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An effective solution procedure for finite element thermo-elastic-plastic and creep analysis with temperature-dependent 
material properties is presented. The material model employed is summarized, the basic iterative equations are developed 
and the solution procedure is theoretically analyzed and numerically tested for its stability and accuracy properties. 

1. Introduction 

The application of the finite element method to the inelastic analysis of structures and continua has received 
considerable attention over the last fifteen years [ 1-21 ]. To a large extent, this effort has been motivated by the 
need to safety and economically predict material response under conditions of extreme mechanical and thermal 
loading. Some examples are the design and analysis of pressure vessels, ships, and aircraft, as well as the study of 
metal forming, welding, and nuclear weapon effects on soils and structures. 

Based on extensive experience, the solution of problems with inelastic material behavior has proven to be much 
more difficult than the analysis of linear elastic behavior. The currently available solution procedures can be quite 
costly, unstable, and inaccurate. In addition, the models of inelastic material behavior in current engineering use 
are not always suitable for complex loading conditions. All of these factors have placed a severe constraint on the 
routine use of inelastic finite element analysis. 

The cost of inelastic analysis is particularly high in three-dimensional calculations. However, a more critical fac- 
tor is that considerable user knowledge and judgment are involved in selecting an appropriate solution strategy. In 
practice, this situation almost always means that obtaining a reliable solution requires some, if not extensive, 
numerical experimentation. There is surely a need for solution techniques with increased accuracy and stability 
properties as well as self-adaptive algorithms that adjust computational strategy as the solution proceeds. 

Our objective in this paper is to present the development, analysis, and testing of,a solution procedure for the 
finite element analysis of thermo-elastic-plastic and creep problems with temperature-dependent material proper- 
ties. The solution procedure is based on a one-parameter integration method (the a-method) for a system of ordi- 
nary differential equations. This integration method, which contains the well-known Euler forward and backward 
methods, was previously proposed and analyzed for the finite element analysis of certain heat conduction [22,23] 
and viscoplasticity [3,4,6] problems. In this paper we use the a-method as the basis of an effective algorithm for 
the analysis of significantly more complex thermo-elastic-plastic and creep problems. 

We first summarize in section 2 the formulation of the thermo-elastic-plastic and creep material model. Section 
3 contains the development of the finite element solution procedure and a theoretical analysis of its stability charac 
teristics. The procedure has been implemented in the finite element computer program ADINA [21 ] and in section 
4 we present and discuss the solutions for three test problems. The conclusions are contained in section 5. 

* Invited paper, presented at the 5th International Conference on Structural Mechanics in Reactor Technology, Berlin (West), 
August 13-17, 1979. 
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All notation is defined in the text when it is first introduced. A left superscript denotes the time at which a 
quantity occurs. No left superscript indicates a finite increment. Differentiation with respect to time is indicated 
by an overhead dot. Right lower case subscripts denote the components of Cartesian vectors and tensors. Finally, 
right superscripts and subscripts contained within parentheses are iteration counters. 

2. Thermo-elastic-plastic and creep material model 

In this section we present a material model which includes the combined effects of  thermoelasticity, thermo- 
plasticity, and creep. All material properties (e.g., Young's modulus, yield stress, etc.) are allowed to vary with tem. 
perature. The thermoplasticity part of  the model utilizes the yon Mises yield function with the option of  either iso- 
tropic or kinematic hardening. The creep formulation is a modified equation-of-state approach which is suitable 
for cyclic loading conditions. 

2.1.  F o r m u l a t i o n  o f  the  m o d e l  

A basic assumption in the formulation of  the model is that the usual small strain tensor can be expressed as the 
sum of elastic, plastic, creep and thermal strains, 

f P r_C L r_TH = r  E +  e i j+  req  eij ei] 1- ¢ii , (1)  

where 

req = component of  total strain tensor, 
¢ E eq = component of  elastic strain tensor, 

reP  = component of  plastic strain tensor, 

reC = component of  creep strain tensor, 
reTH = component of  thermal strain tensor, 

This assumption allows the use of the so-called classical theories of  plasticity and creep which make a distinction 
between time-dependent and time-independent inelastic strains. 

The constitutive law for an isotropic, thermoelastic material with temperature-dependent moduli is [38,39], 

r ~ E  ~r r Oi] = Li]rsl, ers - r ePs - r erCs T_THx - ~ r ,  ) ,  ( 2 )  

where 

rcff.~s = component of  elastic constitutive tensor 

= rx~i jSrs  + rll(SirS]s + ~is~jr) , 

r E r v 
r x  

- ( 1  + rv) (1  - 2 r v )  ' 

r E 
rlR 

2(1 + r v ) '  

rE -- Young's modulus, 

rv  = Poisson's ratio, 

6q = Kronecker delta, 

r_TH = rctm(rO _ OR ) ~rs 
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r0 = temperature, 

rOtm = mean coefficient of thermal expansion, 

O R = reference temperature. 

The creep strain rate is determined using a modified equation-of-state approach which includes strain hardening 
for variable loading and the Oak Ridge National Laboratory auxiliary hardening rules for cyclic behavior [27,28]. 
The final result [18] is stated as 

r "C r T , ei) = rsi/ (3) 

where 

rsi] = component of deviatoric stress tensor 

=rOi] -- ~ r Omrn~i] , 

3 reC 
2 r~ 

r~ = yon Mises effective stress 

= N/3 rSi] rSij , 

r~c= effective creep strain rate 

= fCo ,  r~-H, r0) ' 

r ~ H =  modified effective creep strain. 

The plastic strain rate is calculated using the classical theory of time-independent plasticity [29-39].  The gene- 
ral form of the yield or loading function for non-isothermal conditions is assumed to be 

rF  = rF(roij  , raij , r o y ) ,  (4) 

where r~ij and roy depend on the history of plastic deformation and temperature. For elastic behavior, rF  < 0, 
and for plastic behavior, rE = 0. 

As a consequence of Drucker's postulate for stable inelastic materials under isothermal conditions, the yield 
function rF  defines a convex yield surface in nine-dimensional stress space. Furthermore, when stress and plastic 
strain rate axes are coincident the plastic strain rate vector is normal to the yield surface. In developing a noniso- 
thermal plasticity model, it is assumed that rE defines a convex yield surface in a ten-dimensional stress-tempera- 
ture space and that the isothermal normality condition remains valid [31 ]. Thus, the plastic strain rate is defined 
by 

rF  r 'P rA ~ ,  (5) 
eij = ~ roij 

where rA = positive scalar variable. 
The calculation of rA requires that a hardening rule be selected. A hardening rule describes the change in the 

yield surface with continuing plastic deformation. Two commonly used hardening rules are isotropic hardening 
[39], and kinematic hardening [33]. 

