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ABSTRACT

An infinite element based on the doubly asymptotic
approximation (DAA) for use in finite element analysis of
fluid—structure interactions is presented. Fluid finite
elements model the region near the solid. Infinite elements
account for the effects of the outer fluid on the inner
region. The DAA-based infinite elements involve an
approximate calculation of the added mass using static
mapped infinite elements, plus a consistent damping term.
Simple test analyses for a range of fluid properties
demonstrate the performance of the solution technique.
The analyses of a Helmholtz resonator (open pipe) and a
circular plate in water indicate the practical use of the
solution approach.

INTRODUCTION

Fluid—structure interactions affect many systems of
industrial importance, and as a result much effort has
gone into the development of finite element techniques for
coupled fluid—solid systems. In numerous applications,
such as offshore structures under earthquake loading,
machinery vibrating in air, or pressure waves striking
submarines, the fluid may be modelled as inviscid,
irrotational, and of infinite extent. Modelling a sufficiently
large region of fluid becomes too expensive for extended
time analyses, and alternative approaches must be found.

From an engineering point of view, we would like to
have a method which gives ‘good’ solutions for direct time
integration, with the possibility of extending the method
to include resonant frequency analyses. In addition, the
method should fit the structure of general finite element
codes, result in symmetric coefficient matrices, and should
not increase the matrix bandwidths significantly.

Many approaches have been explored. Zienkiewicz et
al! review various methods. Mei? reviews techniques
applied to water waves. We briefly discuss two of the
major approaches below.

One widely used approach involves transforming the
transient problem to the frequency domain. The infinite
elements developed by Bettess and Zienkiewicz? fall into
this category, since the assumed shape functions include a
wave-like behaviour at a particular frequency. Astley*
introduced wave envelope elements which also have
inherent frequency dependence, but give better far field
predictions. Boundary element or integral formulations,
such as those developed by Wilton®, Aranha et al®, or
Zienkiewicz et al.” typically involve solutions in the
frequency domain. If the transient solution is desired,
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however, a frequency solution is not necessarily the most
straightforward approach.

Another frequently used approach is based on the use of
the doubly asymptotic approximation (DAA). In this
technique, the infinite fluid is modelled as the sum of
two effects—the plane wave approximation at high
frequencies and the added mass approximation at low
frequencies. Felippa® rigorously derives the DAA and
higher-order approximations (DAA2 and others) from
Kirchhoff’s retarded potential formulation. Geers®
developes the DAA for fluid—structure interactions and
Underwood and Geers!® explore its use for soil-structure
interactions. Vasudevan and DiMaggio!! compare the
DAA and DAA2 with other approximations. Zilliacus'?
implemented the DAA in the finite element code ADINA.
These workers used the DAA to replace the entire infinite
fluid region. Based on their experience with the DAA
applied at the solid boundary, Nielson et al.'* suggested
using the DAA as a boundary condition on a small region
of fluid near the structure.

We chose to apply the DAA as infinite elements which
model the fluid far from the structure, while using finite
elements near the solid. For the plane wave portion of the
DAA we develop a consistent damping matrix. The added
mass is approximated by static ‘mapped infinite elements’,
(Bettess and Bettess'* give an excellent review of the
extensive research in static infinite elements, and we refer
to their paper for a detailed discussion of the origins of
these elements.) This DAA infinite element approach may
be used for direct time integration of dynamic response. It
affects matrix bandwidth very little, and in the solution
may simply be considered as a new element type.

In the next section of the paper we present the
governing continuum mechanics equations that we use,
followed by the corresponding finite element matrix
equations. Sample solutions using the infinite element are
given later. These numerical studies demonstrate the
applicability of our solution approach.

GOVERNING EQUATIONS

Figure 1 shows the general fluid—structure interaction
geometry. Solid extends throughout region S. The fluid
region F represents the portion of the fluid which will be
explicitly modelled, while the outer region O contains
fluid which will be modelled using the doubly asymptotic
approximation. The interface between the inner and outer
fluid regions is denoted by E, while the fluid—structure
interface region is L.

