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AN EFFICIENT ALGORITHM FOR ANALYSIS OF 
NONLINEAR HEAT TRANSFER WITH PHASE CHANGES 

w. DONALD ROLPH I I I ~  AND KLAUS-JURGEN BATHE$ 

Department of Mechanical Engineering, Mavachusetty Institute of Technology, Cambridge, Massachusetts, U S.A. 

SUMMARY 

A new, simple and effective finite element procedure is presented for the practical solution of heat 
transfer conditions with phase changes. In this method, a fixed finite element mesh is employed, and a 
relatively coarse finite element mesh and large time step can be used in the incremental solution. The 
results of various numerical studies using the algorithm are presented that demonstrate the effectiveness 
of the procedure. 

INTRODUCTION 

Finite element analyses of heat transfer processes can be valuable in various areas of engineering 
design. In this paper we are concerned with the analysis of temperature distributions and heat 
flow when phase changes take effect. A problem of this kind is also referred to as the Stefan 
problem.' Practical applications are encountered in the analysis of the formation of ice, 
permafrost conditions and welding problems.'-3 

The basic difficulty in the finite element modelling of heat transfer problems with phase 
changes lies in that the transformation between phases is accompanied by either absorption 
or liberation of latent heat in the phase transition zone. The physics of the problem leads to 
a temperature solution with discontinuous temperature gradients at  the phase transition surface. 
To date, several authors have used analytical, finite difference and finite element methods to 
analyse such problems,'-'' but for practical analysis the use of a finite element method appears 
to be most promising. Of the procedures presented, the technique of Ichikawa and Kikuchi""* 
is attractive because of its stability and accuracy characteristics. A disadvantage of the method 
is that it requires the use of a freezing index as the state variable, instead of temperature, 
which means that the procedure cannot easily be added to existing conventional finite element 
computer programs for heat transfer analysis. 

A method that can directly be employed in conventional finite element computer programs 
is the procedure proposed by Morgan et ~ 1 . ~  However, this technique must be used with care, 
because €or a given phase change temperature interval AOf the time step used must be small 
enough that the change in temperature during one time step, in a region undergoing a change 
of phase, is less than A@ Hence, the procedure cannot be used in the analysis of a pure 
substance for which AOf is zero, and may require an unrealistically small time step in a practical 
solution. 

The objective in this paper is to present an algorithm that is very simple and effective for 
the analysis of nonlinear temperature conditions with phase changes. In the procedure we use 

t Research assistant. 
$: Associate Professor. 

0029-5981/82/010119-16$01.60 
0 1982 by John Wiley & Sons, Ltd. 

Received 8 October 1980 



120 W. D. ROLPH 111 AND K.-J. BATHE 

a fixed finite element mesh and relatively large time steps. Restrictions on the time step size 
and mesh configurations are greatly reduced by comparison with previously published methods, 
and no special conditions on the phase change temperature interval need be satisfied. Moreover, 
the procedure is easily implemented in conventional finite element computer programs for 
nonlinear heat transfer analysis. 

In this paper we first summarize the governing equations to be solved and then present the 
details of our algorithm for solution. Finally, we give the results of some sample solutions 
that demonstrate the effectiveness of the proposed solution technique. 

GOVERNING EQUATIONS, BOUNDARY AND INITIAL CONDITIONS 

The equation of conservation of energy considered in this study may be written in a Cartesian 
space as 

where 
-aq,/ax, + q * = p ~ e  

4, = -k,l ae/ax, 

(1) 

and 6 is the temperature, k,, are conductivity coefficients. The variables p, c and q B  are the 
mass density, the specific heat and the rate of heat generation per unit volume, respectively. 
It should be noted that in equation (1) the thermal properties can be a function of position 
and temperature. 

Considering a three-dimensional body, see Figure (l), the following boundary conditions 
may be specified: 

Specified temperature. The temperature can be prescribed at a specific surface of the body, 

Specified heat flux. The heat flow input may be prescribed at specific points or surfaces of 

(2) =qln l  

denoted by So in Figure (1). 

the body 
S 

i’ 

J 
X I  

Figure 1. Three-dimensional body under heat transfer conditions 
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where qs  is the heat flow input on surface S,  and the ni are the components of a unit vector 
n normal to the surface S,. 

Convection boundary conditions. Considering convection boundary conditions we have 

4’ = h(8, - 8 ” )  

and h is the convection heat transfer coefficient, which may be temperature-dependent, and 
8, and 8’ are the environmental and surface temperatures, respectively. 