2.1.1. Isotropic hardening rule 
The isotropic hardening rule for isothermal conditions assumes that the size of the yield surface increases uni- 

formly while its center remains fixed in nine-dimensional stress space. The size of the yield surface, as defined by 
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the yield stress, is based on either the plastic work or the accumulated effective plastic strain. In the following 
extension of the isotropic hardening rule to non-isothermal conditions [31,37], it is assumed that the yield stress 
depends on the accumulated effective plastic strain and instantaneous temperature• 

The yon Mises yield function for non-isothermal, isotropic hardening can be written as 

r,,. l r r - ~ Oy , (6) p =]  Slm Slm r 2 

where 

roy =yield stress 

= rOy('r~P,ro) ' 

r~-v = accumulated effective plastic strain 
r 

= f reP d t ,  
o 

reP = effective plastic strain rate 

The objective is to determine rA in terms of the current strain and temperature rates• Taking the derivative of 
eq. (2) with respect to time and then substituting from eq. (5) results in 

• r ~ E  it_" r A ~ rF = _ _  r "C r : T H  ~ + r,~,E r E 
rOi.i "i]mn \ emn -- a rOmn -- emn - emn ] ~ticd eoa • (7)  

During plastic straining, the stress-temperature state remains on the yield surface so that 

r[~= ~ rF O f F  r" b r F  r 
rbq - -  . . + ~  dy=0 .  (8) roff + a rOlij Ott! ~ Oy 

Considering eq. (6), it can readily be shown that 
~ F  

- - =  O,  (9)  
a roti] 

a rF 

Oroy 

0 rF  

_ 2 roy , (lO) 

a roq rsij , (11) 

0 roy r e  P + 0 roy 70 (12) 
rOY = ~T-~P orO • 

Substituting eqs. ( 9 ) - 0 2 )  into eq. (8) and using the previously stated definitions of r~P and r~p results in 
UD roy ~ ~ rUy 

] . (13) 

Since rF = 0 during plastic straining, 

rsq rsi i = ~ roy2 , (14) 

and hence eq. (13) simplifies to 

• r A ~ r ° y +  ~ roy rsij'roi]= ~ rOy[~ roy o r~p ~ rO ] .  (15)  
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Premultiplying eq. (7) by "rsi/, setting the result equal to eq. (15) and solving for rA gives 

,r_ ,rr.E r,r: ,r 'C " r ' T H ) +  "rSij'rCiEcd'r E _ ~ r O y ~ Y _ r  0 
"rA-  ~ii Cijmnk Cmn-  e m n -  emn eea O'rO (16) 

,r E ,r 2 ~ ,rOY + "rSi] Cgmn rsmn 
°ya ~-~v 

In order to further evaluate the above expression for rA, it is necessary to obtain O "rOy/B reP and a rGy/O ro. 
It is assumed that a relationship between ,rOy, ,rgP, and "tO can be derived from the data obtained in a series of 
tensile tests at different temperatures using virgin material specimens. This data is used to develop the idealized, 
bilinear, engineering stress-strain curves shown in fig. 1. 

To convert the curves shown in fig. 1 to stress-plastic strain curves, we have for constant temperature "tO and 
"r 0 ~ "r Oyu, 

r 0 
"r(7='rGyu + r E T ( ' e - -  vYU) (17) 

\ "r E I '  

reP = r e  - " t o / r E ,  (18) 

Combining the above equations and noting that the current stress is the current yield stress (i.e., re = ,rOy) results in 

rE "rET reP + "rOy u . (19) 
~Oy = ,r E __ ,rET 

Thus, eq. (19) gives the relationship between yield stress and plastic strain for monotonic uniaxial loading at con- 
stant temperature. The curves described by eq. (19) are shown in fig. 2. 

It is now assumed that eq. (19) relates the yield stress and the accumulated effective plastic strain for multiaxi- 
al loading conditions. Additionally, it is assumed that the relation holds regardless of the history leading to r-6-a. 

O-yVl ~ _ ~  

{;) ~'yv 2 - -  -- 

/ lIE, / 
ETi 

O.yvi 

/ /  / , /  YO 'S MODULUS AT 0, 
I I /  rE, ETi = H A R D E N I N G  MODULUS A T  0 i 

II I / o-,v  : VIRGIN MATERIAL YIELD 
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ENGINEERING S T R A I N  

Fig .  1. Ideal ized engineering s tres s - s tra in  curves.  
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Fig .  2. Ideal ized engineering s t res s -p las t i c  strain curves.  
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We then obtain 

a roy _ rE rE T 

rge r E _ r EW 

and 
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roy - r ~ P  ~ ( rErET ~+ orOy v 

aro  -~--7-O \ rE_rET  ] arO 

Substituting eqs. (20) and (21) into eq. (16) and using the definitions of  roy, rcE#s and rsq yields: 

- - emn) 'r  P ~ca % a -  i) r o \ r E _ r E T  ] + -  b ro 
r A - 

2 ray [rla + 1 rErE T ] 

3 3 rE 7 ~ j  

(20) 

(21) 

(22) 

2.1.2. Kinematic hardening rule 
The kinematic hardening rule for isothermal conditions assumes that the size of  the yield surface remains con- 

stant and that the yield surface can translate as a rigid body in nine-dimensional stress space. The translation is 
a measure of  the hardening of  the material and the incremental translation components are generally assumed to 
be linearly related to the incremental plastic strains. 

In the extension of  the rule to non-isothermal conditions [31,36,37], it is assumed that both the size of  the 
yield surface and the hardening of  the material can depend on temperature. The yon Mises yield function for non- 
isothermal, kinematic hardening can be written as 

rF = ½ (rslm - ralm)(rslm -- ralm) - -  ~ r o ;  , (23) 

where 

roy = yield stress 

= r o y ( t O ) ,  

raim = component of  yield surface translation tensor 

r 

= : tOtlm dt 
o 

r~l m =r Cro;m , 

rc  = hardening parameter 

= r C ( r O ) .  

Following the development of  eq. (22), it can be shown [ 18] that 

i) roy rO _ r~E (r- r ' C  r ~ ' T H ~ + r r .  _ r ' E  r E _ ~  r O Y ~ o -  (rsii rag) "~ilmnt e m n -  e m n -  %nn) t ~ff rail) Cqca eea 
r A _ (29) 2r_2 r c + ( r s q _ r  r E r uy all) Cilmn( $mn - r°Imn) 

To further evaluate eq. (24), it is necessary to obtain both r c  and 0 roy/~ ro. As was done for the case of  isotropic 
hardening, we use the idealized, bilinear, engineering stress-strain curves shown in fig. 1 and now assume that the 
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relationship between roy and ro is the same as that between the virgin material yield stress and temperature.That 
is, roy is simply the virgin material yield stress corresponding to ro. 

For the hardening parameter ¢C, consider a case of  uniaxial loading at constant temperature such that 

rol I 4= 0 ,  all o t h e r  ro i j  = 0 , 

r O l  1 :/= 0 , all other "rOij = 0 , 

~'s2: = "ss3 = -½%11 , ( 2S )  

,epz re3e 3 l ,_p = = - :  e l l  , all other re = 0 , 

= = - :  e** , all other rb = 0 ,  

roy = constant .  

Evaluating rF = 0 and r~ = 0 for the above loading condition results in 

(rs, 1 _ ral ,)2 = ~ro~ (26) 

and 

_ 3r , . , r xP  (rSll roql)(rdll--I L. e l , l = 0 .  (27) 

The above equations require that 

rdl l  = a2rc rbP,, (28) 

o r  

_ s r ,- ,  ~ . P  ( 2 9 )  d o l l  - : ~  ¢~ U C l l  . 

Referring to the idealized stress-plastic strain curves shown in fig. 2, the infinitesimal stress increment do at con- 
stant temperature is given by 

rE¢ET 
do = - -  de p • (30) rE- rET 

Comparing eqs. (29) and (30) shows that 

2 rErET 
rc-  (31) 

3 , E r E T  • 

Substituting eq. (31) into eq. (24) and using the definitions of  roy, rCi~rs, and rsq, we obtain 

rld(rsm n _ ro tmn) (r~mn _ r "eCn _ r-TH~emn) + r:lakiZ.amn - r^t~mn)X r_Eemn roy  ° ~ r o y  v r" 0 
3 0 r0 (32) r m - 

2 roy2Irla + 1 rErET ] 
3 

2.2. Applicability of the model 

The model is suitable for use in small strain and displacement analysis. However, it is also directly applicable to 
problems involving small strains and large rotations [20]. 

When using the model for practical engineering analyses, it is important to be aware of  the limitations of  the 
theories upon which it is based. The classical theory of  time-independent plasticity does not accurately predict 
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material behavior under general, non-radial loading conditions [27 -29] .  In addition, the O.R.N.L. auxiliary strain 
hardening rules were developed for radial or near-radial loading. Based on limited experimental results [27,28], 
the kinematic hardening formulation is recommended for cyclic, radial or near-radial loading. The isotropic harde- 
ning formulation is recommended only for situations involving monotonically increasing, radial or near-radial 
loading. 

