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ABSTRACT : In this paper an iterative finite element procedure is presented for the analysis of two-
and three-dimensional piezoelectric continua. The procedure is applied to the steady-state analysis
of two-dimensional media subjected to mechanical and electrical loading.

INTRODUCTION

N recent years much effort has been directed to the
Iresearch and development of new materials and asso-
ciated new technologies for structural applications. A par-
ticularly prominent area of research has been the area of
adaptive structure technology in which focus is given on the
possibility of designing and building active structures with
advanced distributed actuating and sensing capabilities
(Wada, Fanson and Crawley, 1989). To this end, several
types of materials such as magnetostrictive materials,
piezoelectric and electrostrictive materials, and shape
memory alloys are being tested in order to identify their
possible use in engineering practice as part of an “intelligent
structure”.

Piezoelectric materials have been particularly taken into
consideration for these kinds of applications because of
their capability of producing in a relatively easy way both
sensing and actuation.

Piezoelectric effects were discovered in 1880 by J. and P.
Curie. When a mechanical force is applied to a piezoelectric
material an electrical voltage is generated; this phenomenon
is referred to as the direct piezoelectric effect. On the con-
trary, the converse piezoelectric effect is observed when the
application of an electrical voltage produces strain in the
material. In these cases an energy transfer is observed from
mechanical to electrical energy or vice versa.

Piezoelectric materials have been widely used in trans-
ducers in several applications like strain gages, pressure
transducers and accelerometers. The development of new
products like lead zirconate titanate piezoelectric ceramics
and low modulus piezoelectric films makes possible new
kinds of structural engineering applications. In fact with
these new piezoelectric materials it is possible to build com-
posite structures in which the piezoelectric material is per-
fectly bonded (or even embedded in the case of fiber rein-
forced plastic composite laminates) to the passive
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(traditional) structure (Crawley and de Luis, 1987). In such
an assembly both the actuating function (by means of the
converse effect) and the sensing function (by means of the
direct effect) can be performed, provided that appropriate
locations and geometries are chosen for the piezoelectric
part.

However, due to the rather complex nature of the physical
behaviour, analytical and numerical methods for the analy-
sis of piezoelectric materials are not yet fully developed.

One of the principal issues in the modeling is of course
the coupling of the mechanical response with the electrical
response; namely, the equations of mechanical equilibrium
and continuity are coupled through the constitutive equa-
tions with the corresponding electrical equations. Also the
physical behaviour of a piezoelectric material is frequently
governed by a nonlinear constitutive equation so that a non-
linear mathematical model has to be established (Crawley
and Lazarus, 1989).

For piezoelectric materials, a sound mathematical con-
tinnum model for the linear case has been established
(Tiersten, 1969; Mindlin, 1972a; IEEE, 1987), and several
analytical studies have used this model in mechanical vibra-
tions of rods, plates and shells (Mindlin, 1972b).

Elements of a nonlinear theory have also been developed
(Maugin, 1988). On the computational side, some finite ele-
ment developments have been presented for the linear case
(Tzou and Tseng, 1991; Lerch, 1990) based on the approach
proposed by Allik and Hughes (Allik and Hughes, 1970). In
this model the displacements and electrical potential are
used as nodal unknowns. Recently, several numerical and
analytical studies were performed on composite structures
in which the piezoelectric part is bonded or embedded in a
traditional structure or in a fiber reinforced plastic laminate
(Crawley and de Luis, 1987; Im and Atluri, 1989; Wang and
Rogers, 1991; Hagood and von Flotov, 1991; Ha, Keilers and
Chang, 1992).

This paper describes a fairly simple finite element proce-
dure that can be used to model the electro-mechanical cou-
pled behavior of piezoelectric continua and that can also be
used in a general nonlinear incremental finite element solu-
tion. The proposed technique is based on establishing
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separately the finite element equations for the mechanical
response and the electrical field. In this way the response
for the converse and for the direct piezoelectric effects are
solved. In order to fully account for the electro-mechanical
coupling an iterative procedure is used. The procedure is
demonstrated in the paper by the solution of some two-
dimensional problems.

THE GOVERNING EQUATIONS
OF PIEZOELECTRICITY

In this section the equations of the linear theory of piezo-
electricity for the steady state case are briefly summarized
(Tiersten, 1969).

