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An effective solution procedure for finite element thermo-elastic-plastic and creep analysis with temperature-dependent
material properties is presented. The material model employed is summarized, the basic iterative equations are developed
and the solution procedure is theoretically analyzed and numerically tested for its stability and accuracy properties.

1. Introduction

The application of the finite element method to the inelastic analysis of structures and continua has received
considerable attention over the last fifteen years [1-21]. To a large extent, this effort has been motivated by the
need to safety and economically predict material response under conditions of extreme mechanical and thermal
loading. Some examples are the design and analysis of pressure vessels, ships, and aircraft, as well as the study of
metal forming, welding, and nuclear weapon effects on soils and structures.

Based on extensive experience, the solution of problems with inelastic material behavior has proven to be much
moere difficult than the analysis of linear elastic behavior. The currently available solution procedures can be quite
custly, unstable, and inaccurate. In addition, the models of inelastic material behavior in current engineering use
are not always suitable for complex loading conditions. All of these factors have placed a severe constraint on the
routing use of inelastic finite element analysis.

The cost of inelastic analysis is particularly high in three-dimensional calculations. However, a more critical fac-
tor is that considerable user knowledge‘and judgment are involved in selecting an appropriate solution strategy. In
practice, this situation almost always means that obtaining a reliable solution requires some, if not extensive,
numerical experimentation. There is surely a need for solution techniques with increased accuracy and stability
properties as well as self-adaptive algorithms that adjust computational strategy as the solution proceeds.

Qur objective in this paper is to present the development, analysis, and testing of a solution procedure for the
finite element analysis of thermo-elastic-plastic and creep problems with temperature-dependent material proper-
ties, The solution procedure is based on a one-parameter integration method (the a-method) for a system of ordi-
nary differential equations. This integration method, which contains the well-known Euler forward and backward
methads, was previously proposed and analyzed for the finite element analysis of certain heat conduction [22,23]
and viscoplasticity [3,4,6] problems. In this paper we use the a-method as the basis of an effective algorithm for
the analysis of significantly more complex thermo-elastic-plastic and creep problems.

We first summarize in section 2 the formulation of the thermo-elastic-plastic and creep material model. Section
3 contains the development of the finite element solution procedure and a theoretical analysis of its stability charac
teristics. The procedure has been implemented in the finite element computer program ADINA [21] and in section
4 we present and discuss the sclutions for three test problems. The conclusions are contained in section 5.

* Invited papet, presented at the 5th International Conference on Structural Mechanics in Reactor Technology, Berlin (West),
August 13-17,1979.
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All notation is defined in the text when it is first introduced. A left superscript denotes the time at which a
quantity occurs. No left superscript indicates a finite increment. Differentiation with respect to time is indicated
by an overhead dot. Right lower case subscripts denote the components of Cartesian vectors and tensors. Finally,
right superscripts and subscripts contained within parentheses are iteration counters.

2. Thermo-elastic-plastic and creep material model

In this section we present a material model which includes the combined effects of thermoelasticity, thermo-
plasticity, and creep. All material properties (e.g., Young’s modulus, yield stress, etc.) are allowed to vary with tem-
perature. The thermoplasticity part of the model utilizes the von Mises yield function with the option of either iso-
tropic or kinematic hardening. The creep formulation is a modified equation-of-state approach which is suitable
for cyclic loading conditions.

2.1. Formulation of the model

A basic assumption in the formulation of the model is that the usual small strain tensor can be expressed as the
sum of elastic, plastic, creep and thermal strains,

T . =T,E 7 P 7.C o 7, TH
ey = e + i + ey + ey (1)
where
Te;; = component of total strain tensor,
"e};‘- = component of elastic strain tensor,
Te,-';- = component of plastic strain tensor,
Te,gj = component of creep strain tensor,
7,TH -

e component of thermal strain tensor,

This assumption allows the use of the so-called classical theories of plasticity and creep which make a distinction
between time-dependent and time-independent inelastic strains.
The constitutive law for an isotropic, thermoelastic material with temperature-dependent moduli is [38,39],

T —THE T T, 7,0 1,TH 5]
Gy iir.s'( Crs Ers Gy Epg ) 2)
where

TC}},S = component of elastic constitutive tensor

= 77\5,-,-6”. + T.U(ﬁl‘rﬁjs + ‘Sisajr) s

™ = ETy
(1+7)(1-2")’

Y L
201+7)°

E = Young's modulus,

Ty = Poisson’s ratio,

& = Kronecker delta,

ij

TeE.;H = Tam(To - 6R) 6rs B
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7@  =temperature,

Ta, = mean coefficient of thermal expansion,

0r = reference temperature.

The creep strain rate is determined using a modified equation-of-state approach which includes strain hardening
for variable loading and the Oak Ridge National Laboratory auxiliary hardening rules for cyclic behavior [27,28].
The final resuit [18] is stated as

Tl T

=Y Tsif ’ &)
where

"s;;= component of deviatoric stress tensor

— T T
=055 = Ommby ,
37eC
2T
Ta = von Mises effective stress
_ 37 T
=Wz S Sij s
7#C= effective creep strain rate

=f(T(j, 'ré,-H , 76) ,

Ty

TgH= modified effective creep strain.
The plastic strain rate is calculated using the classical theory of time-independent plasticity [29—39]. The gene-
ral form of the yield or loading function for non-isothermal conditions is assumed to be

TE= TF(T(I,-]‘, Taij» TG.y) , 4)

where "ay; and "o, depend on the history of plastic deformation and temperature. For elastic behavior, "F <0,
and for plastic behavior, "F = 0.

As a consequence of Drucker’s postulate for stable inelastic materials under isothermal conditions, the yield
function 7F defines a convex yield surface in nine-dimensional stress space. Furthermore, when stress and plastic
strain rate axes are coincident the plastic strain rate vector is normal to the yield surface. In developing a noniso-
thermal plasticity model, it is assumed that "F defines a convex yield surface in a ten-dimensional stress—tempera-
ture space and that the isothermal normality condition remains valid [31]. Thus, the plastic strain rate is defined
by
8"F

T'P_TA -
J Jjj

4 ij =

2 (5)

where " A = positive scalar variable.

The calculation of 7 A requires that a hardening rule be selected. A hardening rule describes the change in the
yield surface with continuing plastic deformation. Two commonly used hardening rules are isotropic hardening
[39], and kinematic hardening [33].

2.1.1. Isatropic hardening rule
The isotropic hardening rule for isothermal conditions assumes that the size of the yield surface increases uni-
formly while its center remains fixed in nine-dimensional stress space. The size of the yield surface, as defined by
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the yield stress, is based on either the plastic work or the accumulated effective plastic strain. In the foliowing
extension of the isotropic hardening rule to non-isothermal conditions [31,37], it is assumed that the yield stress
depends on the accumnulated effective plastic strain and instantaneous temperature.