3. Solution procedure 

The proposed solution procedure is based on a one-parameter integration method for ordinary differential equa- 
tions (the c~-method) which is used in conjunction with the thermo-elastic-plastic and creep material model deve- 
loped in section 2. For a range of  values of  the parameter, this integration method has been shown to be uncondi- 
tionally stable for certain heat conduction [22,23] and viscoplasticity problems [3,4,6]. 

The solution procedure uses one time step size for the calculation of nodal point displacements and a smaller 
one for element integration point stresses, plastic strains, and creep strains. This approach is based on the observa- 
tion that for many problems of engineering interest involving inelastic behavior, the time-wise variation in the 
stresses and inelastic strains is greater than that of  the displacements [16-19] .  

In the following, we investigate the stability of  the solution procedure via the calculations for the element inte- 
gration point stresses. We assume that the stability characteristics associated with these particular calculations 
carry over to the other solution variables. Only the case of  isotropic hardening is examined. However, similar con- 
clusions can be reached for kinematic hardening [20]. 

3.1. The a-method 

Consider a system of first-order, ordinary differential equations of  the form 

r~ = ~A rx , (33) 

where r denotes some arbitrary time. Assuming that an approximate numerical solution tx is known, the next 
approximate solution t+atx is given by 

t+At X = t x + t+aAtf¢ A t ,  (34) 

where 

t+aAtf¢= t+aAt A t+aAtx  , (35) 

t+~Atx = (1 -- Ct) tx + at+Atx, 0 ~< ~ ~< 1 , (36) 

t+a~tA = t+aatA(t+a~'tx, t + t~At). (37) 

Substituting eqs. (35) - (37)  into eq. (34) yields: 

[ I -  aAt  t+aZXtA ] t+ A t x  = [ /+ (1 -- Or) At t+aAtA ] t x  . (38) 

Eq. (38) must generally be solved for t+Atx in an iterative manner, but a direct solution is possible when rA is a 
constant matrix. Note that a = 0 and a = 1 are the Euler forward and backward methods, respectively. Additionally, 
ct = ~ corresponds to the usual trapezoidal rule only when rA is a constant matrix. It can be shown [20] that 
ct = 0, 1 have local truncation errors of  O(At 2) and that ¢~ = ½ has a local truncation error of  O(At 3 ). 

3.2. Theoretical stability analysis 

In investigating the solution procedure's stability characteristics, we are primarily interested in how roundoff  
errors are propagated through the numerical computations. For stability, it is required that roundoff  errors not 
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be magnified as the numerical calculations progress. We note that the following analysis is not concerned with 
the truncation errors of  the solution method. Such errors exist even if all arithmetic operations are performed 
exactly. While the truncation error directly affects the accuracy of  a numerical method, stability is a primary 
requirement for an accurate solution. On the other hand, a stable solution can still be inaccurate due to large 
truncation errors or an excessive number of  solution steps which result in roundoff accumulation (but not step- 
wise magnification). 

In the development of  the solution procedure in section 3.3, it will be shown that the calculations for the ele- 
ment integration point stresses lead to nonlinear algebraic equations of  the form 

l i t -  tear r+ZxrA r+arc ] r+Zirx = [I + (1 - a) Ar  r+ArA r+~Arc + r+ArAS] rx + L + r+arAT,  (39) 

where 

rx = known vector of  stresses, 
r+arx = unknown vector of  stresses, 
L, T = known vectors with time-dependent components 
r+arA, S = known square matrices with time-dependent components 
r+aZirc = square matrix which is a function of  the known and unknown solution variables 
I = identity matrix. 

Additionally, we require that r+ArA be negative definite and that r+Zxrc be positive semi-definite. 
Now assume that there is some roundoff  error re in the numerical solution at time r such that 

rx* = rx  + r e .  (40) 

If  all arithmetic calculations are performed exactly, then the solution at time r + a r  is 

[I -- t~Arr+arA r+aarc*] r+ZXrx* = [ I+  (1 - oe) Ar r+ArA r+aarc* + r+arAs] rx* + L + r+ZxrAT , (41) 

where 

r+arx* = r+Arx + r+Are (42) 

and r+Are = propagated roundoff  error and r+aArc* = perturbed version of  r+~Arc due to re and r+Zxre. 
It can be seen by referring to the definitions of  r+aArc in sections 3.3 and 3.4 that r+aArc* is also a positive 

semi-definite matrix. 
Now consider the generalized eigenproblem [40] : 

r+aArc*d~* = X r+arA-l~* , (43) 

with solutions 

r+c~Ar c * ~ *  = r+Ar A-I{~} * A* , (44) 

. .  = [ . ;  . . . .  

A*=diag[X2] , X i < 0 .  

The orthogonality properties of  the eigenvectors are such that 

¢1~* T r+ar A - 1  @* = I ,  (45) 

(ID *T r+a~'rc*~* = A* . (46) 

The n eigenvectors span an n-dimensional vector space. Therefore, we can write 
r+ar x = ~* r+Ar z (47) 

rx = ~* rz , (48) 
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r+ar s = ~* r+Ar e , 

"r F, = ¢]~* r e . 

Premultiplying eq. (41) by r+zxrA-1 yields: 

[r+ar A - 1  _ otAr r+c~Ar c*  ] r+Arx* = [r+arA-1 + (1 - oO Ar  r+~ar c*  + S] rx* + r+ a r A - I  L + T . 

(49) 

(5o) 

(51) 

Substituting eqs. (47)- (50)  into eq. (51), premultiplying by do* and using the orthogonality properties, eqs. (45) 
and (46), results in 

[I - aAr A*] (r+arz + r+Are) = [ I+  (1 - ~) Ar A*] (rz + re) + do*T Sdo*(rz + re) + do*T r+ar A -1 L + ~I~*T T .  
(52) 

To obtain an expression relating re and r+ZXre, we assume that r+a'Xrc*= r+aZXrc, cO* ~- dO, and A* = A. 
The error terms now separate directly out of  eq. (52) and we have 

[I - c~ArA] r+ZXre = [ I+  (1 - ,~) ArA] re + doT s d o r e .  (53) 

For the jth component of  r+ZXre, we obtain 

{doT S do Te)/ r+ZXre ] = 1 + (1 - a) Ar N re / + (54) 
1 - a~rX/ 1 - aArX/ 

Note that the second term on the right-hand side couples r+Are/to all the components of  re. 
As discussed previously, stability means that any roundoff  error present at time r is not magnified when the 

solution for time r + Ar is calculated. Specifically, we require that 

It+Are T r+~rA-1 r+'are I <~ Ire v r+arA-1 rs I . (55) 

Substituting eqs. (49) and (50) into eq. (55) and using eq. (45) results in 

Ir+ZXre T r+arel <. Ire T re I . (56) 

A sufficient, but not necessary condition for eq. (56) to hold is 

Ir+zxr e/I <<. Ire/ I . (57) 

Consider eq. (54) and examine the cases o f S  = 0 and S 4= 0. In the first case, eq. (57) is satisfied if 

I + ( 1 - - c 0 A r X  j <~ 
- ] Z a n y / .  1 .  (58)  

Recalling that X/~< 0, 0 ~< a ~< 1, and Ar > 0, some algebraic manipulation shows that eq. (58) is satisfied for all 
Ar > 0 when a /> ½. Thus, the algorithm can be made unconditionally stable. On the other hand, if a < ½ then eq. 
(58) requires 

1 
Ar ~<- (59) 

(2c~ - 1) Xj" 

We note that this conditional stability limit may not be useful for practical computations since X/generally depends 
on the unknown solution at time r + Ar. The only exception is when a = 0, in which case X i is determined by the 
known conditions at time r. 

