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Abstract-The objective in this paper is to present some recent advances for the finite element analysis 
of automobile structures. These advances pertain to the development of effective basic finite element 
procedures and the efficient solution of large systems of equations. With these new procedures, it is possible 
to model much more accurately (and reliably) the actual nonlinear physical behavior of complex 
structures. The illustrative solutions given in the paper include the solution of a roof-crush problem that 
was solved appropriately, according to the actual physical situation, using implicit time integration 
(resulting practically in a static analysis). 0 1997 Elsevier Science Ltd. 

1. INTRODUCTION 

Finite element analysis procedures are now used 
abundantly in the automotive industries. Linear static 
and dynamic analyses are conducted in a routine 
manner and highly nonlinear analyses are also carried 
out with success. However, major advances are still 
in great need for certain linear and for complex 
nonlinear analyses. 

Considering linear analysis, one major concern is 
the efficient connection between CAD data, as 
created and used by the designer, and the finite 
element analysis process; a second concern is the 
creation of an appropriate mathematical model; and 
a third concern relates to the quality of the finite 
element solution of that model. Each of these areas 
requires significant further research and development 
efforts. 

Considering nonlinear analysis, the same advances 
are required and, in addition, important basic 
developments in nonlinear solution techniques need 
be sought. While, of course, these developments 
represent ongoing research efforts, major advances 
have already been achieved in the recent years. 

The objective in this paper is to review some 
developments that we have undertaken to enhance 
the possibilities for nonlinear analysis of automobiles. 
These developments fall essentially into two cat- 
egories: namely, firstly, we have developed various 
more-effective basic finite element procedures and, 
secondly, we have enhanced the solution of large 
systems of equations. These ingredients in the 
ADINA analysis system render it possible to solve, in 
a reliable manner, more complex problems than ever 
before. 

In the following sections, we first briefly describe 
our advances in basic finite element analysis 
procedures. These advances pertain to the reliable 

and effective solution of large strain-incompressible 
and elasto-plastic response, the large deformation 
analysis of shells, and the analysis of contact 
problems. We then focus on our developments for the 
solution of large systems of equations and the need 
for using static analysis or implicit dynamic analysis 
procedures when a slow process (such as roof crush) 
is to be analyzed. Explicit analysis procedures should 
not be employed for such solutions (although these 
are being used in practice because the implicit codes 
employed cannot solve for the slow motion response). 
In Section 4, we then present solution results in order 
to underline some of our theoretical observations and 
in order to demonstrate our advances in the field. We 
conclude in Section 5 that our new capabilities have 
significantly advanced the field. However, of course, 
important further enhancements are still very much 
sought. 

2. ADVANCES IN BASIC FINITE ELEMENT PROCEDURES 

For automotive nonlinear structural analysis, basic 
finite element procedures in three areas are of great 
importance and we have made significant progress in 
each of these fields: the analysis of (almost) 
incompressible media; the large deformation analysis 
of shells including composite shells and plasticity; and 
the analysis of contact conditions. In the following 
sections, we briefly describe our advances in each of 
these areas. 

2.1. Analysis of (almost) incompressible media 

The analysis of (almost) incompressible media, 
such as rubber-like materials, or metals in elasto-plas- 
ticity or creep, in plane strain, axisymmetric or 
three-dimensional conditions, should only be per- 
formed using elements that satisfy the ellipticity and 
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inf-sup conditions [l]. If these conditions are 
satisfied, the finite element discretization is stable and 
optimal. The usually-effective pure displacement- 
based finite element discretizations do not satisfy the 
inf-sup condition and a mixed method must be 
employed. Very powerful discretization procedures 
are based on displacement-pressure interpolations, 
which, when the appropriate displacement and 
pressure interpolations are employed, satisfy the 
elhpticity and inf-sup conditions. 

Let 6 be the space of displacement interpolations, 
Qh be the space of pressure interpolation, and Kh be 
given by: 

Kh = {vnlvh E K, div vh = 0} (1) 

Then the ellipticity condition is: 

a(v,,v,) 2 CIIIvhllz Vv,% (2) 

where a(.,.) is the bilinear form corresponding to the 
deviatoric strain energy and r is a constant, greater 
than zero and independent of h. The inf-sup 
condition is: 

q,, div V,dVol 
\Jvo/ / 

inf sup 
lI%I/ VA 

2p>o (3) 
(I&Q~ 56% 

where fi is a constant independent of h. 
These conditions are crucial to be satisfied for 

(almost and totally) incompressible analysis and are 
discussed at length in Ref. [l]. In addition, various 
elements are summarized in that reference which 
satisfy these conditions and provide reliable and 
effective discretization schemes. Simply using ‘a 
reduced integration’ scheme on a displacement-based 
formulation that has not been analyzed as a mixed 
method and proven to be stable and convergent is 
certainly quite inadequate. 