Solid
As discussed in our earlier paper!®, the principle of
virtual displacements for the solid region is:

IETCss dS+ fpﬁTﬁ dS= .[ﬁ”f' dI (1)

where g=strain tensor,
C,=material stress—strain matrix,
p =density of solid,
u=displacement vector,
f' = surface (interface) force vector,
X =virtual x (e.g. virtual strain).

At the fluid-structure interface (I), the surface forces
consist of externally applied forces (f*) and forces due to
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Figure 1 General fluid-structure interaction
geometry

the fluid (f*). The fluid forces arise due to the pressure in
the fluid. Expressing the fluid pressure in terms of the fluid
velocity potential (¢) gives:

fF = NP qsl (2)

where n"=[nn,n,]
=unit outward normal from solid,
pp=density of fluid.

Substituting (2) into (1) produces:

Jszs ds +fpﬁTii dS=Jﬁ”fA dI+

pr iTng' dI (3)
which is the governing virtual work equation for the solid.

Fluid
The ‘principle of virtual potentials’ for the finite fluid
region may be expressed as'>:

1 _
fﬁ PoPodF— |7 Pu dF+pr Py dF -
%% $$dF—Jva$-V¢ dF = JFO“N dI +
J.Prfﬁ uydl + JPF‘EE o0 dE @

where P,=hydrostatic pressure in the fluid
B =bulk modulus of fluid,
uy=normal displacement at fluid boundary.

We note that the effect of the infinite fluid region has been
introduced as the boundary condition of prescribed
velocity on the boundary E (just as for the boundary
condition on the solid-fluid interface I). The surface
normal points into the finite fluid volume. For a bounded
fluid region, we would retain the hydrostatic pressure
variable. However, the hydrostatic pressure in an infinite
fluid region cannot change, hence we can set P to zero in
(4) without loss of generality. In addition, the normal
displacement of the fluid boundary must match the
normal displacement of the solid at the fluid—structure
interface, so that u,=n"u". This gives:
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“ g dr - jppvé-wdhjm&nw ar+

a E
JPF&E (3i dE ®)]

We model the behaviour of the outer fluid region usmg
the doubly asymptotic approximation. We can write:

%E $($d0+ J‘PFV(5‘V¢ do= pré_E_ dE 6)

where we note that the normal points out of region O, into
region F. In the low frequency limit, we have only the
added mass effect,

a E
Jvady.vqsdo: prﬁE% dE W)

Although the integration over O covers an infinite region,
the value of the integral is finite (since it represents the
kinetic energy in the fluid). In the high frequency limit, we
make the plane wave approximation:
a E a E
%= b oot ®)
pr On

where /B/p¢ is the speed.of sound in the fluid. This yields:

ff¢E¢EdE frrﬁ":—dE ©)

In the doubly asymptotic approximation, we superimpose
these two effects to find:

_ . L 0gF
Jva¢-v¢dO+J %¢ é dE=pr¢E—a"%dE (10)

Finally, we substitute this expression for the surface
integral (over E) into (5) to give:

—J%z (ﬁtﬁdF—J‘\/% PEPE dE—Jwv$-v¢ dF —
vad?-vd) dO=Jde;'nTi1‘ dI (11)

Equation (11) forms the virtual work expression for the
fluid.

FINITE ELEMENT DISCRETIZATION

Figure 2 shows the finite element discretization of the
problem. The solid is modelled using ordinary solid finite
elements, while the fluid is modelled with potential-based
fluid finite elements. At the interface between the fluid and
the structure we have fluid-structure interface elements.
For the outer fluid region, we form infinite elements.

Element matrices

As described in our previous paper'®, the element
matrices for the solid finite elements (Kgs and Mg) are
formed in the usual way. The fluid elements generate the
matrices Ky and M. Fluid—structure interface elements
contribute the matrices Cgg (these are not damping
matrices), which couple the fluid to the solid.