The von Mises yield function for non-isothermal, isotropic hardening can be written as

TF=4T5"51m — 3705, (6)
where

Tg, =yield stress

= TUy(TEP,rB) ,
Te¥ = accumulated effective plastic strain
T
= f et dr
0

Te? = effective plastic strain rate

=% Tép

The objective is to determine "A in terms of the current strain and temperature rates. Taking the derivative of
eq. (2) with respect to time and then substituting from eq. (5) results in

3'’F
= 7E ; ; TH

TCr;mn( €mn — A aT - 1.ecrrm e ) Cucd ead (7)

Oman

During plastic straining, the stress—temperature state remains on the yield surface so that
., 8'F 3’F d'F

TF= Toi; + Tay: + T,=0. 8
d TU,‘,‘ v d TO!,']' 7 aT O’y ¥ ( )

Considering eq. (6), it can readily be shown that

::ii =0 ®
g‘i 37, (10)
59% =gy, (11)
"oy = 2:; Tef + %—élfa (12)

Substituting egs. (9)—(12) into eq. (8) and using the previously stated definitions of "’ and 7 e,, results in

a’g
Oy ar
TS,-;- Td.ff =2 TU}.[ TA /irsﬁ fsﬁ 9 9% reJ (13)

+
aTel a7y

[N}

Since 7F = 0 during plastic straining,
TS"I' Tsij = % TO; , (14)
and hence eq. (13) simplifies to

. 370, 270
5,744 70,470, A 2% 200 . 1s)
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Premultiplying eq. (7) by "s;;, setting the result equal to eq. (15) and solving for "A gives

T
T.. TE T2 75C T TH T E 2 Ty X'r
Sij Cijmn( €mn— Eyn n )t 7S Cl']cd eoa' 3 Y aa o
TA= — . (16)
ar T¢..TCE Tg
%TU;FI'}Jr 855 Cijmn ~ Smn

In order to further evaluate the above expression for A, it is necessary to obtain d 7 ay /9 TP anda ™ ay fo78.
It is assumed that a relationship between "oy, " 2", and 78 can be derived from the data obtalned in a series of
tensile tests at different temperatures using virgin matenal specimens. This data is used to develop the idealized,
bilinear, engineering stress-strain curves shown in fig. 1.

To convert the curves shown in fig. 1 to stress—plastic strain curves, we have for constant temperature "¢ and
To 2 "oy,

10=TU +TE (TE_TOJ’U 17
yv T 7 5 ( )

TP =Te  TofTE, (18)
Combining the above equations and noting that the current stress is the current yield stress (i.e., "o = "oy) results in

T T
_E Er eP
TOy-'WT +7 Tyy - (19)
Thus, eq. (19) gives the relationship between yield stress and plastic strain for monotonic uniaxial loading at con-
stant temperature. The curves described by eq. (19) are shown in fig. 2.
It is now assumed that eq. (19) relates the yield stress and the accumulated effective plastic strain for multiaxi-
al loading conditions. Additionally, it is assumed that the relation holds regardless of the history leading to et
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Fig. 1. [dealized engineering stress—strain curves. Fig. 2. Idealized engineering stress—plastic strain curves.
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We then obtain
970, TETEr

ate? TE-TEp (20)
and

970y . p 0 (E"Er 9 "oy,

57 " 97 ("E—"E 57 @1

Substituting eqs. (20) and (21) into eq. (16) and using the definitions of "oy, 1'C”EN, and 7s;; yields:
T a fﬁw TE a
"t (e — T — e ) T 5 Tegg ’%[TEP 370 (fE UIE ) i TU.;/U 79]
TA = -TEr -
A ol 702 1 "ETE (“
= ¥ [T +—- ._—“i}
3 F-"E

2.1.2. Kinematic hardening rule

The kinematic hardening rule for isothermal conditions assumes that the size of the yield surface remains con-
stant and that the yield surface can translate as a rigid body in nine-dimensional stress space. The translation is
a measure of the hardening of the material and the incremental translation components are generally assumed to
be linearly related to the incremental plastic strains.

In the extension of the rule to non-sothermal conditions [31,36,37],it is assumed that both the size of the
yield surface and the hardening of the material can depend en temperature. The von Mises yield function for non-
isothermal, kinematic hardening can be written as

F= f(rslm - Talm)(rslm - Tafm) - 570; s (23)
where

To, = yield stress

= Toy(Te) 2
T

0y,, = component of yield surface translation ternsor

"C = hardening parameter
=70("6) .
Following the development of eq. (22), it can be shown [18] that
_Tg TH T, T T il TG.V T
(" Sij — Ot,}) qmn(“remn - mn )+ (7sij — 051]) ucd eod 3 ay 3‘;6" 9
A= - (29)

27 2 7’C+ (TSII a,;) C;Imn(Tsmrx - Tamn)

To fusther evaluate eq. (24), it is necessary to obtain both "C and 9 "a,,/3 "6. As was done for the case of isotropic
hardening, we use the idealized, bilinear, engineering stress—strain curves shown in fig. 1 and now assume that the
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relationship between o, and 8 is the same as that between the virgin material yield stress and temperature.That
is, gy, is simply the virgin material yield stress corresponding to 6.
For the hardening parameter "C, consider a case of uniaxial loading at constant temperature such that

oy, 0, all other "0;; =0,
Ty, 0, all other 76;; =0,
T - T — T
$210 =533 = %7511, (25)
)
Tk, =Tel = -3 el , all other Te,-r}- =0,
7eby =Tl = —4Teh; . allother e =0,

"o, = constant .

Evaluating "F = 0 and “F = 0 for the above loading condition results in

(TSU - 70511)2 2%70; (26)
and

(7311 —Ta“)(rc'ru —STCTéfl):O. (27)
The above equations require that

61y = %TC Téﬁll » (28)
or

doy, =37C del; . (29)

Referring to the idealized stress—plastic strain curves shown in fig. 2, the infinitesimal stress increment da at con-
stant temperature is given by

E "Ey

- P
o=y de” (30)
Comparing egs. (29) and (30) shows that

2 'ETEy
L 1
3, Gh

Substituting eq. (31) into eq. (24) and using the definitions of g, Tk

iivg> and 75, we obtain

. : THy 4 73 E
U Smn — " )(emn — 're’sm - Temn) + T smn — "opn) Temn -

O
3 37F - "Ey

Toyy 3 Tay ™
3 376

A= (32)

2.2, Applicability of the model

The model is suitable for use in small strain and displacement analysis. However, it is also directly applicable to
problems involving small strains and large rotations {20].

When using the model for practical engineering analyses, it is important to be aware of the limitations of the
theories upon which it is based. The classical theory of time-independent plasticity does not accurately predict
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material behavior under general, non-radial loading conditions [27—29]. In addition, the O.R N.L. auxiliary strain
hardening rules were developed for radial or near-radial loading. Based on limited experimental results {27,28],
the kinematic hardening formulation is recommended for cyclic, radial or near-radial loading. The isotropic harde-
ning formulation is recommended only for situations involving monotonically increasing, radial or near-radial
loading.