Radiation boundary conditions. Considering radiation boundary conditions we have 

4 ” = K ( O r - 8 ’ )  

where 8, is the temperature of the external radiation source and K is a radiative coefficient, 

K = h,(8p + Os2)(8,  + 8’) 

The variable h, is determined from the Stefan-Boltzmann constant, the emissivity of the 
radiant and absorbing materials and the geometric view factors. 

boundary conditions must be satisfied at the phase transition interface: 
Phase change interfaces. In the case of a phase change (of a pure substance), the following 

8 = 0, 

Aqs d S  = *pL - 
dt  

( 3 )  

where Of, p, L are the phase change temperature, mass density and latent heat per unit mass 
of the material currently converted, and V is its volume. Equation ( 3 )  states that at the 
interface Sf separating the phases heat is liberated or absorbed at  a rate proportional to the 
volumetric rate of conversion of the material, dV/dt, and that this heat must be balanced by 
the heat flow Aqs from the interface. In equation ( 3 )  the plus sign is for the case of liberation 
of heat (solidification) and the minus sign is for the case of absorption of heat (melting). 

In addition to the boundary conditions the initial temperature distribution must be given 
in a transient analysis. 

FINITE ELEMENT FORMULATION 

For finite element analysis it is necessary to write the governing equations in integral form, 
and then develop an incremental step-by-step solution. In the following exposition, we use 
the notation and procedures already defined in References 13-15. We assume that the 
conditions at time t have been calculated, and that the temperatures are to be determined 
for the time t +At ,  where At is the time increment. Using the Galerkin procedure and implicit 
time integration the heat flow equilibrium equations for the three-dimensional body considered 
at time t + At are 
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where the superscript t + A t  denotes 'at time t + A t ' ,  S means 'arbitrary variation in the 
temperatures that satisfy the temperature boundary conditions', 

and, using conductivity principal co-ordinate directions, 

k = F 1  k22 0 i ]  
0 k 3 3  

In equation (4), S, and S,  are the surface areas with convection and radiation boundary 
conditions, respectively, and r + A r Q  is the 'virtual work of the external heat flow input to the 
system at time t + At'. The quantity t+ArQ includes the effects of surface heat flow inputs, q , 
internal heat generation, f+A'q B, temperature-dependent heat capacity, c,  and latent heat 
effects, '+ArQI. Hence 

r+Af S 

t+Ar 

Equation (4) is a nonlinear equation in the unknown temperatures of the body. The equation 
is solved effectively by linearizing it about the conditions at time f, and then discretizing the 
incremental equations using isoparametric finite element  procedure^.'^" * Considering a given 
finite element mesh, the resulting finite element equations are in a modified Newton-Raphson 
iteration 

Q k + "  (6) ( r K k  + rKc + rKrIA8(t)  = t+ArQ(r) + t+A.fQc(I-1) + t+AtQr(r-1)  - r+At 

where 'Kk, 'K' and 'K' are the conductivity, convection and radiation matrices, respectively; 
are the nodal point heat flow vectors and the vectors t + A r Q c ( l - l ) ,  '+" 

corresponding to convection, radiation and conduction effects, respectively. Also, the nodal 
point temperatures are given by 

Qr(1- 1 )  and t + A I Q k ( l - 1 )  

r+At ( I )  t+At  ( I  1) 8 = 8 - +he"' 

f+Ar 8 ( I )  = te+e(" e(1) = Ae") 
1'1 

and the nodal point heat flow input vector is 

(7) 

where r+AfQit - l i  is a result of the latent heat effects and is calculated as described in the 
following section. 

The modified Newton-Raphson iteration in equation (6)  has been used extensively without 
convergence difficulties, but the iteration may be accelerated using a full Newton or quasi- 
Newton iteration.16 

Considering equation (6) with f + A t Q j r - l )  not included we note that these equilibrium relations 
are the usual equations solved in finite element analysis of nonlinear heat transfer. The equation 
can be solved effectively using the a-method of time We discuss in the next 
section how t+ArQjl-'i is evaluated to include in a simple and effective manner the effects of 
phase changes when Euler backward integration (i.e. a = 1) is utilized. 
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EFFECT OF PHASE CHANGE 

The essence of our procedure is to construct the latent heat flow vector in equation (8) using 
the enthalpy of the system 

r t A r  r+Ar 

f+ArH = I,{ I, pic7@ dr  + p L  dr} d V  (9) 