For the infinite elements (Figure 3) we must evaluate
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Figure 2 Finite element discretization

Figure 3 Typical two-dimensional
infinite element

two terms, the damping term:

Ip= J \/% $EPE de (12)

where de denotes integration over the element surface e
(we now use lower case letters to denote element integra-
tions) and the added mass term:

Iy =’JPFV(5'V¢ do (13)

We derive the expressions for a typical 4-node two-
dimensional infinite element below.
For the damping term we write:

y*=Hy (14)
H=[00H,H,] (15)
Hy=(1-n)2
H,=(14+1n)2
Y =[y1y2¥3¥4] (16)

where y£ = y-coordinate of a point on the boundary E
y; = y-coordinate of node i

Similarly,
F=Hz (17)
and

¢*=H¢ (18)

This allows us to write:

1 3
CI=J \/% H'H det JSdr (19)
-1

where det J* = \/ (dy/dr)? +(dz/dr)? for the damping term.
Note that the integration is over the boundary only.

We could evaluate the added mass in many ways, but
we choose to use static ‘mapped’ infinite elements'.
Within the infinite element, we use the interpolations (h)
for the nodal point variable ¢, but we use a different
interpolation (N) for the nodal coordinates y and z. The
nodal variable interpolations become:

¢=h¢ (20)
h="[h; hyh3h,] (21)
h1=H4(1_32) h2=H3(1"52)

hy=—H4s(1—5)/2 hy,=—H,s(1—5)/2

Note that the nodal interpolations chosen imply that ¢ is
zero at infinity (ie. at s=+1). The coordinate inter-
polations for this particular element become:

y=Ny (22)
z=Nz 23)
N=[N;N,N;N,] (24

l+s 1+s
NF(T:;)*“ N2=<ﬁ§>H3

-2 -2
Ny={—ZV\H,  N=(=2\H,

1—s5 1-s

These coordinate interpolations have the two key features
that at any node i, y=y; and z=z; and that at s=+1, y
and z go to infinity. Now we can write:

1 M
K,= j J pr(d T'D)'(J Dy )detddrds  (25)
1

where
Oh, 0hy dhy Ohy,

or or or or

Oy hy Oy b
Os 0s Os 0s

and

dy 0z

or or

dy 0z

Os Os
The new coordinate interpolations N only affect J, and
Gauss quadrature may be used to approximate the
integral for K,.

Reference 14 gives more details about the derivation of
these static infinite elements. One point must be
emphasized here. The combination of the coordinate and
nodal point variable interpolations is chosen so that:

¢=~a/l+b/I*

where | is a decay length (and a and b are constants
determined from the ¢;’s). If we create an element which
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Figure 4 Infinite element with pure y-
direction decay

decays only in the y direction (see Figure 4)
Ixy—2y;+y,

We can adjust this length by adjusting the location of
node 1 with respect to node 2. For a decay length =y we
choose y,=2y,. Excellent results have been obtained
using this static infinite element!*.

The same approach can be employed to implement six
node two-dimensional elements with a parabolic inter-
polation in the r-direction, and three-dimensional elements
which are infinite in the t-direction. We have implemented
these elements in the program ADINA (version ADINA
8419),

Matrix equations

After assembling contributions from each type of
element (i.e. solid, fluid—structure, finite fluid, and infinite
fluid elements), we obtain the following matrix equations:

v Jelle Sl
% crwlela] e

MX +CX+KX=R 27

This matrix equation occurs frequently in finite element
analysis. We are using the Newmark method and the
Wilson—8 method for the direct time integration'”’

or

EXAMPLE ANALYSES

In the examples which follow, we perform transient
analyses of fluid—structure interactions for problems
where the infinite extent of the fluid is important. In all
cases, we have used the 6 node infinite element (for its
superior resolution in the r-direction) with 3 point Gauss
quadrature. The matrix equations were integrated in time
using Newmark’s method with §=0.5 and «a=0.25 (the
trapezoidal rule).