3. Solution procedure

The proposed solution procedure is based on a one-parameter integration method for ordinary differential equa-
tions (the a=method) which is used in conjunction with the thermo-elastic-plastic and creep material model deve-
loped in section 2. For a range of values of the parameter, this integration method has been shown to be uncondi-
tionally stable for certain heat conduction [22,23] and viscoplasticity problems [3,4,6].

The solution procedure uses one time step size for the calculation of nodal peint displacements and a smaller
one for element integration point stresses, plastic strains, and creep strains. This approach is based on the observa-
tion that for many problems of engineering interest involving inelastic behavior, the time-wise variation in the
stresses and inefastic strains is greater than that of the displacements [16—19].

In the following, we investigate the stability of the solution pracedure via the calculations for the element inte-
gration point stresses. We assume that the stability characteristics associated with these particular calculations
carry over to the other solution variables. Only the case of isotropic hardening is examined. However, similar con-
clusions can be reached for kinematic hardening [20].

3.1. The av-method

Consider a system of first-order, ordinary differential equations of the form
TXx="4"x, (33)

where 7 denotes some arbitrary time. Assuming that an approximate numerical solution “x is known, the next

approximate solution **#’x is given by

Al =y ¢ MrodIy Ay (34

where

I+&Af-x'.= f+d’.AtA z+0¢ATx , (35)

rodtg=(1 — @) 'x+a™ 4, O0<a<l, (36)

Hadty = pallg(rable 14 gAY (37)

Substituting egs. (35)—(37) into eq. (34) yields:

[f — aAr FFOAL] B AT = [T+ (1 — o) Az F*24] Ty, (38)
t+AtL

Eq. (38) must generally be solved for “*’x in an iterative manner, but a direct solution is possible when "4 is a
constant matrix. Note that a = 0 and « = 1 are the Euler forward and backward methods, respectively. Additionally,
a =1 corresponds to the usual trapezoidal rule only when "4 is a constant matrix. It can be shown [20] that

o=0, 1 have local truncation errors of O(A#?) and that & = 4 has a local truncation error of O(Ar?).

3.2. Theoretical stability analysis

In investigating the solution procedure’s stability characteristics, we are primarily interested in how roundoff
errars are propagated through the numerical computations. For stability, it is required that roundoff errors not
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be magnified as the numerical calculations progress. We note that the following analysis is not concerned with
the truncation errors of the solution method. Such errors exist even if all arithmetic operations are performed
exactly. While the truncation error directly affects the accuracy of a numerical method, stability is a primary
requirement for an accurate soiution. On the other hand, a stable solution can still be inaccurate due to large
truncation errors or an excessive number of solution steps which result in roundoff accumulation (but not step-
wise magnification).

In the development of the solution procedure in section 3.3, it will be shown that the calculations for the ele-
ment integration point stresses lead to nonlinear algebraic equations of the form

[1__ aAT T+ATA T+ATC] T+A‘Tx = [I+ (l _ 0‘.’) At T+ATA T+CEATc+ T+ATAs] Tx +7 4 T+ATAT, (39)
where

Tx = known vector of stresses,

THATy = unknown vector of stresses,

L, T  =known vectors with time-dependent components

THAT 1, §= known square matrices with time-dependent components
THATC = square matrix which is a function of the known and unknown solution variables
I = identity matrix.

Additionally, we require that 274 be negative definite and that "™47C be positive semi-definite.
Now assume that there is some roundoff error "e in the numerical solution at time 7 such that

xt=Tx+7e. (40)
If all arithmetic calculations are performed exactly, then the solution at time 7 + A7 is

(I — qA7 AT TRIATCH ] THATY® = [T+ (1 —q) A7 TTATY THOATC® § THATAQ] Tyt 4 [ 4 THATAT (41)
where

T+Arx* - r+A1'x + T+AT€ (42)

and ™47 = propagated roundoff error and ™*47C* = perturbed version of 7**A7C due to Te and ™47e.

It can be seen by referring to the definitions of ™*A7C in sections 3.3 and 3.4 that ™**47C"* is also a positive
semi-definite matrix.

Now consider the generalized eigenproblem [40]:

THAT R = THAT =gt (43)
with solutions

THOATCR R S TRAT 41t AT (44)
' = 9. ..9;] .

A* =diag[A]], A/ <0.

The orthogonality properties of the eigenvectors are such that

T THAT -1t = (43)
@' T THRAT O g = AT (46)

The n eigenvectors span an n-dimensional vector space. Therefore, we can write
THATY = @t TrAT, (47)

=" (48)
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THATE = @* 1'+A're , (49)

TE=@' Te. (50)
Premultiplying eq. (41) by ™47 ™! vields:

[FATA=1  qp TRRATER] THATLS _ [(THATA-L 4 (] o) Ap T'OATCY 18] Ty 4 THATATIL 4 T 1)

Substituting egs. (47)—(50) into eq. (51), premultiplying by ®" and using the orthogonality properties, egs. (45)
and (46), results in

[ aAr A* ] (272 + ™) = [T+ (1 —a) AT A™] (2 +7e) + BT SO (2 +Te) + @ T A4 1L + @°T T

. (52)
To obtain an expression relating Te and 7"27e, we assume that TATC" ~ TATC @ ~ @, and AT = A.
The error terms now separate directly out of eq. (52) and we have
[[—aArA] ™3Te={I+(1 —a) ATA] Te+ D' S@Te . (53)
For the jth component of 7"27¢, we obtain
1+(1 - o) A7 o' S e}
THAT, = f,( ‘..)____J'r 4+ {_ T (54)

e e
! l—adrh;, ' 1 —aAry
Note that the second term on the right-hand side couples "+ATej to all the components of 7e.
As discussed previously, stability means that any roundoff error present at time 7 is not magnified when the

solution for time 7 + Ar is calculated. Specifically, we require that

|THATT THAT 4 =1 7447y o (Tl AT 1 7g| (55)

Substituting egs. (49) and (50) into eq. (55) and using eq. (45) results in

!T+A1’eT ﬁATElQlfeT T€|4 (56)

A sufficient, but not necessary condition for eq. (56) to hold is

|78 < {Te (57)
Consider eq. (54) and examine the cases of $ = 0 and § # 0. In the first case, eq. (57) is satistied if

i1+(1-a}47_>\,-

<1. 58
R 7 (58)

Recalling that \; <0, 0 < e < 1, and A7 > 0, some algebraic manipulation shows that eq. (58) is satisfied for all
At > 0 when a3 4. Thus, the algorithm can be made unconditionally stable. On the other hand, if & < then eq.
(58) requires

1
AT ey (59)
We note that this conditional stability limit may not be useful for practical computations since A; generally depends
on the unknown solution at time 7+ A7, The only exception is when & = 0, in which case A; is determined by the
known conditions at time 7.

