complete linear strain-displacement matrix for 
nodal point k of an element is thus 

2.2 Strain components 
With the displacement kinematic assumptions 

given, it is most important to identify the appropriate 
strain components for the element formulation. A 
study of Novozhilov’s shell theory[7] for curved 
tubes shows that in linear analysis the important 
strain components for the elbow are the usual beam 
normal and shear strains and the additional strains 
due to the ovalization, 

where the superscript k stands for nodal point k, the 
matrix ABk, is defined in Table 6.7 of Ref. (5) and the 
matrices Bi,, accounting for ovalization are defined in 
Ref. [l]. 

The nonlinear strain-displacement matrix for the 
element is given by 

w; sin 4 + * cos 4 
dd 

%! = R - a cos C#I 

(7) 

Y~r=(R_alcosJd$ (8) 

PIP 

where ;Bk, is given in Table 6.7 of Ref. (5). 
The above displacement assumptions mean that 

the present element is only in a restricted sense 
applicable to large displacement analysis. Since de- 
formation effects are not included in the strain- 
displacement terms corresponding to the ovalization 
degrees of freedom (in eqn 9) we have the following 
major assumptions: 
l An increase (or decrease) in the flexibility of an 

element, as contributed by the ovalization, due to the 
change in the element curvature is neglected (the 
element radius of curvature R (see Fig. 1) is constant) 
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a Large displacement buckling/collapse in the 
ovalization modes cannot be calculated. 

The elastic-plastic constitutive matrix is evaluated 
using flow theory as described in Ref. [5, p. 3881, but 
only for the stress terms cr,,?, r~,,:, a,,:, ace. Hence, plane 
stress conditions are assumed in the ~-4 plane. Also, 
the von Mises yield condition and isotropic strain 
hardening are assumed. 

3.3 ~~~eric~l integration 
For the evaluation of the element stiffness matrix 

and force vector that corresponds to the current 
element stresses numerical integration is used. Since 
the computational effort is directly proportional to 
the number of integration stations employed, it is 
important to use an effective scheme. 

Although the element can be employed with a 
variable number of nodes (2, 3 or 4 nodes), in actual 
analysis it is usually most effective to employ the 4 
node element, and eqn (1) has been written for that 
element. Figure 2 shows the integration schemes 
available for this element: 

# Along the length of the element, 4 (or 3) point 
Gauss integration, or 5 (or 3) point Newton-Cotes 
integration. 

a Around the circumference, 8, 12 or 24 point 
integration, composite trapezoidal formula. 
l Through the thickness, 3, 5 or 7 point 

Newton-Cotes integration. 
Considering the above in~gration schemes we note 

that for the integration along the element length the 
4 point Gauss and 5 point Newton-Cotes formulas 
are usually effective. The advantage of Newton- 
Cotes over Gauss integration is that integration 

stations with positions at the element end-points are 
included, so that the development of plasticity in the 
element is in some anaiyses more accurately repre- 
sented. 

The number of integration stations required 
around the circumference depends on the number of 
ovalization modes used. To integrate accurately the 
strains corresponding to all ovalization modes in 
general three-dimensional analysis, the 24 point inte- 
gration must be used, but for in-plane bending, the 
12 point inte~atioR scheme is usually sufficient. 

Considering the integration through the pipe skm 
thickness, 3 point integration is usually sufficient, but 
when the spread of plasticity through the pipe skin is 
important a higher order integration may need to be 
employed. 

4. SAMPLE ANALYSES 

The elbow element has been implemented in the 
ADINA program. The following two sample analyses 
illustrate the use of the elbow element in nonlinear 
analysis. 

4.1 Eiastic-p~astie analysis of ~~at~a~ pipe bend 
The 90” pipe bend with flanges at both ends, 

considered already in Ref. [Z], was now analysed for 
its elastic-plastic response. This bend was earlier 
analysed by Whatham for its elastic response[8]. 
Figure 3 shows the pipe bend and the elbow element 
idealization used. Figure 4 shows the shell model of 
the same bend that was also solved in order to be able 
to evaiuate the elbow analysis results. Large displace- 
ment effects are in this problem negligible so that 
materially-nonlinear-only analyses were carried out. 