Simple test cases—evaluating the DAA

For our small displacement analyses, the accuracy of
the doubly asymptotic approximation depends on
whether the pressure oscillations striking the infinite/
finite element boundary are high-frequency waves, low-
frequency waves, or intermediate frequency waves. We
can express this using a dimensionless parameter’®:

n=wl/c

where w = characteristic frequency of motion of the solid,
=characteristic length to boundary where DAA
1s applied,
¢ =speed of sound in fluid=./B/pr

If n is large, the fluid behaves in a compressible manner
and the plane wave approximation is valid. If » is small,
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the fluid behaves nearly incompressibly and the added
mass effect dominates. In the ‘in-between’ region, we
expect the worst performance using the doubly asymp-
totic approximation.

Figure 5 shows the four test cases designed at nx0.1
(=10'° N/m?), n~1 (f=10% N/m?) and n=10 (B=
10° N/m?), here /=10m, to examine the performance
of the infinite/finite element technique using the DAA.
Figure 6 shows the mesh used for all four cases. Axisym-
metric elements generate the two spherical geometries and
plane elements give the cylindrical geometries. For the
sphere/cylinder which oscillates as a rigid body we
constrain the fluid—structure interface nodes to have the
vertical displacement of node 3, while for the breathing
sphere/cylinder cases we constrain the fluid—structure
interface nodes to have displacements normal to the
structure equal to the vertical displacement of node 3.
Notice that, in each case, the sphere/cylinder has a
characteristic mass and stiffness which gives it a resonant
frequency in vacuum of 316 rad/s.

In case one, we examine the sphere ‘breathing’ in the
infinite fluid, subject to a step in internal pressure at time
zero (the net force over the entire sphere is 106 N). We vary
the bulk modulus () to verify the doubly asymptotic

Infinite Fluid
m Infinite Fluid

Infinite Fluid

m Infinite Fluid

c) d)

Figure 5 Four test cases: (a) sphere breathing; (b)
sphere oscillating; (c) cylinder breathing; (d) cylinder
oscillating

Fluid

p,=1000 kg/m® 6-Node Infinite Elements

8-Node Finite
Elements

Node 3,
Concentrated

Mass = 10™ kg L
Truss Stiffness 10®Nm Fluid-Structure Interfoce Nodes
== Im —f=—Im—>f= 2m |

Figure 6 Mesh used for four test cases
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Figure 7a Sphere breathing. p=108
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For case two, we test the rigid sphere oscillating on a
spring in an infinite fluid. At time zero, we apply a step
force to the sphere (total force 10° N). Once again, we vary
B and plot the analytical (see Appendix B) and infinite/
finite element results. This time (see Figure 8) the results
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Figure 8a Sphere oscillating. f=10°
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Figure 8b Sphere oscillating. §=108
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Figure 7c  Sphere breathing. f=10'°

nature of the solution. As shown in Figure 7, however, the
solution for the sphere displacement appears to be exact
for all three values of B. Appendix A shows that a very
simple infinite/finite element model gives exactly the same
characteristic equation as the analytical solution for this
particular problem, regardless of the properties of the
fluid or the solid.
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Figure 8c Sphere oscillating. f=10"0
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Figure 9b Cylinder breathing. =108

are excellent for the cases = 10° and = 10'°, and good
for g=108.

The third test case consists of a cylinder breathing in an
infinite fluid. At time zero, a step in internal pressure is
applied (total force 10%/x N). Here we do not present an
analytical solution, but instead compare with numerical
solutions using large finite element meshes. We only
consider the cases f=10° and 10® N/m? because of the
large fluid region affected by pressure waves in the case of
f=10'° N/m2. The finite element mesh for = 10° N/m?
extends 4 m in the radial direction, while the mesh for =
108 N/m? has a radius of 22m. Both meshes are large
enough that the wave will not reach the edge of the
domain during the analysis time. The finite element
meshes have five 8-node elements/m in the radial direction
and four elements in the circumferential direction, which
gives the same number of elements/radial distance as the
finite portion of the infinite/finite element mesh in Figure
6. Figures 9a and 9b compare the infinite/finite element
solutions with the finite element solutions.