Let us consider a piezoelectric body in three-dimensional
space. The body occupies a region V bounded by a surface
S with an outward unit normal vector with components ;.
The following equations have to be satisfied in V:

Mechanical equilibrium equations

Ty, + f1=0 0Y)

Strain-displacement relations

(i + u;2) @

N[ —

€; =

Maxwell’s equations for the quasi-static electric field
D=0 3)
E. = -9, C))
Constitutive equations
Ty = Ciym€u — €xyEy )
D; = emen + &,E; ©)

where u; is the displacement vector, e, the strain tensor, 7,
the stress tensor, f7 the body force vector, ¢ the electric
scalar potential, D, the electric displacement vector, E, the
electric field vector, c;;, the elastic constitutive tensor, e,
the piezoelectric tensor, &,; the dielectric permittivity ten-
sor. All the indices range over 1,2,3.

The boundary conditions are:

Natural mechanical boundary condition on S;

Tyn; = fi (7
Natural electrical boundary condition on S,
n,'D,' =07 (8)

Essential mechanical boundary condition on S,

u, = uf ®
Essential electrical boundary condition on S,
¢ = ¢* (10)

where f7 is the surface force and ¢ is the surface charge.
For the boundary surface § the following relations hold:
S, US=8Sand S, NS=0S,US, =Sand S, N
S, =0
The constitutive equations are sometimes also written in
the form

€j = FypTu + dkijEk

(11)
D, = dytu + é’ijEj (12)

where F;, is the compliance tensor and d,; is the piezoelec-
tric (strain) tensor.

The following symmetries hold for the tensors that ap-
pear in the constitutive relations:

Cijki = Cjixi = Cruyj (13)
€rij = €xji (14)
Sy = & (15)

From Equation (3) it is clear that no body density charge
o* is assumed to be present in the piezoelectric material.

The complete set of governing differential equations con-
sists of 22 Equations (1)-(6) in 22 unknowns (i, €;, 7, 9,
E:, D;), with the relevant boundary conditions (7)-(10).

A smaller set of four differential equations in four un-
knowns can be obtained from Equations (1)-(6) in terms of
u; and ¢:

Comle,y + f? + iy P = 0 (16)
Cylhige — 80,5 =0 1

Equation (16) is the three-dimensional equilibrium equation
of the elastic body in terms of displacements with an addi-
tional term in which the piezoelectric tensor e;,; gives the
electro-mechanical coupling. Equation (17) has the form of
a divergence equation that describes field problems like heat
flow or seepage in which, due to the coupling, a displace-
ment dependent term is added.

If in Equation (16) we assume that the electric potential is
given throughout the body, the problem can be solved in
analogy with the usual approach for linear thermoelasticity,
by considering a new body force vector f#* instead of f?,
with

= f.B + ekij¢,kj (18)
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A similar approach can be used for the electric field equa-
tion if u, is assigned. The loading term in Equation (17) is
equivalent to a body charge density o%*, with

gf* = — Exiilhi jx (19)

THE FINITE ELEMENT EQUATIONS

Variational Principles

From Equations (1) and (7) that describe the three-
dimensional mechanical equilibrium of the body in the field
V and on the boundary S for each time ¢, the principle of
virtual work can be derived.

For every time # and for every possible choice of virtual
displacements &u, that are zero at and corresponding to the
essential mechanical boundary conditions (9), the following
relation holds (Bathe, 1995):

s 7;6:€5d"V = s feou.dV + s ‘fiouid'S,  (20)
T IV lsf

vV

where ‘7, is the stress at time ¢, 8.¢;, = [1/2(36u./dx; +
ddu,/3x,)] is the virtual strain corresponding to éu;, /f¥ and
*f{ are the body forces and the surface tractions at time ¢, ‘V
and *S; are the volume occupied at time ¢ and the corre-
sponding surface on which the tractions f¥ are prescribed
and du? is the virtual displacements on *S;.

In analogy with the principle of virtual work a principle
of virtual electric potentials can be stated as follows from
Equations (3) and (7). For every time ¢ and for every choice
of virtual electric potential 6¢ that is zero at and corre-
sponding to the essential electrical boundary condition (10),
the following relation holds:

s ‘D8, Ed'V = —s ‘g S8¢°d’S, 21
t IS’

v

where *D, is the electric displacement vector at time t,
8.E; = —(38¢/d'x,) is the virtual electric field correspond-
ing to 8¢, ‘o is the surface charge density, and 6¢° is the
virtual electric potential on the boundary surface *S, .

In these variational principles no restrictions on consti-
tutive relations are present (Bathe, 1995); consequently they
can be applied also for the case of material nonlinearity. In
Equations (20) and (21) in which no dynamic effect is con-
sidered, time is used as a convenient variable which denotes
different intensities of load applications and correspond-
ingly different configurations.