However, when S # 0 there is no a priori information available concerning the second term on the right-hand
side of eq. (54). At present, the best approach is to make all of the coefficients of "e; as small as possible. This
means having the condition in eq. (58) as wel! as requiring that the denominator of the above-mentioned term be
as large as possible. For specified At and A; < 0, this latter condition occurs whena = 1.
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3.3. Special case

In this section we develop an algorithm for the special case in which a common time step size is used for all
solution variables. Assuming that a numerical solution has been obtained at discrete time points Ar, 24z, ..., t,
the solution for ¢ + Af is desired.

3.3.1. Equilibriuin and constitutive equations

At time r + At, consider the virtual work equation for an isoparametric, finite element asserblage [40] and the
constitutive equations for a thermo-elastic-plastic and creep material with isotropic hardening. All equations are
expressed in vector form [18] as

N

b f Bl ™ATgdy= rarp (60)
m=1

v
AL, = rtar~E (H-Ate o wArgl #ar,C o ﬂAteTH) , (61)
TP =TAD g, (62)
-réC = T'YD T , (63)
ﬁAtETH = ﬁAram(ﬂAfa _ BR) & , (64)
where
14z, = B, tArg; (65)
and
B; = total strain-displacement transformation maitrix,
#AM = nodal point displacement vector,
™AIR = nodal point external load vector,
N =number of elements in the assemblage,
D = deviatoric stress operator matrix,

8T =11,1,1,0,0,0].

Henceforth, the summation sign in eq. (60) will be dropped for convenience, but the summation is implied for all
subsequent volume integrals. Although egs. (61)—(64) are valid at any point in the structure or continuum, only
the stresses and strains at the element integration points [40] will be of interest.

Substituting eqs. (61) and (65) into eq. (60) results in

HARE trAry - trAlp o fBE HALCE(MALGP 4 +A7,C 4 BALTH) ) (66)
v

where

rralgE _ fBE #atcEp gy (67)

v

is the elastic stiffness matrix.
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3.3.2. Algorithm development

The a-method is used to obtain *2%e? and 2%C

. Quantities at time ¢ + Az are first decomposed as
z‘+AteP = reP +eP , (68)

r+AreC = reC + eC (69)

and then the increments are given by

¥ = Ap MOAIGE o Ay FOATA R TRAT (70)
eC = Az THOALEC = Ay el [y HHAAL o (71)
where

rablg = (] _ o) e + o Al (72)
and

oA A = t+uAtA (ti-aAtG! t+o:Aré, r+aAréC , 1‘+o:At6: )

t+aAt,Y = I+O:At,),( (73)

Egs. (61), (64), (66), and (68) to (73) are a coupled set of nonlinear algebraic equations where eqgs. (61), (64) and
(68) to (73) apply at each integration point.

Nonlinear algebraic equations generally require an iterative solution procedure [42]. Starting with the simplest
approach — successive substitution -- an appropriate algorithm is

f+L¥Ato.’ f+(!Ate'—'H , ﬂ'OtAI‘o) ‘

t+AIeC(i+1) =78 + Af t+ocm,y(£)D Hasrg(f) (74)

t+Arel’(i+1) =taP L AF t+o:m‘A(z')D rmmo(i) . (75)

AL E trAzgi+1) - tHAtp 4 fB}J HALCE (I ALPUEL) 4 THAT, O 4 prAL THY g (76)
v

HALG(+1) = t+AtCE(t+Ate(i+l) _ RALLPEHL) r+AreC(i+|) . r+AreTH) i=0,1,2, ... (77)

The right superscript 7 is the iteration number and i = 0 refers to conditions at time 7.
The above scheme can be rewritten by defining

A1) = trhrppivl) | rrArp Q) {78)

Substituting eq. (78) into eq. (76) and using eqs. (65) and (67) results in

tHATREA (1) - thAry fBg r+ArCE(z+Are(i) _ PRALP(HT) _ HHALCGIHL) r+AreTH) dv . (79)

v

Noting the similarity between the right-hand sides of eqs. (77) and (79}, the successive substitution algorithm is
now written as

r+AteC(i+1) - zeC + At r+ocAt,r(i) D r+aArc(ﬂ ) (80)
r+AteP(z‘+1) - reP + AL HaArA(l') D r+ueArU(i) , (81)
tHAL(i+1) - ﬂAtCE (H—Ate(l‘) _ rl-Atel’(iH) - t+AreC(i+1) o r+AreTH) (82)

AT E A 71 - tHAty J‘Bg trATglit1) g, , (83)

v
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At i) o AT 4 A6 i=0,1,2, ... (84)

Assuming that the iteration converges, AU @+1) > 0 and hence all of the governing equations are satisfied.
Furthermore, by iterating with AU®* Y instead of *A7UU*D) it is possible to use stiffness matrices other than
"ATRE in eq. (83) so as to obtain faster convergence [24].

The scheme described in egs. (81)—(84) has two immediate drawbacks. Successive substitution can have a slow
rate-of-convergence [42]. Additionally, disk 1/O operations are required in each iteration (assuming that integra-
tion point variables are not continually stored in-core). If the restriction of no disk writing during the iteration is
imposed, then the following algorithm (still based on successive substitution) can be used.

t+A1,C0) = 1,C traAl, () py tralt ()
( gj—g- e(k+1) e~ + At T(k)D G(k) s (85)
= HALPE - t,P HaAl A () p radt (i
E e = fe” + A TOAIAGLD PR, (86)
= 25 .
= 52 oo At (i ALP( ALC( AL, TH -
: 3 At )= AICE(AD _ malll) | AL, ~ ATy k=0,1,2,..., (87)
]
g‘ f+AtKEAl'j(i+l) = I+AZR __fBz N'.ATu-(i) dv , (88)
v
#AEr) s warg@) 4 AyErD i=0,1,2,... (89)

The right subscript & is the integration peint loop iteration counter and the right superscript J is the displace-
ment loop iteration counter. Note that k = 0 indicates conditions at time £ and that T4/ = fy, #4%(0) = t,

The integration point loop iteration continues until a steady value is obtained for ™4%¢(), The displacement
loop iteration continues until AU > 0. When i = 0, the integration point calculations are performed only once
(i.e., for £ = 0 only).

The above algorithm trades disk writing operations for more computational effort. For each value of *4%{) jt
is necessary to calculate F4%¢\) HARLPM ang #A%CE yy starting from the corresponding values at time 7. On the
other hand, the converged integration point loop values satisfy the constitutive equations (within the approxima-
tions of the a-method). This can be advantageous in plasticity problems when yielding or unloading occurs during
a solution step [24].

However, both computational loops can still suffer from slow rates-of-convergence. Considering first the integra-
tion point loop, one possible improvement is to solve egs. (85)—(87) using Newton—Raphson iteration [42].In
three dimensional analysis, this means that a system of eighteen algebraic equations must be repeatedly solved at
each integration point. The increased rate-of-convergence could easily be offset by the increase in computational
effort.