Finally, we test the infinitely long cylinder oscillating as
a rigid body in an infinite fluid, subject to a step in total
force of 106/n N. Figures 10a and 10b show the infinite/
finite element and finite element solutions for f= 10° and
108 N/m?. The same large finite element meshes as in test
case 3 were used. Figure 10c compares the infinite/finite
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element solution for the large bulk modulus (f=
10!1°N/m? with the analytical incompressible fluid
solution. In this last solution the frequency agreement is
good. Damping does not exist in the analytical incom-
pressible solution, although finite damping will occur for
any finite butk modulus.

\
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Figure 11 Open pipe geometry
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Figure 12 Infinite/finite element mesh for analysis of open pipe

For both cylinder test cases, a comparison of the
solutions obtained with the large finite element meshes
and the infinite/finite element meshes shows good
correlation in the predicted oscillation periods. The
damping predicted in the solutions shown in Figures 9a,
10a and 10b does not compare well, with the damping in
the infinite/finite element solutions being larger or
smaller.

Helmholtz resonator

To demonstrate the solution of a practical problem
using infinite/finite element techniques, we chose to
analyse a simple Helmholtz resonator. Figure 11 shows
the geometry considered: a short rigid pipe open at one
end and closed at the other end. Alster!® has investigated
the effect of the air outside the pipe on the resonant
frequencies of the system. Neglecting the outside air gives
an analytical frequency of 1700 Hz, while experimentally
Alster finds the first resonance at 1380 Hz.

Figure 12 shows the infinite/finite element mesh used to
analyse the pipe. We calculate the time response resulting
from an initial velocity potential of cos(nz/2L) (where L=
pipe height) inside the pipe, and a potential of zero outside
the pipe. Figure 13 shows the velocity potential at the
centre of the pipe bottom versus time. Figure 13 also
shows the same analysis performed using a large finite
element mesh (see Figure 14). We see that the infinite/finite

element results reproduce the large finite element results
well. Estimating the resonant frequency of the system
from Figure [3 gives a value of 1340Hz+ 5. This
compares well with the experimental value of 1380 Hz.

To identify the effectiveness of the infinite elements,
we analysed the time response of the finite element mesh
shown in Figure 15. This is the same configuration as in
the infinite/finite element mesh (Figure 12), but without
the infinite elements on the boundary. Figure 16 shows the
velocity potential at the centre of the pipe bottom as a
function of time. Clearly this approach does not produce a
good estimate of the system response.

Plate in water

Another problem of practical interest involves a
circular iron plate mounted (clamped) into an infinite wall
and exposed on one side to water (Figure 17). Lamb?°
examined this same system and estimated the resonant
frequency and damping rate based on a Rayleigh—Ritz
analysis of the plate and water. For this geometry and
material properties Lamb found a- plate frequency in

INFINITE/FINITE ELEMENT MESH

—-—  LARGE FINITE ELEMENT MESH
10 BE-81

5.0E-@1 -

T ; T T - T
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Figure 13 Transient response of open pipe

8-Node Finite
Fiuid Elements

Two Lcyors/ >
of Nodes

Figure 14 Large finite element mesh for analysis of open
pipe
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Figure 16 Transient response of open pipe. Study of small
finite element mesh results

vacuum of 1013 Hz, a plate frequency in water of 550 Hz
(w=3456rad/s), and a displacement decay of exp(—t/'c)
where 1 =0.0094 s.

Figure 18 shows the mesh used to analyse the plate in
vacuum. We find a fundamental frequency of 1005 Hz,
which agrees well with Lamb’s result.