The Case of Linear Constitutive Relations

We now restrict the analysis to the case of linear consti-
tutive relations. If we substitute Equations (5) and (6) into
Equations (20) and (21) the following set of equations is ob-

tained:

s Cijktfklaf,'jdV - s ekijEk(SE.'jdV
14

v

= s fPou.dV + s fi6uids; 22)
14 M
s e,»k,eklﬁE,-dV + s é’,,E,(SE,dV = - s 056¢Sdsa
vV 14 So
23)

The same equations can be written also in matrix form:

s E7CedV — s €7eEdV

4 4

= j gV + S Ffeds, 24)
v S

,‘. EeedV + s ET¢EdV = —s 053 °dS, 25)
| 4 |4

So

Finite Element Discretization of the
Linear Piezoelectric Equations

We now formulate the generic finite element equations for
the variables 4 and ¢. For every finite element m of the
considered body we assume

U™ = }iﬁm)é pm = @m)? (26)

where u is the vector of nodal displacement and ¢ is the
vector of electric potential of the discretized body. By sub-
stituting Equations (26) into Equations (2) and (4) we obtain

em = ligm)y‘ E™ = B¢ 27

We can then obtain, following the classical procedure of
summing over all the elements:

E s BUTCBmAV g — E s B TeBgmdVm

m pim m

-I| B

m

HLm)TfB(m)dV(m) + E§ Hi(M)TfS(M)dS_f(‘M)
~ S/("') A

ylm — m

28

BBV i — L j

ym T m

By™TsBymdV ¢
pylm -

_}:s

m
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= E s ( )I_iﬁ‘"’ras‘“’dS§m’ (29)
gom

m

These equations can also be written in a more compact
form as follows:

kuti + kit = F2 + FS (30)
kouth + ko = F§ G1)
with:
k. = B"””CB‘""dV""’
- ; sv‘""

k — ﬁ — _Es B(M)T B(m)dV(M)
- V"")

m

= -2 | Byregave
m pimT e

Koo =

Fﬁ — Hs‘m)T B(m) JI/ (m)
zm: sy(m)_ f

"1y
T
I

E HSomTFstmggm
m s T T

m sém T

where k., is the mechanical stiffness matrix, k,, is the elec-
trical permittivity matrix, k,, is the piezoelectric matrix, F%
is the body force loading vector, F$ is the surface force
loading vector, F3 is the surface density charge vector.

An Iterative Approach for Solution

Equations (30) and (31) are, respectively, the finite ele-
ment expressions of the converse and the direct piezoelec-
tric effects. If we assume that in Equation (30) the potential
is given throughout the body, we can move the expression
k.s¢ to the right hand side and consider it as an additional
load vector. In this way the solution of Equation (30) gives:

U=kl (Fi + F5 — ki)
Here the influence of the displacement field on the elec-

tric field has been neglected, but the problem has now a
much simpler formulation.

The same process can be applied to Equation (31) as far as
the displacement contribution is concerned. If the displace-
ment field is known, an additional loading vector can be ob-
tained moving k. to the r.h.s. of the equation. The solu-
tion of the problem can be written as:

¢ = kb(FS — ket
Here the effect of the electric field on the displacement field
has been neglected.

In some cases it is possible to deal with the direct and
converse effects in a separate way but in general the cou-
pling between Equations (30) and (31) has to be fully taken
into account. A possible way to obtain the fully coupled
solution is to solve simultaneously Equations (30) and (31)
for u and ¢. Alternatively, an iterative procedure can be
adopted. Its steps can be briefly outlined as follows:

1. Solve Equation (31) assuming that 1_2 = 0, thus obtain
¢, E, and D;

2. Substitute the obtamed value for ¢ into Equation (30)
and solve for u €, T;

3. Substitute the value obtained for 1_2 into Equation (31);
again solve for ¢, E, and D.

4. Compare the values of ¢ obtained in step 3 with those
obtained in step 1, by evaluating whether the following
tolerance condition is satisfied:

(@ =@ V]| = 8

where 3, is a tolerance parameter;

5. Substitute again the value obtained for ¢, into Equation
(30) and solve for u, €, T;

6. Compare the values of u obtained in step 5 with those
obtained in step 2, by evaluating whether the following
tolerance condition is satisfied:

(Ju® —a® )/ |u®| < B,

where 3, is a tolerance parameter. If the above two con-
vergence conditions are not fulfilled continue with the
analysis, repeating steps 3 to 6, until the two tolerance
conditions are fulfilled.

A key advantage of this iterative approach is that already
existing finite element programs that solve classical solid
mechanics problems and field problems, like heat transfer,
can directly be used in a reliable way providing that the con-
stitutive law is modified.