2.2. Large deformation analysis of shells 

The key ingredient in models for the large 
deformation analysis of thin shell structures is the 
finite elements used. As in the area of incompressible 
analysis, pure displacement-based elements are not 
effective and a mixed formulation must be used. We 
have developed the MITC she11 elements which are 
effective for thick and thin shell structures [1,2]. 
However, another required task for a successful shell 
analysis is the generation of a ‘valid’ mesh. In the 
automotive industries, geometrically complex thin 
shell structures need to be meshed and a valid mesh 
should satisfy the following requirements: 

l the mesh should be properly connected in all its 
parts; that is, unconnected regions or regions that can 
undergo rigid body motions are inadmissible; 

l for essentially flat or smoothly curved parts of 
the shell only the five natural nodal degrees of 
freedom should be assigned, whereas for intersec- 
tions, six nodal degrees of freedom need to be 
used. 

If the ADINA-IN pre-processor is employed, a 
valid mesh can be directly constructed using the 
automatic generation procedures available in the 
program. Therefore, in a linear analysis, no zero 
pivot elements will be encountered in the Gauss 
elimination solution, and in a nonlinear analysis 
reliable results are obtained. 

We should note that if the above requirements are 
not fulfilled in a linear analysis, the zero (or, due to 
round-off errors, very small) pivot elements may be 
simply interpreted to correspond to nodal degrees of 
freedom with no stiffness (after static condensation of 
the preceding degrees of freedom) which do not affect 
the response of the rest of the model. However, in 
nonlinear analysis, such degrees of freedom cannot be 
admitted because zero pivots shall correspond only to 
true physical instabilities. 

There is, in addition, another geometric require- 
ment that needs to be fulfilled in nonlinear analysis 
(and strictly also in a linear analysis): 

l the shell structure should not, in its initial 
configuration, unphysically penetrate itself or other 
media. 

A linear analysis will, in general, not detect such 
penetrations, but a nonlinear analysis that automati- 
cally searches for and includes contact conditions will 
detect them. A nonlinear solution is then still possible 
if the physical overlaps and interpenetrations are 
reasonable. However, they are frequently due to 
modeling errors and provide physically unrealistic 
conditions, in which case the nonlinear solution 
should be terminated. (Of course, the nonlinear 
analysis could simply be continued by ignoring 
these conditions, but then unrealistic results are 
generated.) 

Hence, it is clear that for nonlinear analysis, the 
finite element model must be established in a much 
more stringent manner than if only a linear analysis 
is to be pursued. 

2.3. Analysis qf contact 

In nonlinear analysis of automobile structures, 
contact conditions are frequently an important 
phenomenon to be included. Let g be the gap between 
two contacting media (for example, two thin shell 
components) and 1 be the magnitude of the normal 
component of the contact traction (compression 
being positive). Then the conditions for normal 
contact are: 

g 2 0; 1 2 0; gl = 0 (4) 
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where the last equation expresses the fact that the gap ~-f-~~l,~-l-~~limpliesli=O, 
must be zero when 1 is greater than zero, and vice PA Pi 

versa. 
Let t be the magnitude of the tangential component 

of the contact traction and zi be the magnitude of the 
PA 

(5) 

relative tangential velocity between the contacting 
media at the point considered; then, using Coulomb’s The solution of media in contact conditions therefore 
law of friction, the tangential conditions during entails the usual equations of analysis of the media 
contact are (with 1 > 0) plus the satisfaction of eqns (4) and (5). 