Figure 5 shows the moment vs rotation re- 
lationships as predicted using the two models for the 

Y 5-PT INTEGRATION 

NEWTON-COTES INTEGRATION 

. 3-PT INTEGRATION 

x 4-Pi INTEGRATION 

GAUSS INTEGRATION 

(a) integration along the length of P’w 
elbow element 

Fig. 2(a) 
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i i 

x 8 - PT INTEGRATION 

8 12 -PT INTEGRATION 

. 24- PT INTEGRATION 

Fig. 2(b) 

x 3-PT INTEGRATION 

l 5 - PT INTEGRATION 

. 7 - PT INTEGRATION 

Fig. 2(c) 

Fig. 2. Integration schemes used with 4-node pipe elbow element; for the exact locations of the Gauss 
integration points see Ref. [5], Table 5.3. (a) Integration along the length of pipe elbow element; (b) 

integration around the circumference of the pipe; (c) integration through the pipe skin. 

bend. The predicted stiffness of the bend is slightly 
larger using the elbow idealization (partly because of 
the assumptions on the deformations of the elbow 
elements), but in fact good correspondence between 
the two solution results is noted. Also, only a rela- 
tively few load steps and equilibrium iterations per 
load step were required in the solutions. 

Figure 6 shows the stresses as predicted in the 
nonlinear range using the two models. It is noted that 
while the calculated longitudinal stresses are in quite 
good agreement, the circumferential stress distribu- 
tions show larger differences. On the other hand, at 

M/M0 = 2.5 the bend has reached total collapse so 
that a close correspondence in the two predicted 
distributions can hardly be expected. 

The important observation to be made is that the 
flexibility of the bend in the linear and nonlinear 
range is predicted quite accurately using the elbow 
element idealization. 

4.2 Nonlinear analysis of Sobel bend 
Figure 7 shows the piping structure that was 

analysed by Sobel and Newman[9] for nonlinear 
elastic-plastic response. Sobel and Newman used the 

R = 250mm 

L 375 mm 

8 = 12.5 mm 

21 = 275 mm 

E = 200GPa 

J = 0.20 

Fig. 3(a). 
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ELEMENT I 

I 
NODE I 

OVAL BOUND CONDITIONS 

dw, 
ATNODEI. wt=O>-$=O 

AT NODE 19 2 = 0 

CONTINUITY AT NODES 4,7, IO, 13EI 16 

Fig. 3(b). 

Fig. 3. Whatham pipe bend, E = Young’s modulus, v = Poisson’s ratlo. (a) Pipe bend considered; (b) 
elbow element model used (six Cnode elements with S(thickn.) x lycircum.) NewtonCotes integr.). 

x 

Fig. 4. Shell element model used for analysis of Whatham 
pipe bend, 4 x 4 x 4 Gauss integration. 

Marc program and compared their response predic- 
tions with experimental results. 

In our analysis we used the 5 element model shown 
in Fig. 7. Elements 1 and 5 are two Hermitian beam 
elements and elements 2, 3 and 4 are three elbow 
elements including ovalization. This mode1 corre- 
sponds in many respects to the model of Sobel and 
Newman, who used 34 (evenly spaced) segments of 
the Marc element 17 around the hoop direction of the 
pipe bend, but also neglected the ovalization inter- 
action effects between the straight and curved sec- 
tions of the structure. 

The material data used in our analysis are given in 
Fig. 7 and approximate the data given in Fig. 3 of 
Ref. (9). 

Figure 8 shows the response predicted using the 
elbow model. It is seen that the predicted response 
follows very closely the experimental results up to 
about 6” of rotation. At larger values of rotation the 
predicted response lies above the experimentally mea- 
sured moment values. 

The difference between the predicted and the 
experimentally measured moments at larger rotations 
is probably, at least to some part, due to the fact that 
geometric nonlinearities in the ovalization displace- 

/ / 

/ 

/ 
/ 

/ 
/ 

/ 

/ 

MATERIAL CONSTANTS 

E = 200 GPa 

v =.28 
u;=.3GPo 

ET= 2 GPa 

I I I I I 

4. 8 12 16 20. 

ROTATION AT BEND tw CROSS-SECTION -~xIo-~ [RAD.] 
Fig. 5. Response of elbow and shell element models in analysis of Whatham pipe bend. MO is the limit 

load for yield imtiation. 
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- ELBOW ELEM SOL 

. . . . SHELL ELEM SOL 

- EL@OW ELEM SOL 

. . . . SnELL ELEM SOL 

Fig. 6(a). Predicted longitudinal and circumferential stresses at B =45” and at outside surface, 
M/M, = 1.4. 

r I 

12 - ELBOW ELEM SOL I 

I 

I2 - - ELBOW ELEM SOL 

. . . . SHELL ELEM SOL 
I - 

. . . . SHELL ELEM SOL 

$20 
. . 

150. (EXTRAOOSI 

-2- 

(INTRAOOSI 30. 

Fig. 6(b). Predicted longitudinal and circumferential stresses at 0 = 45” and at outside surface, 
M/MO = 2.0. 

ments are not included in our model and the 
elastic-plastic material behavior was approximated. 