Typical relationships between the enthalpy and temperature are shown schematically in 
Figure 2. In our scheme, the heat flow due to latent heat at node k, r + A r Q ( ' p l )  [.k , is calculated 
by defining Ql,total,k to be total latent heat flow available at  node k (where Ql,total,k is &/At 
integrated over the contributory nodal volume), 0;' to be the ith approximation to the total 
temperature increment at node k from ' 0 k  to and considering pure substances and alloys 
as follows: 

At the beginning of each time (load) step i = 1, rtArQjT = 0 

I 

0 
L 

w I liquidus temperature e ,+Ae ,  
l 
I 

0 
L 

w I liquidus temperature e ,+Ae ,  
l 
I 

I H'pLipcA8, 
F h a r e s i t i o n  

I I 
region 

- 1  / '  
I . -ppAp-  A 

e n t h a l p y  t i  

i '  
Figure 2(b). Enthalpy-temperature relationship foi an alloy with phase transition temperature interval greater than 
zero. The latent heat L and constant heat capacity c are defined to correspond to the total enthalpy increment during 

phase transformation 
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Pure substance (A@ = 0 )  
Case (a); temperature is outside phase change: 

r t A t  ( I )  ‘6k and @ k  <of 

(J!’ = *:I 

AQ;:; = o 
Case (b); temperature passes through phase change temperature: 

l 0 k  = 0, 

‘0k and o‘,“  SO^ 
or 

‘ + A f  

where the volume integration is performed over the volume vk associated (in a finite element 
sense) with node k, untii 

c A@: = *Qi,totai,k 

where we sum over all iterations (and + is for solidification, while - is for melting) and for 
cases (a) and (b) we have 

t+Ar ( I )  0k = ‘0k + (Jt) 
r + A i ~ ( t )  - r + A r ~ ( t - l )  +AQ!~: 

1,k - 1.k 

Alloy substance (A@ > 0 )  
Case (a); temperature is outside phase change temperature interval: 

‘Ok < of and t+ArOL) < 0, 

or 
‘ 0 k  > 0, + A0f and r+At  0 k  ( I )  > 0 f + A 6 ,  

then 
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Case (b); temperature passes through phase change temperature interval: 

O, 6 ‘ok =S Of + AOf 
or 

r+At ( I )  
‘Ok and O k  s o f  

or 
( + A t  (i) 

fOk > 0, + Aof and O k  =ZOf+AOf 

then 

where the volume integration is performed over the volume Vk associated (in a finite element 
sense) with node k, and 

until 

1 fQi.totai.k 

where we sum over all iterations (and + is for solidification, while - is for melting) and it 
should be noted that the specific heat is assumed constant (as defined in Figure 2b) during 
phase transformation. For cases (a) and (b) we have 

!+At ( I )  
o k  = ‘ o k  + i;) 

t+Ar ( I )  - t + A f  ( i -1)  + A ~ i ; ;  
Q1.k - Qi,k 

The algorithm for alloy substances reduces to the algorithm for pure substances when 
A@ = 0. These constraints enforce nodal temperatures passing through the phase transition to 
reach a temperature consistent with the amount of latent heat liberated or absorbed. Our 
procedure is quite simply implemented using a diagonal heat capacity matrix (which uncouples 
the nodal enthalpies), a vector for accumulating latent heat liberated or absorbed, and a vector 
storing the total latent heat available at each node. 

It should be noted that both the heat flow balance and enthalpy conditions are explicitly 
imposed in this formulation. The finite element mesh and time step size for a specific analysis 
can therefore largely be chosen by considering the accuracy predicted on the temperatures 
when phase changes are neglected. In particular, as noted in the sample solutions, the phase 
change front may advance over several elements in a single time step, and the phase front 
location is predicted accurately with a relatively coarse finite element mesh and relatively 
large time steps. 

SAMPLE SOLUTIONS 

We have incorporated our algorithm for predicting the propagation of a phase change front 
into the ADINAT computer program and analysed a variety of problems. In the following, 14 
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we present the solution of two test cases analysed previously by a number of researchers. In 
the first two analyses A@ = 0 which represents a physical condition not readily modelled with 
the algorithm of Morgan et aL8 In the third analysis A @ =  10°F. In all analyses the Euler 
backward time integration scheme ((Y = 1) and lumped heat capacity matrices were used.13 