However, when S =/= 0 there is no a priori information available concerning the second term on the right-hand 
side of  eq. (54). At present, the best approach is to make all of  the coefficients of  re i as small as possible. This 
means having the condition in eq. (58) as well as requiring that the denominator of  the above-mentioned term be 
as large as possible. For specified Ar and Xi <~ 0, this latter condition occurs when a = 1. 
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3. 3. Special  case 

In this section we develop an algorithm for the special case in which a common time step size is used for all 
solution variables. Assuming that a numerical solution has been obtained at discrete time points At, 2At, ..., t, 
the solution for t + At is desired. 

3.3.1. Equi l ibr ium and const i tu t ive  equations 
At time t + At, consider the virtual work equation for an isoparametric, finite element assemblage [40] and the 

constitutive equations for a thermo-elastic-plastic and creep material with isotropic hardening. All equations are 
expressed in vector form [18] as 

N 

m = 1 V .  ) 

BTL t+a tndv  = t+Z~tR , (60) 

t + A t  6 = t + A t c E  (t+at e _ t+~teP _ t+AteC _ t + A t e T H )  , 

r~P = r a D  r~ , 

rg, C = rTD r o , 

t+AteTH = t+Ato~m(t+Ato - -OR)  6 , 

where 

t+~t e = B L t+~tu  

(61) 

(62) 

(63) 

(64) 

(65) 

and 

BL = total strain-displacement transformation matrix, 
t+Atu = nodal point displacement vector, 
t+AtR = nodal point external load vector, 
N = number of elements in the assemblage, 
D = deviatoric stress operator matrix, 
6 T = [1,1,1,0,0,0]. 

Henceforth, the summation sign in eq. (60) will be dropped for convenience, but the summation is implied for all 
subsequent volume integrals. Although eqs. (61)-(64) are valid at any point in the structure or continuum, only 
the stresses and strains at the element integration points [40] will be of interest. 

Substituting eqs. (61) and (65) into eq. (60) results in 

t+AtKE t+Atu = t+AtR + fBTL t+AtcE(t+AteP + t+AteC + t+AteTH) d r ,  

11 

where 

- " tCESL do 

O 

is the elastic stiffness matrix. 

(66) 

(67) 
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3.3.2. Algori thm development  
The a-method is used to obtain t+ateP and t+ateC. Quantities at time t + At are first decomposed as 

t+AteP = t e P  + e P , (68) 

t+ateC = teC + e C (69) 

and then the increments are given by 

e P = At ~ a A t 0 P  = At  t+aAtAD t + a A t ,  (70) 

e c = At  t+aAtdC = At  t+aAtTD t+aZXte, (71) 

where 

t+aAtg = (1 - a) te + a t+Att~ (72) 

and 

t+c~at A = t+aAt A ( t -gai ts ,  t+aAto, t + a A t ~ C ,  t+ant 0 . . . .  ) , 

t+aAt 7 = t+aAt T (t+a~t~, t+aAt~H,  t+aAto ) . ( 7 3 )  

Eqs. (61), (64), (66), and (68) to (73) are a coupled set of nonlinear algebraic equations where eqs. (61), (64) and 
(68) to (73) apply at each integration point. 

Nonlinear algebraic equations generally require an iterative solution procedure [42]. Starting with the simplest 
approach - successive substitution - an appropriate algorithm is 

t+AteC(i+l ) = teC + At t+~AxtT(OD t+a£xtg(i) , (74) 

t+AteP(i+l) = teP + A t  t+aatA(OD t+aLxt~(i) , ( 7 5 )  

t+LXtKE t+Atu(i+l)  = t+atR + / B  T t+AtcE(t+ateP(i+l)  + t+ateC(i+l) + t + a t e T H )  d o ,  

O 

t+Atg(i+ 1) = t+AtcE(t+ate( i+l)  _ t+ateP(i+l) _ t+ateC(i+l) _ t + a t e T H  ) , i = 0, 1,2 . . . . .  

The right superscript i is the iteration number and i = 0 refers to conditions at time t. 
The above scheme can be rewritten by defining 

A U  (/+1) = t+ At  u(i+ l ) _ t+ £xt u( i )  . 

Substituting eq. (78) into eq. (76) and using eqs. (65) and (67) results in 

(76) 

(77) 

(78) 

t + A t K E A u ( i + I )  = t+At R _ ~I?T t+atpEft+At,~O) _ t+ateP(i+l) _ t+AteC(i+l) _ t+AteTH ) du (79) 
d U L  ~ ~ ~ 
O 

Noting the similarity between the right-hand sides of eqs. (77) and (79), the successive substitution algorithm is 
now written as 

t+ateC(i+l) = teC + A t  t+aAt,),(O D t+aate(O , 

t+AteP(i+l) = teP + A t  t+aAtA(i) D t+aAta(i) , 

t+Atg(i+ 1) = t + a t c E  (t+at e(i) _ t+ateP(i+ 1) _ t+ateC(i+ 1) _ t+ateTH) , 

t + A t K E A U  (i+l) = t+at R _ fB  T t+d~ttT(i+l) J~ L do ,  
u 

(80) 

(81) 

(82) 

(83) 
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t+Atu(i+l) = t+Atu(i) + AU (i+1) , i = 0, 1,2 . . . . .  (84) 

Assuming that the iteration converges, AU (i+1) -+ 0 and hence all of the governing equations are satisfied. 
Furthermore, by iterating with AU q+l) instead of t+Atu(i+l), it is possible to use stiffness matrices other than 
t+Z~tKE in eq. (83) so as to obtain faster convergence [24]. 

The scheme described in eqs. (81)-(84) has two immediate drawbacks. Successive substitution can have a slow 
rate-of-convergence [42]. Additionally, disk I/O operations are required in each iteration (assuming that integra- 
tion point variables are not continually stored in-core). If the restriction of no disk writing during the iteration is 
imposed, then the following algorithm (still based on successive substitution) can be used. 

I [ -  t+At_C(i) = teCi + At  t+aAt'v(i)D t+aAtn(i) (85) 
. e ( k  + 1) " ( k )  - (k)  ' 

5 ~ t+At,,P(i) = teP + At  t+aAtA(i) D t+~atff(i) ( 8 6 )  
"~ -- ~(k+l) "'(k)~ (k) ' _g 
.~ ~ t+Atff(i) = t+Atcg(t+~te(i ) t+AtpP(i) t+At,,C(i) -- t+AteTH ) 

L_ (e+l) - ~(k+l) -- "(k+ l) , k = 0, 1,2 . . . . .  (87) 

.~ t+AtKE AU(i+I) = t+At R _ f B T  t+At~(i) dv (88)  

t+Atu(i+l) = t+Atu(i) + Au(i+  1) , i = 0, 1 ,2  . . . . .  (89) 

The right subscript k is the integration point loop iteration counter and the right superscript i is the displace- 
ment loop iteration counter. Note that k = 0 indicates conditions at time t and that t+Z~tu(°) = tU, t+Z~te(°) = re. 

The integration point loop iteration continues until a steady value is obtained for t+z~t~(i). The displacement 
loop iteration continues until AU (i+1) -+ 0. When i = 0, the integration point calculations are performed only once 
(i.e., for k = 0 only). 

The above algorithm trades disk writing operations for more computational effort. For each value of t+ate(i), it 
is necessary to calculate t+zxto(i), t+Z~teP(i), and t+Z~teC(i) by starting from the corresponding values at time t. On the 
other hand, the converged integration point loop values satisfy the constitutive equations (within the approxima- 
tions of the c~-method). This can be advantageous in plasticity problems when yielding or unloading occurs during 
a solution step [24]. 