As a compromise, the following scheme is proposed. It assumes that the stress-dependent terms in the creep
constitutive law are the most troublesome from a convergence point-of-view. From eqs. (69) and (71), define

ﬂaArf= 1,C 1+ oC = reC + At r+aAt},D oAt (90) ‘

t+oeht

Expanding ”""‘Arf in a two-term Taylor series [42] about the kth approximate solution o)) yields:

g traar tralt t+aAt
ey ="y +[a | ey — o) - ©1)
%)
where the Jacobian matrix is
tadt
oty 51,2 .
[s_ﬁm& = At D TeYe a t+¢mt6+ ¥D . ©2)

%) (k)
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The evaluaticn of the term 3 7*4%y/3 7*%%q depends on the particular type of creep law being considered [20].
Substituting egs. (88)-(90) into eq. (61) and solving for "%, ., results in;

E a r+DtA'£,y
I+ant ©2C [D ﬂ("‘Mt';*g‘rKA‘;{;+ Aty D t+mﬂ(k+1) =
k)
H'MCE(BL r+AzU _ r+AteP . reC _ t+AzeTH — Al t+o¢At,,’,(k) D ﬁaAto(k))
E a T+CIAT,Y
+ oAf AT [D tradt et t+aA17D] AT (93)
&)
When i > 0, egs. (85)—(87) (the integration point loop) are replaced by
"Mefk@” = 7P 4 Ap troat Ag()) D rmAtU?'k)) ’ (94)
At N 3 t+aA|‘,y(i)
t+ ) + i + + i) =
[I+ aint AIC [D fradig(h PTG +F aAIY(nD] ] f Ar"?ic)u) =
k)

r+ArCE(r+Are(f) _ HArefk(i)” _ ie(: _ f+AteTH - At t+ozAr7gc))D ﬂaAtu.é’ic)))

1 g rraard . .
+aAr TATCE| p t+aAr6(i)W + z+am7(l)D] ﬂmo'g,)) , 95)
&)
I+Ate?k(i)]) = reC + Af t+o:Ai‘,Y((’l;)) D t+aArogc))
p et ) _ ' )
+ aAt [D z+orAf0(l’) WA:G(:') + t+aAf,),(i)D (k)(HAtochl) _ t+aAt6Elk))) . (96]

However, when i = 0 we still use egs. (83)—(87) and the integration point calculations are performed only once
(i.e., for k = 0 only). We also note that when there are no creep effects, the above algorithm degenerates back 10
successive substitution.

In the displacement loop, the rate-ofconvergence can be improved by several methods. The most common
approach is to use an elastic-plastic [2,17], elastic-creep [10] or elastic-plastic-creep [14,15] stiffness matrix in
eq. (88). Alternatively, the use of matrix updating and search algorithms has been found to be highly effective
(24].

3.3.3. Stability analysis

To investigate the stability of the solution procedure we establish a set of equations relating 4% and 'o at
each integration point in the finite element assemblage. First, the decompositions
tAtyy -ty U, ﬂmCE =rCE +CE , (97)
t41,TH = 1, 1R +eTH , T"AIp _tp 4+ R ,
are substituted into eqs. (61) and (66) along with eqs. (65) and (67)—(69) so as to obtain
teaty - ”A'CF‘(BLU— e o€ eTH) +{I+ CcE rFE) tq (98)
and
HAKEG= TR+ R+ [B] PAICEER + e +e™)dy — ng(u CPFYY e dv, (99)

v v
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where
tRE tg _t, 1P 1,C 1 ,TH (100)

Assuming an equilibrium configuration at time r, the corresponding virtual work equation is

fB,T 'e dv="R (101)
U

and hence eq. (97) simplies to

MAKEy =R+ (BT #ACF(P +eC +e™)dv— [BICEFF o dv. (102)
v

v

In isoparametric finite element analysis, the volume integrals in eq. (102) are typically evaluated using Gauss
numerical integration [40]. That is, a volume integral over the element assemblage can be expressed as

N M
Jrw =2 [ 1) do= 20w £xy), (103)
v o =t
u
where
w; = Gauss weighting factor; w; > 0,

N = number of elements,
M = number of integration points,

Following the approach taken in {5], we define super matrices and vectors where each submatrix and subvector
corresponds to a particular integration point (denoted by a right subscript).

BL] ‘1 F oy |
(6 X 1) { Gx 1
|
BLg ’ rﬂ'z
e
- | ~ T _
B = ! , (104) ‘L= : , (105)
|
. l
! !
|
BLM tO'M
LM X ) | | 6Mx1) _}
teAr Ik :
6 X 6) :
H HALQE |
L _2
PATCE - e , (106)

T
(6M X 6M) | M
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[ D | ]
|
(6 X6) :
I
- L2
D= \\ s (107)
AN
~
T
B
L (6M X 6M) -
B W_lI " ]
6 %X6) {
S
! WQI—J\
ﬁ’: \\\ , (108)
o
| (6M x 6M) T

where n is the number of degrees-of-freedom in the element assemblage. In addition, the super matrices CE,'FE,
and FE are defined to be of the same form as *"4!CE the super vectors. “*27E and E ™ are of the same form as
fE, and the super matrices A%y and 27X are of the same form as W . Using egs. (103)—(108), the volume
integrals in eq. (102) are expressed as

fBE HAICE (P + o€ +TH) qu =B} MG Ef (FP + FTH) | (109)

v

fB_',{cE 'FE g dy =B CEFEWIE. (110)

v

Substituting eq. (72) into eqs. (70) and (71) results in

e = ArTeAIA D[(1 — o) Fo + MAlg] (111)
eC = At Ay DI(1 — o) 'o + a 4] (112)
and hence the corresponding super vectors are

EP = At *OAAD[(1 — o) *E+a AL (113)
EC=At #5551 —a) 'L+ a ML) . (114)

Now substituting egs. (109), (110), (113) and (114) into eq. (102) yields:
HAtRE [f=R +§1':r MHAISER FTH o [(1 —a) Atf!}; HAtSER Hadl A-EEE’E rﬁ];ﬁ,]rf:
+ aAr B} PAICE fp todiG ) mATE (115)

where
HaArgs = Hally 4 POAF L (116)
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Substituting egs. (111) and (112) into eq. (98) and then generalizing to a complete set of integration point
equations yields:

[+ qAr FrodiG #HAIGER ALY = ATCE(g, 17 FTH) 117)
+ [ +CETFE (1 —a) Ar MG HAICED)TE,

where I’ is a 6GM X 6M identity matrix. The final set of integration point stress equations is now obtained by sub-

stituting eg. (115) and the identity [20]

(ATGER, r+AtKE—1§1'E‘ _ 1) WEE (FE < _ (HAIGER trATKE “ll}‘z MAIGE _ HAFER-1y P FE  (118)
into eq. (119). The result is:
[f _ aAt[HAtEEEL t+AtKE_‘§}: ttateE t+AtE~Eﬁ)—1] W ﬂaAt&ﬁ] MRATY o

ﬂAtEEEL t+ArKE‘1R + [ﬁAtEEEL “’A‘KE_IEE t+ATSE ﬁAtEvW—l] WwETH

¥ [IN {1+ Ot)At[HAtéEEL t+AtKE_1§}“ #AtGE t+AtEEW—1] HOATGE

+ [ﬂmE EEL t+ArKE_1§z HAIGE | HAISE ﬁ,-—ll WwF E] 538 (119)

We note that eq. (119) shows the contributions to HALT from external loading, thermal strains, change in elastic
moduli, creep, and plasticity.