For the plate in water, we first used the mesh shown in
Figure 19. We give the plate an initial displacement
corresponding to its first mode of vibration in vacuum,
and apply zero velocity potential in the fluid. Figure 20
shows the displacement of the centre of the wetted surface
of the plate as a function of time. Figure 20 also shows a
curve derived from Lamb’s analysis of the form:

d=Bcos(wt)e "

where J is the plate displacement (and B is the initial
value). The two curves agree quite well, both in damping
rate and frequency.

Figure 21 shows a mesh which uses only infinite
elements in the fluid. Figure 22 compares the time
response of this system to Lamb’s analysis. In this case,
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when we omit the fluid finite elements near the structure,
the infinite elements introduce too much damping and
increase the frequency. This suggests that it is, in fact,
better to model the region near the solid with finite
elements and treat the far region with infinite elements.

Finally, Figure 23 shows another choice for the infinite/
finite element mesh. Once again we achieve good results
for the transient response, as shown in Figure 24. This
indicates that the response of the infinite/finite element
system is relatively insensitive to mesh selection, so long as
the mesh chosen is reasonable.

7

wmer
= 1000 kg /m®
B 2. 059 x10° N/m?
— O

k\\\\\\\\\\\

Circular Iron Plate
Clamped Into  Wall

v=025
p = 7800 kg/m®
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Diometer O0.175 m

Inflnm Rigid Watlt
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Figure 17 Circular plate in water
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IR
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Figure 18 Finite element mesh for analysis of
plate in vacuum
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Figure 19 Infinite/finite element mesh for analysis of plate in water
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----- INFINITE/FINITE ELEMENT SOLUTION

LAMB’S APPROXIMATE ANALYTICAL SOLUTION
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Figure 20 Transient response of plate in water
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Figure 21 Infinite element mesh for analysis of plate in water

CONCLUSIONS

We have introduced a new implementation of the doubly
asymptotic approximation (DAA) for use in analysing
fluid—structure interactions. Fluid finite elements model
the region near the structure. To model the effect of the far
field on the fluid finite elements, we introduce ‘infinite
elements’ based on the DAA. This involves an approxi-
mate calculation of the added mass using static infinite
elements. Consistent damping matrices account for the
plane wave approximation in the DAA.

We chose this approach for several reasons. A number
of researchers have explored the DAA and concluded that
the DAA .represents an effective approximation for a
range of fluid—structure problems. With the approach of
modelling the region near the solid with finite elements,
we can also obtain good resolution near difficult contours.
From an implementation point of view we simply
introduce another element group into ADINA for the
infinite elements. The infinite elements do not increase the
bandwidth of the matrix equations significantly, and the
governing matrix equations remain symmetric and can be
directly integrated in time for transient analyses.

The simple analyses of a sphere and a cylinder vibrating
in a fluid given in this paper show excelient results for the

sphere. In the analyses of the cylinder, the vibration
periods are well predicted but the damping does not
compare well with the results obtained using standard
large finite element meshes. The solution of a simple
Helmbholtz resonator shows good agreement between the
numerical and available experimental results. Finally,
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Figure 22 Transient response of plate in water. Study of infinite
element mesh results
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Figure 23 Another infinite/finite element mesh for
analysis of plate in water
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infinite/finite element solutions for the frequency and
damping of a circular plate in water compare favourably
with an approximate analytical solution.

The proposed technique represents a valuable solution
approach for a variety of problems. However, further
studies are desirable regarding various items in the
formulation: the accuracy with which the damping of
fluid—structure systems is predicted, the use of different
order expansions in the infinite elements, the modelling of
the fluid motion in the infinite region with more sophisti-
cated approximations (e.g. the use of the DAA2 could be
explored), and the application of the solution technique to
more complex geometries. In this research, the test case of
the cylinder should be further studied to obtain more
insight into the response of the system and the effect of the
various assumptions. Finally, research into establishing
an effective eigenvalue solution technique for the matrix
equations derived would be valuable.
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APPENDIX A—SPHERE BREATHING