However, both computational loops can still suffer from slow rates-of-convergence. Considering first the integra- 
tion point loop, one possible improvement is to solve eqs. (85)-(87) using Newton-Raphson iteration [42]. In 
three dimensional analysis, this means that a system of eighteen algebraic equations must be repeatedly solved at 
each integration point. The increased rate-of-convergence could easily be offset by the increase in computational 
effort. 

As a compromise, the following scheme is proposed. It assumes that the stress-dependent terms in the creep 
constitutive law are the most troublesome from a convergence point-of-view. From eqs. (69) and (71), define 

t+~xAtf = teC + e c = teC + A t  t+aAt T D t+c~at o . ( 9 0 )  

Expanding t+~z~tfin a two-term Taylor series [42] about the kth approximate solution t+~z~t~(k ) yields: 

t+aAtf.~ (t+aAto(k+l) __ t+e~At(l(k)) ' 

where the Jacobian matrix is 

0t+eAt-----~-J(k ) a  = At D t+oLAtff fft+ctAtma + t+~AtT D (k) " 

(91) 

(92) 
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The evaluation of the term ~ tsaatT[O t+c~Atff depends on the particular type of creep law being considered [20]. 
Substituting eqs. (88) - (90)  into eq. (61) and solving for t+At¢(k +l) results in; 

I t+o  tAt t+AtcEIDt+aAtffot+c~At'Y I-t+At'yo ] ~  t+aAt¢$ l t + A t f f ( k + l )  = 

(k) 

t+AtcE(B L t+Atu - t+~teP -- teC -- t+AteTH -- At  t+~AtT(k) D t+"Zxtn(k)) 

t+aAt ~ + 7 + otAt t+AtcE D ~ t+~At D t+Atff(k). (93) 
(k) 

When i > 0, eqs. (85) - (87)  (the integration point loop) are replaced by 

= t+~atA(i) i~ t+~Atffl~) (94) r+At°Pq) teP + At ~(k+l) ' "(k) u , 

t+c~Atq(i) + t+c~At@i)D v ( k + l )  

(k) 

t+AtcE(t+Ate(i ) t+At~P(i) teC _ t+AteTH At t+ctAt,~(i) II t+c~&ttr(i) "~ 
- ~ ( k + l )  - ~ - " "  ~ ( k W  ~ ( k ) ~  

+ o~At t+AtcEI D t+~At~(i) ~ t+~AtT(i) 1 " -0 t+~to(i) + t+~tT(i)D t+At°lO) ' (95) 
(~) 

t+At,,C(i) = teC t+aAt'y (i) D t+c~At~(i) "(k+l) + At  (k) v(X) 

L l)F~t+c~Atll(O ~ t+aAt@i) |7 rt+At (i) t+aAt.(i)'~ (96) 
t+aAtq(i) + t+aAt7 (i)D_(k)t ~(k+l) -- "(k)] • + s A t  

However, when i = 0 we still use eqs. (85) - (87)  and the integration point calculations are performed only once 
(i.e., for k --- 0 only). We also note that when there are no creep effects, the above algorithm degenerates back to 

successive substitution. 
In the displacement loop, the rate-of-convergence can be improved by several methods. The most common 

approach is to use an elastic-plastic [2,17], elastic-creep [10] or elastic-plastic-creep [14,15] stiffness matrix in 
eq. (88). Alternatively, the use of matrix updating and search algorithms has been found to be highly effective 

[241. 

3.3.3. Stability analysis 
To investigate the stability of  the solution procedure we establish a set of equations relating t+ata and ta at 

each integration point in the finite element assemblage. First, the decompositions 

t+atU = t u  + U,  t+ZxtcE = tCE + C E , (97) 

t~AteTH = teTH + e TM , t+ZXtR = tR + R ,  

are substituted into eqs. (61) and (66) along with eqs. (65) and (67) - (69)  so as to obtain 

t+Atct = t+AtcE(BLU -- e P -- e c - e TM) + ( I +  C E tFE) t~ (98) 

and 

t+~tKEU= tR + R + f B T t+~tCE(eP + e C + e TM) dv - ~ TL (I + C E tFE) t ~ do ,  

u o 
(99) 
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where 

tEE t o = t e _ t eP_  teC _ teTH . 

Assuming an equilibrium configuration at time t, the corresponding virtual work equation is 

(100) 

f B  [ to do = tR (101) 
I) 

and hence eq. (97) simplies to 

t+AtKEU=R + fB T t+AtcE(eP + e c + eTH)  dv - f~TcE tEE to do. (102) 

In isoparametric finite element analysis, the volume integrals in eq. (102) are typically evaluated using Gauss 
numerical integration [40]. That is, a volume integral over the element assemblage can be expressed as 

N M 

fi(x) do = E f i(x)do = 
i=1 1=1 o v(i) 

where 

(103) 

t~rAtcE = 

(6 x n) 

BL 2 

BL M 

_ ( 6 M  X n )  _ 

r t+AtC~: ,' 
l ( 6  X 6) ', 

. . . . .  T . . . .  

1 . _ _ _ _  

, ( 1 0 4 )  

1 

t+At~E I 
.~---2--L ~ 

T 
(6MX 6M) I t+AtcE 

(6× 1) 

% 

to M 

(6M X 1) 

, ( ' lO5)  

(106) 

wj = Gauss weighting factor; w~ > 0,  
N = number of elements, 
M -- number of integration points, 

Following the approach taken in [5], we define super matrices and vectors where each submatrix and subvector 
corresponds to a particular integration point (denoted by a right subscript). 

BL1 tOl 
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~= 

O I 
I 
I 

(6 x 6) I 

I - - - I  
D ,  

L _ _ _ ~  
\ 

\ 
\ 

\ 
\ 

~ - - q  
Ln_, 

_ (6M X 6M) 

w l l  ' 
I 
I 

(6 x 6) I 
. . . .  I . . . .  q 

' w 2 1  ' 
L-- _ __ --  J x 

\ \  
\ 

\ 
Nx 

~ - - -  -I 
I W M I  ~ 

(6M X 6M) 

(107) 

(108) 

where n is the number of degrees-of-freedom in the element assemblage. In addition, the super matrices ~E,  t/~E, 
and f i e  are defined to be of the same form as t+ZX@E, the super vectors, t+at~, and ffVH are of the same form as 
t~,, and the super matrices t+aat~ and t~aat~ are of the same form as ~¢. Using eqs. (103)-(108), the volume 
integrals in eq. (102) are expressed as 

f ~ T  t + A t c E ( e P  + e C + e T H )  d o  = ~ T  t + A t ~  E ~y ( ~  P + ~ T H ) ,  

u 

(109) 

f B T C  E tFE to do =~T ~E tffE~i¢ t~.. 
0 

Substituting eq. (72) into eqs. (70) and ( 7 1 )  results in 

e v = A t  ~ ' ~ t A  D [ ( 1  - o 0 t a  + r~z~to] , 

e c = At t+~At3~D[(i -t~) to + t~ t+Atff] 

and hence the corresponding super vectors are 

~ e  = z~t ~'~ZX'A13 [(1 - ~) '~. + ,~ ' * ~ 2 1  , 

~ c  = Z~t ~ + ~ ' ~  [(1 - ~) ' 2  + a ~+A'21 

Now substituting eqs. (109), (110), (113) and (114) into eq. (102) yields: 

t+atKE U = R + ~ T  t+Z~@E~/gTH + [(1 -- a) AtB T t+~t~E~ t+~Z~t~/~ _ ~ T  ~E @ E ~ ]  @. 

where 

(110) 

(111) 

(112) 

(113) 

(114) 

(115) 

(116) 
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Substituting eqs. (111) and (112) into eq. (98) and then generalizing to a complete set of integration point 
equations yields: 