To determine if the solution pracedure can be made unconditionally stable as discussed in section 3.3, we com-
pare egs. (39) and (119). It is observed that

ML 4 = HALS EEL t+ArKE"1§£ HAISE | HAIGEfy—1 , (120)
HOAlr = Jp MeAIG R (121
and
§=WFE

= MAIRES thargE!
L C*B, K- R, (122)
T=WE™

The matrices S, £, and T satisfy their basic definitions accompanying eq. (39) and #ATY and A0 are symmetric.
However, since the criteria for unconditional stability also assume that "4 is negative definite and HeEAC s po-
sitive semi-definite, the properties of these matrices must be investigated.

The matrix 474 is examined in Appendix A. It is shown therein that the matrix is negative definite only when

the elastic stiffness matrix 4K ® is approximate. In the case of ***A*C, the structure of the matrix is:
wy (M4, :
+ tAATA D L
********** I
t wa (AT, !
| | rraAr |
+ A)D
L 2
rradle - 'J\\ (123)
N
hY
| rraAt
L (5 g
i
L | + I+QATAM)D ]

The terms *®A%y; and *"*ATA; are > 0, the Gauss weights w; are > 0, and D is positive semi-definite. Therefore,
each submatrix in ***27C is positive semi-definite and so is the complete matrix.
Thus, unconditional stability is obtained when a >  and the elastic stiffness matrix is approximate.
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3.4. General case

In this section we present an algorithm for the general case in which one time step size is used for the nodal
point displacements and a smaller one for the integration point stresses, plastic strains, and creep strains [16—19].
We assume that a numerical solution has been obtained at discrete time points Az, 2A¢, ..., ¢ and the solution at
time £ + At is desired.

3.4.1, Fquilibrium and constitutive equations
The virtual work equation and the thermo-elastic-plastic and creep constitutive equations have been presented
in eqs. (60)—(64). In addition, eqs. (66) and (67) remain directly applicable.

3.4.2. Algorithm development
The time step At is divided into g, not necessarily equal, subdivisions &7 with the time at the start and end of
the jth subdivision denoted by r; and ;. |, respectively. At the end of the jth subdivision, the stresses are given by

Tilg= 'erCE(fﬁ.le _ r]‘ﬂel’ . Tﬁlec _ Tf*‘leTH) , (124)

where /+1e¥ and 7/+1€* are evaluated using the a-method. This evaluation is accomplished using egs. (68)—(73)
80 as to obtain the decompositions

T1eP =Tet + eb | (129)
T1eC = TjeC + £ (126)

and then the increments

et = 5T rj+a:51'éP =§7 'rf+016'rAD T]+a6'ro. , (127)
&€ =57 5T = 54 TFQ&T'YD rf+a5-r.° , (128)
where

7187 = (1 - o) 6 + @ *lg (129)
and

Ti+a51'A = ri+a61'A(1-f+a6rn,’ Tjtob e, Tl+oc67éC , 1',-+a6're , )

?

rf+a51-7 = 7]+a577(71'+°"570 , ri+a61'?H , TI+°‘51'9) . (130)

Eqs. (124)—(130) are a coupled set of nonlinear, algebraic equations which must be solved for each subdivision at
every integration point. After 4 subdivisions,

AL o T,
o= q+lﬂ'!

ﬂAteP =1‘q+1eP , (]31)

H—AteC = Tq+|ec N

In addition to the above equations, it is also necessary to relate 7*1e to **A%, which is obtained using eqs. (65)

and (66). Assuming that the nodal point displacements vary linearly with time from f and r + At, we then have

AL, T
— T - D) (132)

T -1
itlg="e +
e 4 At
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67

Thus, eq. {66) must be solved simultaneously with the subdivision equations, egs. (124)—(130). As previously
discussed in section 3.3.2, an iterative solution procedure is required. Following the developments in that section,
the final algerithm proposed for practical analysis is summarized in table 1. In this table, the right subscript & is

Table 1
Algorithm for practical analysis 2

(D
@)
(3)
4)
(5)
(6)

(7
8)

&)

(10

(11)

Loop to (11) for each solution step.
Set the displacement loop iteration counteri =0 (ﬂ'AtU(o) = tU, HAre(O) = te).
Loop to (9) for each integration point.
Set the subdivision counterf = 1.
Calculate the size 8§+ of the jth subdivision. Wheni=0andj = 1, set 87 = Af.
Calculate the total strain at the end of the fth subdivision.

oz (i r
Tir1eD = 20 4 o

(Tje1 — 1) -
At !

Set the integration point loo(p_)iteration counter k = 0. This indicates conditions at time 7}
I

Solve for 77“2&5_1), T/‘+1e8‘+ 1y and 10'(;2“) with T/+1" held constant.

Tj P} 7 P() TitasT TrHasT (i)
AR AT
7741 0E| p T8 T () —-————+ 0T Op Tjﬂom
[I+a6‘r e I:D i u”a,.ﬁaﬁro(i) ) L P (k+1)
T 1 BT D) T PU ) T4y, TH + i : ]
=T+l (TJ+18(') B T]+1e(’£i)l) TSl T TH 5 7y Q‘ST’Y%?)D rJ+aBToE;‘)))
a Titas T (i)
. Tjtab 77(1') D
3 TjtodTgli)

+asT Tf‘“CE[D Tyred Tu(i) i A 10&)) ’

Ti+tadr (i
"y 7(7

Al re(C’c(::)l) = T5CD 4 g0 TFQST"'&))D 'r]+ca§-ru_8;)) + aar[l) TjradT o) 2

2 ¥ ritasT (i
3 T"HXBTO.(I')+ e TT(')D}

(k)
Tirad T () TirasT (i)
X ey — 7 “fk))-
Check for integration point loop convergence. If { = 0, bypass check and go to {3} for the next integration point.

No convergence: k =k + 1, go to (8).

_a Yes: go to (3) for the next integration point.

Convergence:  7juy =¢+ A7

No:j=j+ 1, go to (§8) for the next subdivision.

Solve for AU(HI) and "ATYD) after looping through steps (3)—(9) for each integration point.

PHATEE (1) trAry ﬁ?} AT g
]

A+ r+AzU(i) . AU(i+l) )

Check for displacement loop convergence.