- 

ADINA Z 

PRESCRIBED 
DISPLACEMENT 

TIME 92.00 

ADINA 

Fig. 1. Analysis of stiffened panel: (a) mesh used; (b) collapsed state at imposed displacement of 1.5 m. 
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We have develdped, in ADINA, the constraint When solving mathematical models in the automo- 
function algorithm [l, 31, which can be used to solve tive industries, large finite element systems frequently 
very complex contact conditions, including contact need to be considered. If explicit time integration is 
of a surface onto itself. The solution algorithm has applicable and used, very large finite element systems 
been developed for static analysis or dynamic can be solved without great difficulties. However, a 
solutions based on implicit time integration. A key static or implicit time integration dynamic solution 
ingredient is that continuous and dzflerentiable can represent a significant task if complex nonlinear- 
(constraint) functions for any values of g, 1, ri and ities are present. Indeed, in many cases, finite element 
t/p,? are used to enforce the conditions of eqns (4) programs cannot be used to solve for the static 
and (5). In our implementation, we employ a response because convergence is not reached in the 
Lagrange multiplier method to impose the constraint iterations. Such a solution is then abandoned and a 
functions but, of course, a penalty method could be dynamic solution based on explicit time integration is 
used as well [l]. Because of the continuity of the pursued [4]. This dynamic solution is based on a 
functions, derivatives can be taken to obtain a simple forward integration without iteration and is 
Jacobian that can be incorporated into the stiffness much easier to obtain. 
matrix of the problem [l]. However, full quadratic However, explicit time integration is really 
convergence is frequently not obtained, because the designed for dynamic wave propagation problems 
models of the contact surfaces are not sufficiently and an integration time step which is smaller than or 
smooth. equal to the critical time step needs to be employed. 

To use explicit time integration in a reasonably 

3. SOLUTION OF LARGE SYSTEMS OF EQUATIONS 

The finite element analysis process consists of 
solving the governing equations of a mathematical 
model pertaining to the physical situation [l]. If the 
physical process corresponds to a static situation, 
then clearly the mathematical model should be a 
static model, while if the physical process corresponds 
to a dynamic situation (structural vibration or wave 
propagation) then the mathematical model should be 
a dynamic model. In other words, the actual physical 
situation should be accurately represented in the 
mathematical model which is solved using finite 
element procedures. 

effective manner for an essentially static physical 
situation means, in fact, that the mathematical model 
must be changed. The calculated data may then have 
little resemblance to the actual physical response 
sought. Also, valuable analysis information that is 
calculated in a static analysis, such as bifurcation 
points, cannot be obtained when using explicit time 
integration (see Section 4.1). 

During recent years, significant improvements in 
the nonlinear finite element procedures for contact 
conditions, large deformations, and elasto-plasticity 
have been accomplished (see Section 2) and, in 
addition, iterative solvers, sparse matrix solvers and 
parallel processing techniques have been developed. 

RESPONSE GRAPH 
0. 

-c3 IMPLlCrr TIME INTEGRATION, Vd2.5 mrrJs 

6. 

-a+ STATIC-LDG 

0. 
0. 

X-DISPLACEMENT, [mm] 

Fig. 2. LoadAsplacement curve of stiffened panel; static analysis and implicit dynamic results. The static 
solution has been obtained with the load-displacement-constraint (LDC) method. 
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. 

Fig. 3. Response curves calculated in analysis of stiffened panel using explicit time integration assuming 
larger speeds of displacement application. 

We have reported earlier on the capabilities of the 
iterative solvers in the ADINA system [S]. The sparse 
solvers and paraIIeI processing techniques have 
been implemented since that time and represent 
further significant advances. The sparse solvers are 
available for the solution of the simultaneous 
equations in static and implicit dynamic analyses and 
for frequency solutions. This solution approach is 

particularly effective for the analysis of shell 
structures as encountered in the automotive indus- 
tries, because iterative techniques are then frequently 
not sufficiently effective due to the bad conditioning 
of the coefficient matrix. 

Considering the parallel processing in ADINA, the 
procedures have been implemented for shared 
memory machines and for all phases in the analysis: 

Fig. 4. Response curve using explicit time integration assuming artiticially high mass density. 
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Fig. 5. Shell model of fuel tank 

the element stiffness calculations, the assemblage of 
the element matrices and the equation solution. 
Together, the sparse matrix and parallel processing 
technologies can decrease the solution times drasti- 
cally when solving large systems. Since significant 
improvements in the convergence characteristics of 
the nonlinear finite element procedures have also 
been obtained (see Section 2), it is now frequently 
possible to perform, in an effective manner. static 
analyses or dynamic analyses based on implicit time 
integration as dictated bj% the actual physics of the 
problem. There is no need to forcibly use explicit time 
integration. We demonstrate these achievements in 
the next section. 

4. ANALYSIS CASES 

We present in this section the results of some 
analyses that underline our theoretical observations 
and illustrate the analysis capabilities. We refer the 
reader also to Refs [ 1. 31. 