[ I  + otAt t+aAt~ t+At~E~]  t+At~ = t+At~E(~ L V -- f fTH)  (117) 

+ [ f  + ~E ,ifE _ (1 -- a) At t+a@ t+Z~@E/}], 2 ,  

where i" is a 63/× 6M identity matrix. The final set of integration point stress equations is now obtained by sub- 
stituting eq. (115) and the identity [20] 

(t+At~E~c B L t + A ' K E - 1 B T  _ ~ - 1 )  ~ E  t f iE  = __ (t+AtOEBL t + a t K E - l ~ T  t+at~E __ t+At?E~r--l)  ~/ffE (118) 

into eq. (I 19). The result is: 

[~" __ ocAt[t+At?E~L t+AtKE--I~T t+AtcE -- t+At~E~]--l]  ~t/ t+aAtGD] t+&t~= 

t+At~E~L t+AtKE-I R + [t+At/~Eg L t*A,KE-I~T t+AtOE _ t+a@l~--I l ~ 7 T H  

+ [I" +(1 +oOAt[t+~tcEB L t+at E-I~Tt+At~E t+At~E~t--1] t+aAt~  K B L C - 

+ [t+at~ E/~r. ,+~tKE-I~T ,+~@E _ , +~@E~- I ]  ~ E ]  t ~ .  (119) 

We note that eq. (119) shows the contributions to '+~@. from external loading, thermal strains, change in elastic 
moduli, creep, and plasticity. 

To determine if the solution procedure can be made unconditionally stable as discussed in section 3.3, we com- 
pare eqs. (39) and (119). It is observed that 

t+At A = ,+At~ EB~ L t+AtKE-l  g T  ,+&t~E _ t+At~E~]- I  , (120) 

' + ~ t c =  [4 t t+~A'Gb (121) 

and 
S =  ~ g E  , 

L = t+atCEB L t+~tKE-1R , (122) 

r = ~ T H  . 

The matrices S, L, and T satisfy their basic definitions accompanying eq. (39) and t~z~t and t+aAtc are symmetric. 
However, since the criteria for unconditional stability also assume that t+AtA is negative definite and '+~Atc is po- 
sitive semi-definite, the properties of these matrices must be investigated. 

The matrix '+Z~'A is examined in Appendix A. It is shown therein that the matrix is negative definite only when 
the elastic stiffness matrix t+AtKE is approximate. In the case of t+aAtc, the structure of the matrix is: 

I Wl (t+o~A t')'l t 
I 

+ t÷°AtA1)D L 
] w2(t+°tht~/2--1 
I I 

I 

I + .~Zl,A2)O ~ 
t+~Atc = t N 

\ 
\ 

\ 
> 
I WM(t+aAtTM 
I 

The terms t+~AtTi and tmZitA i are > 0, the Gauss weights w/are > 0, and D is positive semi-definite. Therefore, 
each submatrix in t*~Atc is positive semi-definite and so is the complete matrix. 

Thus, unconditional stability is obtained when a t> ½ and the elastic stiffness matrix is approximate. 

(123) 
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3.4. General case 

In this section we present an algorithm for the general case in which one time step size is used for the nodal 
point displacements and a smaller one for the integration point stresses, plastic strains, and creep strains [16-19].  
We assume that a numerical solution has been obtained at discrete time points At, 2At, ..., t and the solution at 
time t + At is desired. 

3.4.1. Equil ibrium and const i tu t ive  equations 

The virtual work equation and the thermo-elastic-plastic and creep constitutive equations have been presented 
in eqs. (60)-(64). In addition, eqs. (66) and (67) remain directly applicable. 

3.4.2. A lgor i thm deve lopment  

The time step At is divided into q, not necessarily equal, subdivisions 5~- with the time at the start and end of 
the jth subdivision denoted by r /and ~'/+1, respectively. At the end of the/ th subdivision, the stresses are given by 

zj+16= rJ+lCE(ZJ+le -- r/+xeP -- r/+leC -- ZJ+leTH) , (124) 

where rJ+leP and r/+le c are evaluated using the c~-method. This evaluation is accomplished using eqs. (68)-(73) 
so as to obtain the decompositions 

rJ+leP = ¢je P + e P , (125) 

r/+le c = r/eC + e c (126) 

and then the increments 

e P = 67" r/+a6z/,P = 67" r / + a 6 r A  D rl÷a6rO , ( 1 2 7 )  

e c = 6T r/+c~z/c = 67" rFa~rTD r/+asro , 

where 

~/'+~6¢a = (1 - a )  7o + c~ ¢/+1o 

and 

~/+~¢A = ~i+~¢A(¢i+'~6%, ¢i+~¢b,~l÷~8¢e c,  ¢/+,~8~ .... ) ,  

r/+et~'~ = ~'j+aS"r T(rj+a6rO , cj+a6"r~-H, rl+C~8"r0) . 

(128) 

(129) 

(130) 

Eqs. (124)-(130) are a coupled set of nonlinear, algebraic equations which must be solved for each subdivision at 
every integration point. After q subdivisions, 

t+At O. = ~'q+l~ , 

t+AteP = rq+leP , ( 1 3 1 )  

t~AteC = r q + l e C  . 

In addition to the above equations, it is also necessary to relate r # l e  t o  t+hte, which is obtained using eqs. (65) 
and (66). Assuming that the nodal point displacements vary linearly with time from t and t + At, we then have 

t+at  e _ t e 
¢J+le = te + A t  (r/+ 1 - t)  (132) 
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Thus ,  eq. (66)  m u s t  be solved s imu l t aneous ly  w i t h  the  subdiv is ion  equa t ions ,  eqs. ( 1 2 4 ) - ( 1 3 0 ) .  As previous ly  

discussed in sec t ion  3 .3 .2 ,  an  i tera t ive  so lu t ion  p r o c e d u r e  is requi red .  Fo l lowing  the  d e v e l o p m e n t s  in t h a t  sec t ion ,  

the  f inal  a l go r i t hm p r o p o s e d  for  prac t ica l  analysis  is s u m m a r i z e d  in tab le  1. In  this  t ab le ,  t he  r ight  subscr ip t  k is 

Table 1 
Algorithm for practical analysis a 

(1) 
(2) 
(3) 
(4) 
(5) 
(6) 

(7) 
(8) 

(9) 

(10) 

(11) 

Loop to (11) for each solution step. 
Set the displacement loop iteration counter i = 0 (~-Atu(0) = tu ,  ~-Ate(0) = re). 
Loop to (9) for each integration point. 
Set the subdivision counter]  = 1. 
Calculate the size 8 r of the ]th subdivision. When i = 0 and ] = 1, set ~ r = At. 
Calculate the total strain at the end of the j th  subdivision. 

bate(  0 _ t e 
Z]+ le(i) = t e + (ri+ 1 - t ) .  

At 

Set the integration point looo iteration counter k = 0. This indicates conditions at time r]. 
Solve for r/+leP(O - rJ+leC(i) - - n  A "r/+lff ( 0  . . . .  i~h 1"]+ ID(O h~l,-I . . . .  to . . t  

( k + l ) '  ( k + l ) ' a  ~, ( k + l )  . . . . . . . . . . . . . . . . . . . . . .  
rf f~8  r_ (i) r ]+ 1 e~k(O1 ) = r j e P ( i  ) + 5t rl'+aSrA(k ) D o(k),  

[ [D ar /+c~Sr ' r ( i ) . r , ' ~aSr ( i )~q - ] r , '+ l  (i) 

~+ ~cE(r i+ Xe(0 _ ~j+ ~eP(~) _ ~jeC(0 _ ~j* le TM _ a~ ~-~,~8 r~/~) D ~ , ~ 8 ~ ( ~ ) ,  (k l )  u(k)J 

+ t ~  T 
l u a rf fa6ro(i)  l ( k )  

ID rl'+c~S r~( i) DI  r]+Sr~C(i) _ rieC(i) + ~ r,~-c~Sr (i) ~ r,+a6r (i) ri+aSra(i) a 
~(k+l) - or • 7(k) u " a(k)  + aSr rl+aSra( O + ri+a~r.r(O 

a (k) 

o(k+l) 

Check for integration point loop convergence. If i = 0, bypass check and go to (3) for the next integration point. 