No convergence: i =7+ 1, go to (3).
Convergence: go to (1) for the next solution step.

(133)

(134)

(135)

(136)

(137)

(138)

3 Step (1)—(11) is called Displacement Loop and step {3)—(9) is called Integration Point Loop.
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the integration point loop iteration counter and the right superscript / is the displacement loop iteration counter.

We note that when there are no creep effects, the scheme is essentially successive substitution. Additionally,
the comments given in section 3.3.2 concerning improvement of the displacement loop rate-of-convergence remain
relevant, The algorithm presented in table 1 contains as a special case, the algorithm developed and analyzed in
section 3.3. That is, when g =1 the general algorithm reduces to the special case.

3.4.3. Stability analysis

We have not yet been able to derive a set of clear and useful equations which relate the entire set of integration
point stresses at times Ar and ¢ + At, as was done in the stability analysis described in section 3.3.3. However, by
following an approach similar to the one in that section, the integration point computations in egs. (124)—(130)
can be shown to be unconditionally stable for each subdivision when o = § [20]. We therefore infer that the overall
solution procedure is also unconditionally stable when a > L.

4. Test problems

The material model and solution procedure presented in sections 2 and 3 have been implemented in the finite
element computer program ADINA [21], and further details of the implementation are given in [20]. Below we
report the numerical solutions obtained for three problems — the creep bending of a cantilever beam, the creep of
a pressurized, thick-walled cylinder, and the thermo-elastic-plastic response of a pressurized, thick-walled cylinder.
These results indicate some of the actual stability and accuracy characteristics of the sclution procedure.

4.1. Creep bending of a cantilever beam

A cantilever beam was subjected to a constant tip bending moment of 6000 in-Ibs. The finite element model of
the beam is shown in fig. 3. [t was possible to model only the portion of the beam above the neutral axis by apply-
ing the appropriate displacement boundary conditions to the nodes on the neutral axis. Eight, plane stress, iso-
parametric elements were used in the model and the element stiffness matrices were evaluated using 3 X 3 Gauss
integration. The work-equivalent nodal forces used to represent the tip bending moment were derived from the
elastic beam theory stress distribution.

An analytical solution for the transient bending stress distribution was not found. It is possible, however, to
obtain an expression for steady state conditions [25] when the uniaxial creep strain rate is of the form

TéCzKTOm . (139)
where m and K are constants. The Y-direction bending stress at steady state is then

M 2m+ 1 (h\-(@m+1)/m
o235 ()
where M, b, &, and Z are defined in fig. 3.

By varying the integration parameter, «, the time step size, Af, and the number of subdivisions per time step, g,
results were obtained for a number of problem cases which are summarized in table 2. Figs. 4—12 present the
tesults for the Y-direction bending stress at the point marked A in fig. 3. Problem cases 1 and 2, which are shown
in fig. 4, define a ‘baseline solution’ against which all of the other results are compared. Since these two cases have
a maximum difference between them of approximately 4%, problem case 1 is used in figs. 5 to 12 for the baseline
solution.

When a = 0.0, g = 1, the solution becomes unstable with increasing Ar. On the other hand, stable results are
obtained when ¢ = 10. This indicates that subdividing the time step (i.e. ¢ > 1) can stabilize what would otherwise
be an unstable solution.

zim  zz0, (140)
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Fig. 3. Finite element mesh for a cantilever beam.

Table 2
Problem cases for the creep bending of a cantilever beam
Case no. Integration Time step Number of subdivisions
parameter (o) size (A2) per time step @ (g)
1 0.0 10.0 1
2 0.0 10.0 10
3 0.0 25.0 1
4 0.0 25.0 10
5 0.0 50.0 1
6 0.0 50.0 10
7 0.5 50.0 1
8 0.5 50.0 10
9 0.5 100.0 1
10 0.5 100.0 10
11 0.5 500.0 1
12 0.5 500.0 10
13 1.0 50.0 1
14 1.0 50.0 10
15 1.0 100.0 1
16 1.0 100.0 10
17 1.0 500.0 1
18 1.0 500.0 10

2 Time step subdivisions are of equal size.
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Fig. 4. Baseline solution for the bending stress at location A. Fig. 5. Bending stress at location A.

For the cases with e =0.5,g =1 and a = 1.0,g = 1, it is possible to obtain stable solutions for values of Ar that
are unstable when « =0.0,q = 1. However, when o = 0.5 the solution converges to the baseline solution in an oscil-
latory manner. Since the magnitude of the initial oscillations increases with Az, the accuracy decreases with increas-
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Fig. 6. Bending stress at location A. Fig. 7. Bending stress at location A,
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Fig. 8. Bending stress at location A.
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Fig. 9. Bending stress at location A.

ing At. For = 1.0, the loss in accuracy with increasing At is quite small. If ¢ is increased to 10, the & = 0.5
cases no longer exhibit the oscillatory convergence. It is also interesting to note that the & = 0.5 cases are slightly
more accurate when Az = 50.0 and 100.0, but o = 1.0 gives better accuracy when At = 500.
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Fig. 10. Bending stress at location A.
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Fig. 1 1. Bending stress at location A.
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Fig. 12. Bending stress at location A.
4.2. Creep of a thick-walled cylinder
A thick-walled cylinder was subjected to a constant internal pressure of 3650 psi. The finite element model of

the cylinder is shown in fig. 13. Plane strain conditions were assumed and twelve axisymmetric elements were
used in the model. The element stiffness matrices were evaluated using 3 X 3 Gauss integration. The material
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EEEEEREI W
P ABin
X Z - - ST ——777}"”
“ EANEENE]
F-——— fin ——w
Y 4
z Y
[
AXISYMMETRIC MESH
atc. N
] + A
(161,.5)
| S
etc,

Fig. 13. Finite element mesh for a thick-walled cylinder.
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Table 3
Material properties for the thick-walled cylinder

800°F 900°F 1000°F 1100°F

Young’s modulus (psi) 24.07 x 10° 2330 x10° 2251 x10° 21.71 % 10°
Poisson’s ratio 0.3 0.3 0.3 0.3

Virgin material

vield stress {psi) 1.11 x 104 1.004 x 10* 9.344 x 103 9  x103
Hardening modulus

{psi) 7.3 %x10° 73 x10% 73 X105 7.3 x10°
Mean cocfficient of

thermal expansion

(in/in/°F) 11.18 x107° 11.28 x 107¢ 11.38 x 107 11.48 x 107

All properties were assumed to vary in a piecewise linear manner between the tabulated values.

Unigxial creep law:
¢ =R - RN+ G,

F =ap ngl’

R =azea3'ra,

G = a4 [sinh(as "0)]1%6,

7o = constant uniaxial stress,

ay  =1.608x10~19, a3=6.73 %1072,
a;  =1843, a5 =1479 %107,
a; =5929%10 %, 2q = 3.0.

az  =2.029x107%,

properties at 1100°F and the uniaxial creep law given in table 3 were used. Thermal strains were not considered
and there were no plasticity effects.