Solidification of a semi-infinite slab of liquid 

The uniform infinite slab of liquid is considered initially at zero temperature as shown in 
Figure 3. At time t = O+,  the temperature of the surface of the liquid is reduced to -45°F 
and maintained constant. The conductivity, specific heat and density of the liquid and solid 
phases are assumed equal and constant. The problem was, for example, considered earlier by 
G. Comini et ~ l . , ~  Morgan et al.' and Ichikawa and Kikuchi." 

v ( i n s )  

MATERIAL PROPERTIES 

k = l  08 Blu / i n  sec°F 

p L =  70 2 6 B l u / i n 3  

p c =I. B t " / , " 3 - O F  

o f = -  I O F  

F IN ITE ELEMENT MODEL 

* - - = = = : ; .  
8 o r  32 EOUALLY SPACED ONE- /J DIMENSIONAL TWO NODE ELEMENTS 

5 0 = - 4 5 O F  

Figure 3.  Model for analysis of the solidification of a semi-infinite slab of liquid 

In our analysis we used different finite element models and time steps. Figures 4 and 5 
show the 8 and 32 element solutions, respectively, when using different time steps, At. It is 
noted that in all analyses the freezing front position is very accurately predicted, even with 
the 8-element model and the time step At = 1 sec. However, for an accurate prediction of the 
temperature, a finer finite element discretization and smaller time step At need be employed. 
The temperature oscillations obtained are similar to those observed in the analysis of wave 
propagation problems, and are due to the fact that all latent heat for the material lumped at 
a node must be released or absorbed before the nodal temperature is allowed to vary. We 
should also note that, in the analyses, the phase change front advanced over a number of 
elements per time step. 
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Solidification of a corner region 

The corner of a uniform infinite container carrying a liquid with initial temperature Oi and 
freezing temperature 6, is considered (see Figure 6). At time t = O+, the temperature of the 
surface, OS, is reduced to a temperature lower than the freezing temperature and is maintained 
constant. The thermal conductivity, specific heat and density of the liquid and solid phases 
are assumed equal and constant. The solution for the temperature and the position of the 

I 

p L  ; 8, = O  ABf = O  p = p c  I l9,-8Sl k = p t  = I ,  

Figure 6. Model for solution of solidification of corner region 

phase transition surface depend upon the values of fils, Oi and p assumed. The values assumed 
in the two analyses performed are: 

1. Liquid initially at the freezing temperature: 
S 8 =-1 8 ; = 0  p=1.5613 

2. Liquid initially at a temperature higher than freezing temperature: 
S e =-I 8;=0-3 p=o.25 

This problem was analysed previously by Budhia and Krieth,6 Comini et a1.,8 Morgan et ~ 1 . ~  
and Ichikawa and Kikuchi." 

Figures 7-10 give the solutions obtained. We note that the same basic observations regarding 
the performance of our algorithm are applicable as in the solution of the solidification of the 
slab of liquid (previous section). 
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I .5 

8 .  1.5613 

a = I .  
t = _I 

At =.02 

8, = 0 

/ 
/ I 1' 

0 .5 I .  1.5 2. 

- -1.0 -.5L . 5  y /m I. 1.5 

( b )  

Figure 8. Solidification of a corner region, p = 1.5613: (a) non-dimensional phase front position; (b) non-dimensional 
temperature profile along y = z 

Solidification of a semi-infinite slab of liquid with A@ = 10°F 

This problem is essentially identical to the problem described earlier and in Figure 3, with 
the exception that the phase transition temperature interval is now 10°F. Two models were 
analysed using ADINAT; a model of eight equal elements with a time step At = 0.2 sec and 
a model of 32 equal elements with a time step At = 0.1 sec. The temperature response predicted 
at x = 1 in. into the slab using these models is shown in Figure 11. 

An analytical solution to this problem could not be established and, therefore, an alternative 
numerical solution based on the integration of the enthalpy as suggested by Atthey and by 

was performed. In this solution the basic equations used were 

'+A'H='H+'QAt-'K'8At 

?+At 0 = f('+A'H) 

where the temperatures are obtained from the temperature-enthalpy relation (Figure 2). 
Figure 11 also shows the response predicted in this alternative numerical solution with 64 
elements and a time step A t  = 0*0001 sec. We observe that the results predicted with our 
algorithm in ADINAT using 32 elements and a time step At = 0.1 sec, are close to those 
obtained by integrztion of the enthalpy. 
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CONCLUSIONS 

A simple and effective procedure for the analysis of nonlinear transient thermal problems 
including phase change effects has been presented. The procedure is based on iterating with 
both the enthalpy and the heat flow in the phase transition region. The method allows the 
use of a relatively coarse finite element mesh and relatively large time steps, and allows the 
use of a phase transition temperature interval of zero, for a pure substance, or greater than 
zero for an alloy. Our current experience with the algorithm indicates that the finite element 
mesh and time step size for a specific analysis including phase changes can largely be the same 
as those used in the analysis of the problem neglecting phase change effects. However, a 
detailed theoretical analysis of the algorithm would be very valuable. The procedure is readily 
incorporated into existing finite element computer programs for nonlinear heat transfer 
analysis. 