No convergence: k = k + 1, go to (8). 

.,~ Yes: go to (3) for the next integration point. 

Convergence: r]+ 1 = t + At? % No: ] = ] + 1, go to (5) for the next subdivision. 

Solve for AU (i+1) and ~ A t u ( i + l )  after looping through steps (3) - (9)  for each integration point. 

t+AtKEAu( i+I)  t+At R ~B T t+At..(i) 
= - J ~ L  ~ do ,  

0 

t+Atu(i+ 1) = t+Atu( i  ) + Au(i+ 1) . 

Check for displacement loop convergence. 

No convergence: i = i + 1, go to (3). 
Convergence: go to (1) for the next solution step. 

(133) 

(134) 

(135) 

(136) 

(137) 

(138) 

a Step (1)- (11)  is called Displacement Loop and step (3) - (9)  is called Integration Point Loop. 
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the integration point loop iteration counter and the right superscript i is the displacement loop iteration counter. 
We note that when there are no creep effects, the scheme is essentially successive substitution. Additionally, 

the comments given in section 3.3.2 concerning improvement of the displacement loop rate-of-convergence remain 
relevant. The algorithm presented in table 1 contains as a special case, the algorithm developed and analyzed in 
section 3.3. That is, when q = 1 the general algorithm reduces to the special case. 

3.4.3. Stability analysis 
We have not yet been able to derive a set of clear and useful equations which relate the entire set of integration 

point stresses at times At and t + At, as was done in the stability analysis described in section 3.3.3. However, by 
following an approach similar to the one in that section, the integration point computations in eqs. (124)-(130) 
can be shown to be unconditionally stable for each subdivision when ~/> 1 [20]. We therefore infer that the overall 
solution procedure is also unconditionally stable when a ~> ½. 

4. Test problems 

The material model and solution procedure presented in sections 2 and 3 have been implemented in the finite 
element computer program ADINA [21 ], and further details of the implementation are given in [20]. Below we 
report the numerical solutions obtained for three problems - the creep bending of a cantilever beam, the creep of 
a pressurized, thick-walled cylinder, and the thermo-elastic-plastic response of a pressurized, thick-walled cylinder. 
These results indicate some of the actual stability and accuracy characteristics of the solution procedure. 

4.1. Creep bending o f  a cantilever beam 

A cantilever beam was subjected to a constant tip bending moment of 6000 in-lbs. The finite element model of 
the beam is shown in fig. 3. It was possible to model only the portion of the beam above the neutral axis by apply- 
ing the appropriate displacement boundary conditions to the nodes on the neutral axis. Eight, plane stress, iso- 
parametric elements were used in the model and the element stiffness matrices were evaluated using 3 × 3 Gauss 
integration. The work-equivalent nodal forces used to represent the tip bending moment were derived from the 
elastic beam theory stress distribution. 

An analytical solution for the transient bending stress distribution was not found. It is possible, however, to 
obtain an expression for steady state conditions [25] when the uniaxial creep strain rate is of the form 

roE = K tom , (139) 

where m and K are constants. The Y-direction bending stress at steady state is then 

M 2 m + X ( ~ ) - ( 2 m + l ) / m z 1 / m  Z>~O 
¢ T y y  - 2b m - -  ' ' (140) 

where M, b, h, and Z are defined in fig. 3. 
By varying the integration parameter, a, the time step size, At, and the number of subdivisions per time step, q, 

results were obtained for a number of problem cases which are summarized in table 2. Figs. 4 -12  present the 
results for the Y-direction bending stress at the point marked A in fig. 3. Problem cases 1 and 2, which are shown 
in fig. 4, define a 'baseline solution' against which all of the other results are compared. Since these two cases have 
a maximum difference between them of approximately 4%, problem case 1 is used in figs. 5 to 12 for the baseline 
solution. 

When a = 0.0, q = 1, the solution becomes unstable with increasing At. On the other hand, stable results are 
obtained when q = 10. This indicates that subdividing the time step (i.e. q > 1) can stabilize what would otherwise 
be an unstable solution. 



M.D. Snyder, K.-J. Bathe / Thermo-elastic-plastfc and creep problems 69 

Z 

I - NEUTRAL AXIS .j M~Y ~ 
I -  4o i •  - - ,  b - ' H  ~- 

SIDE AND END VIEWS 

z 

E 
O.mO x 

Y 

PLANE STRESS MESH 

E = 3 0  x 106 psi b = . 3 i n  

o = 0 3  h= 4. in 

r@C= K ~ m  M= 6 0 0 0  i n - l b  

K 6.4 x I0 -18 E = 7 5 0 0 p s i  = CTmQ x 

rn= 3.15 

Fig. 3. Finite element mesh for a cantilever beam. 

Table 2 
Problem cases for the  creep bending of  a cantilever beam 

Case no. Integration Time step Number  of  subdivisions 
parameter  (~) size (At) per t ime step a (q) 

1 0.0 10.0 1 
2 0.0 10.0 10 
3 0.0 25.0 1 
4 0.0 25.0 10 
5 0.0 50.0 1 
6 0.0 50.0 10 
7 0.5 50.0 1 
8 0.5 50.0 10 
9 0.5 100.0 1 

10 0.5 100.0 10 
11 0.5 500.0 1 
12 0.5 500.0 10 
13 1.0 50.0 1 
14 1.0 50.0 10 
15 1.0 100.0 1 
16 1.0 100.0 10 
17 1.0 500.0 1 
18 1.0 500.0 10 

a Time step subdivisions are of  equal size. 
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For the cases wi th  a = 0.5,  q = 1 and a = 1.0, q = 1, it is possible to obtain stable solutions for values o f  At that 
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4.2. Creep of  a thick-walled cylinder 

A thick-walled cylinder was subjected to a constant internal pressure of 3650 psi. The finite element model of  
the cylinder is shown in fig. 13. Plane strain conditions were assumed and twelve axisymmetric elements were 
used in the model. The element stiffness matrices were evaluated using 3 × 3 Gauss integration. The material 
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Fig. 13. Finite element mesh for a thick-walled cylinder. 
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Table 3 
Material properties for the thick-walled cylinder 

73 

800°F 900°F 1000°F l l 0 0 ° F  

Young's modulus (psi) 24.07 × 106 23.30 X 106 22.51 × 106 21.71 X 106 
Poisson's ratio 0.3 0.3 0.3 0.3 
Virgin material 
yield stress (psi) 1.11 X 104 1.004 × 104 9.344 X 103 9 X 10 a 
Hardening modulus 
(psi) 7.3 X 105 7.3 X 105 7.3 × 105 7.3 x 105 
Mean coefficient of 
thermal expansion 
(in/in/°F) 11.28 X 10 -6 11.38 × 10 -6 11.18 X 10 -6  11.48 × 10 -6 

All properties were assumed to vary in a piecewise linear manner between the tabulated values. 

Uniaxial creep law: 
7eC = F(1 - e -Rz)  + Gr, 
F =ao Toal, 
R a2 ea3r°, 
G = a4 [sinh(a5 ro)]a6, 
re = constant uniaxial stress, 
ao = 1.608 × 10 -10 ,  
a l  = 1.843, 
a2 = 5.929 × 10 -5  , 
a 3 = 2.029 x 10 -4 ,  

a4 = 6.73 x 10 -9 ,  
as = 1.479 x 10 -4  , 
a 6 = 3.0. 

p roper t i e s  at 1 1 0 0 ° F  and  the  un iax ia l  creep law given in tab le  3 were used.  The rma l  s t ra ins  were no t  cons ide red  

and  the re  were no  p las t ic i ty  effects .  