The cases considered for this problem are summarized in table 4. Figs. 14—19 show the von Mises effective
stress (see eq. (3)} at the point marked A in fig. 13. Problem case 1 in fig. 14 is defined to be the *baseline solu-
tion’. When a = 0.0, the solution results eventually become unstable as At is increased from the baseline value.

It is interesting to note that although cases 2 and 3 (figs. 15 and 16) are initially inaccurate, the baseline sclution
is attained as time increases. When e = 0.5 and 1.0, the solution results are stable for Az = 5000.0, which is signi-
ficantly larger than the values possible with & = 0.0. However, both selutions initially oscillate about the baseline
solution, and although « = 1.0 has smaller vscillations, the o = 0.5 case attains the baseline solution at an earlier
time.

Table 4
Problem cases for the creep of a thick-walled cylinder

Case No. Integration Time step Number of subdivisions
parameter (o) size (AF) per time step (g)
1 0.0 10.0 (0.0 < ¢ < 100.0) 1
100.0 (¢ > 100.0)
2 0.0 100.0 1
3 0.0 200.0 1
4 0.0 500.0 1
5 0.5 5000.0 1
6 1.0 5000.0 1
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o a=0
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Fig. 14. Baseline solution for the effective stress at location A.
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Fig. 22. Total radial and circumferential strains at location A.

4.3. Thermo-elastic plastic response of a thick-walled cylinder
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Fig. 23. Plastic radial and circumferential strains at location A.

A thick walled cylinder was subjected to a constant internal pressure of 3650 psi and a transient temperature
distribution. The model of the cvlinder is shown in fig. 13 and the temperature dependent material properties are
contained in table 3. Kinematic hardening was used and no creep effects were considered. The cylinder was at

Table 5

Problem cases for the thermo-elastic-plastic response of a thick-walled cylinder

Case no. Integration Time step
parameter (o} size (Ar)

1 0.0 0.01

2 0.0 0.05

3 g.0 0.1

4 0.0 0.2

$ 0.0 0.05

6 0.0 0.1

7 0.0 0.2

Number of subdivisions
per time step 2(g)

B

[= R B ¥ R

2 Time step subdivisions are of equal size.
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800°F (reference temperature) at the start of the transient and the radial temperature distribution was of the
form

Y —0.16
T = 800 + 300 %4 (———
T exp 0.09

lnr) , 7>0. (141)
Radial temperature profiles at various times are shown in fig. 20,

The cases considered for this problem are summarized in table 5. Figures 21 to 25 show radial and circumferen-
tial strain components (total and plastic) at the point marked A in fig. 13. Problem case 1 in fig. 21 is defined to
be the ‘baseline solution’. In contrast to the results for the previous two problems, increasing Az when & = 0.0
only causes the solution results to become more inaccurate. The growth of an oscillating instability is not
observed. When g > 1, a significant improvement in accuracy is obtained for all values of Ar considered.

S. Conclusions

[n this paper we have presented an efficient procedure for the finite element solution of problems with thermo-
elastic-plastic and creep behavior. We believe that it is an effective tool for engineering analysis.

The material model used in conjunction with the solution procedure is based on the classical theories of plasti-
city and creep. All assumptions made in the derivation of the material model are clearly stated and the model’s
range of applicability is discussed. The solution procedure is based on a one-parameter integration scheme and can
be made unconditionally stable. The requirements for unconditional stability are obtained from a thorough theo-
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retical stability analysis. Numerical results are reported for three test problems. These results show the actual nume
rical characteristics of the implemented procedure and it is concluded that they agree with the predictions of the
theoretical stability analysis.

We plan to obtain additional solutions using the procedure and to report these results at a future date. Since the
whole development was carried out with the goal of providing engineers with a means for effectively solving practi-
cal thermo-elastic-plastic and creep problems, we are also looking forward to exchanging experiences with other
ADINA users.
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Appendix A. Investigation of the properties of the matrix
—1. ~ .
Aty4 — HAISSEQ At E T r+AtAE  t+At ARy —1
HAtg = TrACER, TAIKE gl TAICE _TAIChy T
Instead of dealing directly with ™4, we examine the expression
b=5TW ™oty o5 (A.1)

where W is defined in eq. (107) and ¥ is an arbitrary vector. It can be shown [20] that W AT4 ¥ being negative
definite is necessary and sufficient for 24 to be so also.
Consider an arbitrary body subjected to surface tractions M“"fs and body forces ™27f® which cause an equi-

librium elastic stress and strain field
r+atg = tHALEE, (A2)

We assume that we have a finite element representation of the body and interpret ¥ as a supervector of the actual
elastic strains at the element integration points. By eq. (103),

*Tip tar1GEg = fxT HAfCEL g4
v

=2Ue, (A3)

where UZis the exact elastic strain energy [38,39,44]. In eq. (A.3), we have assumed that a sufficient number
of integration points have been used so that the integration is performed exactly. In practice, this assumption is
frequently violated and, indeed, it may not be possible to perform an exact integration numerically. Similarly,
we find that '

N
B "NCERE = [T #2Ctx dv= (BT *Aadv= 25 [ B "gqv, (A4)
v v m=l (m)
v

where V is the number of elements in the finite element assemblage.
Consider the virtual work principle [38--40,44]

fae"r MAtg 4 = ﬁur FALES g 4 fBuT PareB g, (A5)

v s v
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where 6y and e are arbitrary, kinematically-admissible variations. Once again noting eq. (103}, Eq. (A.5) can be
written as

N N N
2 foer #aigau= 20 [ suT™8ySase 2 [ suTHAYB gy, (A6)
m=1 " (m) m=1 o m=1_ (m)

Since **4%g is in equilibrium with the applied loading, eq. (A.6) must hold for all admissible variations. Further-

more, the equation must also hold when the finite element approximations [40,41]
dbu=HHU, (A7)
de = BL5 U (A 8)

are employed. Thus, we obtain

N N N
2 f B tatg gy = Ef HT ™S g + Z}f HT rAtD gy, - trarp

m=1 (m) m=1 "(m) =1 s (A9)
where 7R is the work-equivalent, nodal point force vector.
Substituting eqs. (A.3), (A.4) and (A.9) into eq. (A.1) results in
p=tratpT r+ArKF._1 tratp _apye (A.10)
s " .
It can be shown for a linear elastic system [40,41] that
ﬁAtR ﬁ-AtKE_l t‘+AtR =2U: , (All)

where U? is the elastic strain energy of the finite element approximation. Since UZ is a lower bound to the exact
elastic strain energy [38-40,44], it follows that b < 0.

When b < 0, the matrix * 474 is negative semi-definite. However, in most applications we find that Ui <Ug,
due to the approximate nature of the elastic stiffness matrix. Then 474 is negative definite.
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