4.1. Analysis oJ’ sr!ffened punel 

Figure 1 shows the model of the stiffened panel 
considered. (This is actually a panel of a ship 
structure.) The steel panel has a dimension of 
4.20 x 10.81 m and a thickness of 0.006 m and is 
simply-supported along all edges. The model consists 
of four-node shell elements, which can represent the 
large deflection and elastic-plastic behavior. A 
collapse analysis of the panel is sought when the 

x-displacement at one end is prescribed slowly. 
namely at 12.5 mm s - ‘. We present this example 
analysis to illustrate that a static analysis, for the 
physics considered, provides (of course) the appropri- 
ate solution and, in addition, is also computationally 
more effective than an accurate explicit dynamic 
solution. 

Figure 2 shows the response calculated statically. A 
characteristic of the load carrying capacity is the 
sudden and very significant decrease in load at about 
I6 mm displacement. There is also a bifurcation at 
about 28 mm, which may, however, not be significant 
in practice. A total of 90 incremental steps were 
carried out for the static analysis to 80 mm. 
Figure l(b) shows the static results at a prescribed 
displacement of 1.5 m, just to indicate that the static 
solution could be obtained with ADINA to very large 
deformations. 

Figure 2 also shows the response calculated in an 
implicit dynamic analysis when applying the actuat 
velocity of 12.5 mm s -I. The time step At was 0.05 s 
and a total of I28 steps were used. We note that the 
calculated response is very close to the response 
obtained statically. 

Fable I. Solutton times in analysis of fuel tank. Computer 
used: SC1 Power Challenge; no. of eqns = 154,186 

Solution time per step (10 steps total) 

II min 7min 18s 4 min 28 s 3 min 54 s 
I processor 2 processors 4 processors 6 processors 
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ADINA 

Fig. 6. Finite element shell model of car, also showing the rectangular rigid contact surface causing 
crushing. 
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ADINA TIME 15.00 2 
I 

ADINA TIME 20.00 

1 ADINA TIME 34.10 

l-l@. 7. Crushed contigurat!ons of the car model at dIRerent levels of deformations. to about 18 in of crush 
deflection. 
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Fig. 8. Load-displacement curves for car. Experimental and ADINA results. 

For an explicit time integration solution, the 
(approximate) critical time step size is At,,i, = 10m6 s 
and, hence, for a velocity of 12.5 mm s- ‘, about 
6400,000 steps would need to be used to calculate the 
response to 80 mm. This would require too-large 
computational resources and, hence, we calculated 
the response when the velocity of the prescribed 
displacement application was 1250 mm s-I and 
12,500 mm s - ’ . The number of time steps was 64,000 
and 6400, respectively. Figure 3 shows the calculated 
response. It is seen that the predicted response is very 
different from the actual required physical response 
(corresponding to 12.5 mm s- ‘). 

Regarding the solution times used, we note that the 
static and implicit dynamic solutions and the 6400 
steps explicit dynamic solution did not require a 
significantly different solution effort, but the explicit 
dynamic solution using 64,000 steps, which is still 
highly inaccurate, was much more expensive. 

Figure 4 shows the response calculated when we 
increased the mass density (quite artificially) by a 
factor of 106, so that the critical time step size 
increased by a factor of 10’. Of course, such an 
increase in mass density is quite inappropriate and 
the calculated response is again far from the response 
sought (but is close to the response obtained with the 
increase in velocity of the prescribed displacement to 
D = 12 500 mm s-l). Clearly, this study shows that 

the explicit solution is quite inappropriate for this 
problem. 

4.2. Analysis of fuel tank 

Figure 5 shows the fuel tank shell model 
considered. The model was generated by translating, 
and adding to, a NASTRAN input deck of shell 
elements for an ADINA nonlinear analysis. The 
ADINA model consists of MITC4 shell elements, 
includes contact conditions, large deformations and 
plasticity, and comprises over 150,000 equations. The 
model was loaded statically with an acceleration of 
1 Og vertically. 

We include this example analysis here because we 
wish to show that large nonlinear analyses can now 
be performed quite effectively. The solution of this 
model was obtained in 10 incremental steps, with 
Newton-Raphson iterations in each step. An SGI 
Power Challenge machine was employed and Table 1 
summarizes the solution times used for the model 
depending on the number of processors employed. 
We see that using four processors, the complete 
nonlinear analysis is obtained in less than one hour 
of solution time. 