The  cases cons ide red  for  th is  p r o b l e m  are s u m m a r i z e d  in tab le  4. Figs. 1 4 - 1 9  show the  von  Mises effect ive  

stress (see eq. (3))  at t he  po in t  m a r k e d  A in fig. 13. P r o b l e m  case 1 in fig. 14 is de f ined  to be the  'basel ine  solu- 

t ion ' .  When  a = 0.0 ,  the  so lu t ion  resul ts  even tua l ly  b e c o m e  uns t ab l e  as At  is increased f rom the  basel ine  value.  

It is in te res t ing  to no t e  t h a t  a l t h o u g h  cases 2 and  3 (figs. 15 and  16) are in i t ia l ly  inaccura te ,  the  basel ine so lu t ion  

is a t t a ined  as t ime  increases.  When  a = 0.5 and  1.0, the  so lu t ion  results  are s table  for  At  = 5000 .0 ,  wh ich  is signi- 

f i can t ly  larger t h a n  the  values possible  w i t h  a = 0.0.  However ,  b o t h  so lu t ions  ini t ia l ly  oscil late a b o u t  the  basel ine  

so lu t ion ,  and  a l t h o u g h  a = 1.0 has  smaller  osci l la t ions ,  the  a = 0.5 case a t t a ins  the  basel ine  so lu t ion  at  an  earlier 

t ime.  

Table 4 
Problem cases for the creep of a thick-walled cylinder 

Case No. Integration Time step Number of subdivisions 
parameter (a) size (At) per time step (q) 

1 0.0 10.0 (0.0 ~ t ~ 100.0) 1 
100.0 (t > 100.0) 

2 0.0 100.0 1 
3 0.0 200.0 1 
4 0.0 500.0 1 
5 0.5 5000.0 1 
6 1.0 5000.0 1 
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4.3. Thermo-elastic plastic response o f  a thick-walled cylinder 

A thick walled cyl inder  was subjected to a constant  internal  pressure o f  3650 psi and a transient tempera ture  

distr ibution.  The mode l  o f  the cylinder is shown in fig. 13 and the tempera ture  dependen t  material  propert ies  are 

conta ined in table 3. Kinemat ic  hardening was used and no creep effects were considered.  The cylinder was at 

Table 5 
Problem cases for the thermo-elastic-plastic response of a thick-waUed cylinder 

Case no. Integration Time step Number of subdivisions 
parameter (a) size (At) per time step a(q) 

1 0.0 0.01 1 
2 0.0 0.05 1 
3 0.0 0.1 1 
4 0.0 0.2 1 
5 0.0 0.05 5 
6 0.0 0.1 10 
7 0.0 0.2 20 

a Time step subdivisions are of equal size. 
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800°F (reference temperature) at the start of  the transient and the radial temperature distribution was of  the 
form 

/Y- 0.16 ) 
r o = 8 0 0 + 3 0 0 r  ° ' 4 e x p l  0- .~  lnr  , r > 0 .  (141) 

Radial temperature profiles at various times are shown in fig. 20. 
The cases considered for this problem are summarized in table 5. Figures 21 to 25 show radial and circumferen- 

tial strain components (total and plastic) at the point marked A in fig. 13. Problem case 1 in fig. 21 is defined to 
be the 'baseline solution'. In contrast to the results for the previous two problems, increasing At when a = 0.0 
only causes the solution results to become more inaccurate. The growth of  an oscillating instability is not 
observed. When q > 1, a significant improvement in accuracy is obtained for all values of  At considered. 

5. Conclusions 

In this paper we have presented an efficient procedure for the finite element solution of  problems with thermo- 
elastic-plastic and creep behavior. We believe that it is an effective tool for engineering analysis. 

The material model used in conjunction with the solution procedure is based on the classical theories of  plasti- 
city and creep. All assumptions made in the derivation of  the material model are clearly stated and the model's 
range of  applicability is discussed. The solution procedure is based on a one-parameter integration scheme and can 
be made unconditionally stable. The requirements for unconditional stability are obtained from a thorough theo- 



78 M.D. Snyder, K.-J. Bathe / Thermo-elastic plastic and creep problems 

retical stability analysis. Numerical results are reported for three test problems. These results show the actual nume 
rical characteristics of the implemented procedure and it is concluded that they agree with the predictions of the 
theoretical stability analysis. 

We plan to obtain additional solutions using the procedure and to report these results at a future date. Since the 
whole development was carried out with the goal of providing engineers with a means for effectively solving practi- 
cal thermo-elastic-plastic and creep problems, we are also looking forward to exchanging experiences with other 
ADINA users. 
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Appendix A. Investigation of the properties of the matrix 

teat A = t + ~ ( E ~ L  t+AtKE--I~T t+At~E _ r+At~E[~-I 

Instead of dealing directly with t+AtA, we examine the expression 

b = ~ Y ~  rear A ~2~ , (A.1) 

where W is defined in eq. (107) and ~ is an arbitrary vector. It can be shown [20] that W t+Z~tA ~¢being negative 
definite is necessary and sufficient for t+AtA to be so also. 

Consider an arbitrary body subjected to surface tractions t+AtfS and body forces t+Atf" which cause an equi- 
librium elastic stress and strain field 
t+htff = t + h t c E x .  (A.2) 

We assume that we have a finite element representation of the body and interpret ~ as a supervector of the actual 
elastic strains at the element integration points. By eq. (103), 

~T~?  t+At~E~ = f x T  t+AtcE X dv 

o 

= 2Us e , (A.3) 

where Us e is the exact elastic strain energy [38,39,44]. In eq. (A.3), we have assumed that a sufficient number 
of integration points have been used so that the integration is performed exactly. In practice, this assumption is 
frequently violated and, indeed, it may not be possible to perform an exact integration numerically. Similarly, 
we find that 

N 

v v m=l v(m) 

where N is the number of elements in the finite element assemblage. 
Consider the virtual work principle [38-40,44] 

(A.4) 

ySeT do-- fi T ds + t+ tr" do, 
o $ u 

(A.5) 
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where 6u and 6e are arbitrary, kinematically-admissible variations. Once again noting eq. (103), Eq. (A.5) can be 
written as 

N N N 

6]~eT t+At O do = ~ f t~//T t+AtfS ds + ~ f 6u T t+Att'a do. (A.6) 
m=l o(m) m=l s(m) m=l  v(m) 

Since t+ato is in equilibrium with the applied loading, eq. (A.6) must hold for all admissible variations. Further- 
more, the equation must also hold when the finite element approximations [40,41 ] 

6u = H 8 U ,  (A.7) 

6e = BL 6 U (A.8) 

are employed. Thus, we obtain 

N N N 

~ f r n  BT~AtO fm f. : m=l ) L do = ~ H T t+Atfs ds + ~ H T t+AtfB dv t+atR (A.9) 
m=l  ) m=l  ) 

where t+tR is the work-equivalent, nodal point force vector. 
Substituting eqs. (A.3), (A.4) and (A.9) into eq. (A.1) results in 

b = t+atR T t+AtKE-1 t+At R _ 2Ues . (A.10) 

It can be shown for a linear elastic system [40,41] that 

t+AtR t+AtKE-1 t+AtR = 2Us a , (A.11) 

where Us a is the elastic strain energy of the finite element approximation. Since Usa is a lower bound to the exact 
elastic strain energy [38-40,44], it follows that b ~< 0. 

When b ~< 0, the matrix t+~tA is negative semi-definite. However, in most applications we find that U a < U~, 
due to the approximate nature of the elastic stiffness matrix. Then t+AtA is negative definite. 
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