5. CONCLUDING REMARKS 

Although the elbow element discussed in the paper 
can already be effective for a variety of analyses, 
further research and development on the element is 
very desirable. 

Considering the nonlinear capabilities, the assump- 
tions on the kinematic nonlinearities summarized in 
Section 3.1 can be quite restrictive and the element 
formulation should be extended to include large 
displacement effects in the ovalization modes. With- 

out this extension the element can only be employed 
when the large displacement membrane effects in the 
pipe skin are negligible. 

To increase the applicability of the element, also 
additional inelastic material models should be imple- 
mented. Here, it may be effective to use force re- 
sultant yield criteria for the pipe skin, such as the 
Ilyushin yield condition[6], in order to avoid the 
numerical integration through the skin of the pipe. 

Much of the effectiveness of the element depends 
on the numerical integration that is used, and that is 
required for an accurate response prediction. More 
experience need be gained with the different integra- 
tion schemes already implemented and perhaps the 
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- ELBOW ELEM SOL -ELBOW ELEM SOL 

’ ’ ,- . . . . SHELL 
SOL 

ELEM, 

’ ML25 
47 

=17 e 

Qv 6- 

2- 

(INTAAOOSI 30’ 60° 90D 120’ 150’ (EXTRAOOS) ,50° (EXTRADOS, 

-2- 

Fig. 6(c). Predicted loneitudinal and circumferential stresses at 0 = 45 and at outslde surface. 
M/M, = 2.5. 

DIMENSIONS 

L, = 72.60 tn 

Lp= 24.00 tn 

D = 0.0. = 16.026 in 

R = 24 00 I” 

t = 0.410 I” 

t, = 0.310 I” 

t2= 0.369 I” 

L.2 
Fig. 7(a). 

MATERIAL PROPERTIES 

E = 2.81~10~ psi 
Y = 0 2642 
cTy= 4 00 x IO4 PSI 

For (T > uy : (5) = (6)” 

7 = 0.143 

Fig. 7(b). 

Fig. 7. Nonlinear analysis of pipe bend. (a) Structure; (b) 
fimte element model, 5 x I2 x 3 (long., circum., thickn.) 

Newton-Cotes integration. 

8 (DEGREES) 

Fig. 8. Moment-rotation response predxted m analysis of 
pipe bend 

use of additional integration methods should be 
explored. 

The element has also been implemented for dy- 
namic analysis, and a report on these capabilities is 
being prepared. 

Finally, considerable effort is required to continue 
with the evaluation of the present capabilities of the 
element, and of all future enhancements, against 
experimental results and more refined numerical solu- 
tions. 

Acknowledgemenrs-We gratefully acknowledge the 
financial support that was earlier provided by CNEN, 
Brazil, to C. A. Almeida for Ins studies at M.I.T. and the 
support of the ADINA users group for this work. 



A simple and effective pipe elbow element-some nonlinear capabilities 661 

REFERENCES 6. K. J. Bathe, E. Dvorkin and L. W. Ho, Our discrete- 
1. K. J. Bathe and C. A. Almeida, A simple and effective Kirchhoff and isoparametric shell elements for nonlinear 

pipe elbow element-linear analysis. ASME J. Appl. analysis-an assessment. Compur. Structures 16(14), 
Mech. 47, 93-100 (1980). 89-98 (1983). 

2. K. J. Bathe and C. A. Almeida, A simple and effective I. V. V. Novozhilov, Thin Shell Theory (Translated by P. E. 
pipe elbow element-interaction effects. ASME J. Appl. Lowe). NoordhotT, Groningen (1964). 
Mech. 49, 165-171 (1982). 8. J. F. Whatham, In-plane bending of flanged elbows. Proc. 

3. K. J. Bathe and C. A. Almeida, A simnle and effective Metal Structures Conf., the Institution of Engineers, Aus- 
pipe elbow element-pressure stiffening effects. ASME J. tralia Perth, 30 Nov. 1978. 
Appl. Mech. 49, 914-916 (1982). 9. L. H. Sobel and S. 2. Newman, Comparison of experi- 

4. S. Y. Zamrik and D. Dietrich (Eds.). Pressure Vessels and mental and simplified analytical results for the in-plane 
Piping: Design Technolog&l$82-A Decade of 
Progress. ASME, New York (1982). 

5. K. J. Bathe, Finite Element Procedures in Engineering 
Analysis. Prentice-Hall, Englewood Cliffs, New Jersey 
(I 982). 

plastic bending and buckling of an elbow. Proc. P&we 
Vessels and Piping Co& ASME, 13- 15 Aug. 1980, San 
Francisco, Calif. 

CAS Vol 17. No 51&D 