Analytical solution

The motion of the sphere and the fluid is purely radial in
the case of a ‘breathing’ sphere, and the wave equation for
the fluid reduces to:

18/ ,0¢\ 1%
P&(’zaﬁ‘zw 8

where r=radial coordinate and t=time. Let @ be the
Laplace transform of ¢ so that:

2
120 (r’ 0(I>>=s_z® 29)

ral\" o)

(¢ and d) are initially zero) which has the solution:

elsrio e ~lsrio)
D=4, " +A4, (30)
Since we want only outgoing waves, A, =0 and
e~ (srie)
®=4, (31)
r

At r=a (the sphere radius), we know that:
- 1
—=sX=4, s e ~sale) _ o~ (saje) —y (32)
or c a

where X is the Laplace transform of the radial sphere
displacement. Solving for the coefficient A4, yields:

—a?sX ealc)
A,= Zasac (33)
(1+sa/c)
so that:
—asX
lo=——7= (34)
(1+sa/c)
The governing equation for the sphere in the fluid is:
s*mX + kX =F + pps®|,(4na?) (35)

Here, F is the Laplace transform of the total applied force
(pressure times area), and pps® represents the fluid
pressure loading. The stiffness and mass of the sphere in
vacuum are k and m, respectively. Substituting from (34)
gives:

2

— 2 X pFS 3X
F=s"mX +k +_—‘(l+sa/c)47m (36)
or
4 3
i 1+s<g)+sz(g+&;i)+ss<kﬂ)
Tk VA RV
X
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c
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Figure 25 Simple infinite/finite element model of
breathing sphere

We find the solution for a step in applied force (pressure)
using the inverse Laplace transform.

Finite element solution

We propose a simplified finite element model for this
problem which has only three degrees of freedom (see
Figure 25). The governing matrix equation becomes:

I
HES MR

where Kprr=(K,;K,,—K,,K,,)/K,, is the effective
stiffness of the two node infinite element.

Evaluating the C matrix gives Crs= —4na’pyand C,=
4na’pe/c (both act over the total surface area of the
sphere). Exact integration of the K matrix for the
(spherical) infinite element yields:

7 -8
Kl=%PF7Ta[__8 16]

SO that KEFF=4pFna.
Performing the Laplace transformation of the matrix
(38) produces:

2
k+s*m 5Cgg X _ F (39)
SCFS —KEFF-SCI Q 0

I4521 +s2<T+-C§—S)+s3T£

or

sh
KEFF k kKEFF k KEFF
G

KEFF
With the values given previously,
C\/Kerp=ajc
Cé/Kerr= 47W3PF

=k (40)

F
X

145

which gives exactly the same result as the analytical
solution.

APPENDIX B—SPHERE OSCILLATING

Analytical solution

For outgoing waves, the solution which satisfies the
wave equation and the boundary condition at the sphere
2l
is?!:

—srjc
=4, <ﬂ+1>coso @1y
r ¢
where
—sXa3ewr
A= 5 42)
sa s’a
<2+2——+—2>
c ¢
This gives:
<ﬂ+ l) cos B
¢
Q,=—sXa—~—F—5+ (43)
sa s‘a
(275
¢ ¢

For the sphere in water, the governing equation becomes:
s*mX +kX=F+ fppsq) cosfdA (44)

or

sa
(2+1)
SmX +smX ———— L 4kX=F  (45)
1+S_a+1i
c 2 c?

where m'=(2/3)psna® (the added mass for the incom-
pressible fluid limit). Rewriting gives:

14s{ 2 )+s2 TJrﬁla—zﬁuﬂ'%
\e k22 k
F_k 3 m_‘i_m\la +s4 ﬁ_‘i
X S ke ke 2kc? (46)

a 2 142
1 s(z>+s (2c—2>

We find the solution for a step in force by using the inverse
Laplace transform on (46).
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