4.3. Analysis of roof-crush problem 

The motor-car shell model shown in Fig. 6 is a 
RADIOSS (an explicit code) model that we have also 



890 K. J. Bathe et al. 

run using ADINA. The sheet metal parts are modeled 
with single layered MITC4 shell elements. 

The windshield is modeled with multilayered 
MITC4 shell elements using a glass-PVB-glass 
stacking, which can fracture. The joint between the 
windshield and metal frame and a large number of 
spot welds are modeled using spring elements. Hinges 
and locks are modeled with constraint equations. The 
bottom of the car representation is fixed in all 
displacements. 

The model was loaded with a rigid plane at its left 
corner slowly (at a speed of 0.05 km h -- ‘) crushing 
the motor car shell. The analysis represents an 
actual laboratory test, where we assume that the 
testing device can be represented as a rigid surface 
submitted to prescribed displacements. In the 
analysis, contact between the car body and testing 
device and between the car parts themselves using a 
self-contact option is taken into account. In the sheet 
metal parts, large deformations and plasticity are 
included. 

The complete model consists of 296,273 equations 
that were solved incrementally using a full Newton- 
Raphson iteration in each step. Implicit time 
integration was used, but because the speed of load 
application (crushing by the rigid plane) was very 
slow, the analysis corresponds to an almost static 
solution. The test required crush deflection of 
180 mm (about 7 in) was reached using the automatic 
time stepping algorithm in ADINA in about 24 h of 
solution time on a Power Challenge machine (with 
four processors). Figure 7 shows some deformed 
configurations of the shell model. 

Figure 8 gives the ADINA calculated force-deflec- 
tion results and compares these with experimental 
results and an explicit time integration solution 
reported using the RADIOSS program. We can 
make some interesting observations regarding these 
results. Note that the experimental results give a 
stiffness prior to collapse (slope of the curve at 
displacements smaller than the collapse displace- 
ments) that is substantially smaller than the stiffness 
calculated using ADINA and RADIOSS. The 
explanation for this difference is that the finite 
element model solved does not include the complete 
right side of the structure. Instead of including this 
part of the structure, the model was fixed at the 
level of the doors, making the model substantially 
stiffer. 

On the other hand, the collapse loads calculated in 
the finite element solutions are quite close to the 
experimental result. The reason for this good match 
is that the finite element model was tuned by the 
analysts using RADIO% to obtain this good 
comparison; for example, the windshield was not 
fully bonded to the frame around its complete 
perimeter. The fact that the ADINA solution of the 
RADIOSS finite element model is even closer to the 
experimental collapse load than the RADIOSS 
solution is, perhaps, just fortuitous. 

In this analysis, the reported RADIOSS explicit 
and the ADINA implicit solution results are not very 
different. However, we refer to the analysis results 
shown in Figs l-4 to emphasize that explicit time 
integration must be used with great care in the 
analysis of slow dynamic (i.e. almost static) response 
calculations, for example, when local or global 
post-buckling phenomena with decreases in load 
carrying capacity are present. Such decreases in load 
carrying capacity may be totally missed in explicit 
time integration leading to an unconservative design. 
This consideration is particularly important when 
seeking an optimum design, because relatively small 
changes in geometry, thickness and boundary 
conditions may result in significant response differ- 
ences [6]. 

This solution illustrates that large models in the 
automobile industries can now be solved according to 
the actual physical situation-here, an almost static 
solution was obtained as dictated by the physics. 
There is no need to solve this type of problem using 
explicit time integration, which generally requires a 
change in the physical situation to allow a reasonably 
effective solution and can lead to missing important 
physical phenomena in the analysis. 

5. CONCLUSIONS 

The objective in this paper was to present some 
recent advances in finite element capabilities for the 
analysis of complex automotive structures. These 
advances are significant and pertain to various basic 
finite element procedures-namely, an effective 
contact algorithm, powerful shell elements and 
plasticity solution algorithms-and pertain to new 
equation solving procedures and parallel processing. 
For an effective advanced nonlinear analysis, all these 
capabilities are important and must work efficiently 
together. With these capabilities, it is now possible to 
solve complex physical situations significantly more 
effectively and also more reliably than is frequently 
recognized in practice. In particular, implicit dynamic 
or static solutions can be obtained for a physical 
situation of slow motion when, previously in other 
authors’ works, the analysis conditions were changed 
artificially to obtain an explicit dynamic solution. We 
demonstrated in this paper that such an explicit 
solution can be significantly in error, and also 
computationally more expensive than the appropriate 
static or implicit dynamic solution. 
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