ACKNOWLEDGEMENTS 

We would like to thank Sam Levy, General Electric Corporation R. and D., Schenectady, 
New York, for some stimulating discussions during the course of this research. We are grateful 
for the financial support of this work by the GKSS Forschungszentrum, West Germany and the 
ADINA users’ group. 

REFERENCES 

1. J. Stefan, ‘Uber die Theorie der Eisbildung, Insbesondere Uber die Eisbildung in Polarmeere’, Ann. Phys. Chem., 

2. J. A. Wheeler, ‘Simulation of heat transfer from a warm pipeline buried in permafrost’, Esso Production Research 

3. H. D. Hibbitt and P. V. Marcal, ‘A numerical thermomechanical model for the welding and subsequent loading 

4. A. Friedman, ‘The Stefan problem in several space variables’, Trans. Amer. Math. SOC., 133, 51-87 (1968). 
5. G. H. Meyer, ‘Multidimensional Stefan problems’, S.Z.A.M. J. Numer. Anal., 10, 522-538 (1973). 
6. H. Budhia and F. Krieth, ‘Heat transfer with melting or freezing in a wedge’, Znt. f. Heat Muss Trans., 16, 

7. D. R. Atthey, ‘A finite difference scheme for melting problems’, J. Znst. Math. Applics., 13, 353-366 (1974). 
8. G. Comini, S. Del Guidice, R. W. Lewis and 0. C. Zienkiewicz, ‘Finite element solution of non-linear heat 

conduction problems with special reference to phase change’, Znt. J. nurn. Meth. Engng, 8,613-624 (1974). 
9. K. Morgan, R. W. Lewis and 0. C. Zienkiewicz, ‘An improved algorithm for heat conduction problems with 

phase change’, Znt. J. nurn. Meth. Engng, 12, 1191-1195 (1978). 
10. J. T. Oden and N. Kikuchi, ‘Finite elememt methods for certain free boundary-value problems in mechanics’, 

in Moving Boundary Problems (D. G. Wilson, A. D. Solomon and P. T. Boggs, Eds.), Academic Press, 1978. 
11.  Y. Ichikawa and N. Kikuchi, ‘A one-phase multi-dimensional Stefan problem by the method of variational 

inequalities’, Znt. J. num. Meth. Engng, 14, 1197-1120 (1979). 
12. N. Kikuchi and Y. Ichikawa, ‘Numerical methods for a two-phase Stefan problem by variational inequalities’, 

Znt. J. num. Meth. Engng, 14, 1221-1239 (1979). 
13. K. J. Bathe and M. R. Khoshgoftaar, ‘Finite element formulation and solution of nonlinear heat transfer’, J. Nucl. 

Eng. Design, 51, 349-401 (1979). 
14. K. J.  Bathe, ‘ADINAT-A finite element program for automatic dynamic incremental nonlinear analysis of 

temperatures’, Report AVL 82448-5, Dept. of Mechanical Eng., M.I.T., May 1977 (rev. Dec. 1978). 
15. K. J. Bathe, Finite Element Procedures in Engineering Analysis, Prentice-Hall, Inc., N.J., 1981. 
16. K. J. Bathe and A. P. Cimento, ‘Some practical procedures for the solution of nonlinear finite element equations’, 

J. Cornp. Meth. App l .  Mech. Eng., 22, 59-85 (1980). 
17. D. R. Atthey, ‘A finite difference scheme for melting problems based on the method of weak solutions’, in 

Moving Boundary Problems in Heat Flow and Diffusion (J. R. Ockendon and W. R. Hodgkin, Eds.), Clarendon 
Press, Oxford, 1975. 

18. S. Levy, General Electric Corporation R. and D., Schenectady, New York, personal communication on research 
efforts performed during late 1960s. 

42,269-286 (1891). 

Co., presented at 74th Nat. Mtg A.I.Ch.E., New Orleans, Louisiana, March 11-15, 1973. 

of a fabricated structure’, Computers Struct., 3, 1145-1174 (1973). 

195-211 (1973). 