This way both geometric and material nonlinearities can
directly be included, and also a reduction in solution time
may be accomplished. Of course the solution procedure
assumes that convergence is reached in a reasonable number
of iterations.
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The Case of Nonlinear Constitutive Relations

The relations (20) and (21) express respectively the
mechanical and electrical equilibrium at all times of in-
terest. In order to establish a general solution scheme for
nonlinear problems the development of incremental equili-
brium equations is necessary.

We aim to establish a procedure that is both iterative, in
the spirit of the discussion in the section, “An Iterative Ap-
proach for Solution,” and also incremental, dealing at every
iteration with the mechanical or electrical equilibrum.

Let us consider again Equation (20). We assume that the
conditions at time ¢ have been calculated and that the dis-
placements are to be determined for time ¢ + At¢, where
At is the time increment (note that in the steady-state case
time is a dummy variable). As far as electrical variables are
concerned, we use the last calculated values, that is to say,
the mechanical displacements are the only primary unknown
variables. Mechanical equilibrium is considered at time
t + At in order to solve for the displacements at time
t+ At

g C,—,ueuﬁe.-jdV = "AR — g 'T.~,~66,-jdV (32)

v v

where

"aR = s warfBoy.dV + s warfSsusds,  (33)
1 ls,

vV

In Equation (32) *7,; includes the last calculated value for the
electric field, see Equation (5). Equation (32) represents a
linearization of the mechanical response and the first step of
a Newton-Raphson iteration (Bathe, 1995).

Whereas the proposed expression for the mechanical
equilibrium equation allows to calculate the displacements
for every time step, assuming that the value of the electric
field is known, a similar expression can be written for
the electrical incremental equilibrium, assuming that the
stresses are known.

To that purpose let us consider now Equation (21). We
assume that the conditions at time ¢ have been calculated
and that the electrical displacements are to be determined
for timer + At, where At is the time increment. As far as
the mechanical variables are concerned, we use the last
calculated values, so that the electric potential is the only
unknown variable. Electrical equilibrium is considered at
time ¢ + At in order to solve for the electric potential at
timet + Ar:

.‘ 6y E;0EdV = —s "arg S6¢’dS, — s ‘D, 6E.dV
t s, .

| 4 4

(34

In Equation (34) ‘D, includes the last calculated mechani-
cal effect, see Equation (6).

In order to obtain a fully coupled solution of Equation
(32) and Equation (34) we proceed as follows: we first per-
form Newton-Raphson iterations on Equation (32) using the
last calculated value for the electric field in the calculation
of the stresses *4‘7{¥’ until at the k-th iteration

AR — s watr WeydV = 0 35)
v

We then move to Equation (34) and we use the last
calculated value the mechanical effect in the calculation of
the electrical displacements and we perform Newton-
Raphson iterations on Equation (34). At this stage an up-
dated value for **4*E, is available for solving again Equation
(32). This procedure is continued until convergence is
reached for both the mechanical equilibrium and the electri-
cal equilibrium at time ¢ + At

NUMERICAL RESULTS

In this section the results of two simple electroelastic
analyses for the linear case and for the case of nonlinear
constitutive equations are given in order to demonstrate the
capability of performing a coupled electro-mechanical anal-
ysis of 2D continua using the procedure described in the
section, “The Finite Element Equations”.

Analysis of a Two-Dimensional Beam under
Electrical and Mechanical Loading

Consider a rectangular strip of piezoelectric material oc-
cupying the region | x | </, | z| < h of a two-dimensional
space, as shown in Figure 1. The material has been polar-

Figure 1.
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Table 1. Data used in solution of problem in Figure 1.

Sy 0.1944444 E-4 mm?2/Newton
S13 —-0.083333 E-4 mm?/Newton
do - 5.0 Newton/mm?2

a1 2.0 E + 1 Newton/mm?®

Vo 1.0 E + 3 Volt

h 5.0 E-1 mm

day -1.8 E-7 mm/Volt

da; 3.6 E-7 mm/Volt

S 1.505 E-8 Newton/Volt?

ized along the thickness, that is along the z direction, and is
assumed to be transversely isotropic.
The governing equations of the two-dimensional plane-
stress problem are given in Appendix 1.
The following boundary conditions apply for the problem:
Atz = +h
o ==V

0.=0 Ta =0

Atx = =1
D, =0

0. =6 + 0z T.=0

The analytical solution of the problem is given in Appen-
dix 1.

Only one half of the structure is considered in the finite
element modeling due to symmetry with respect to the z
axis and the data in Table 1 are used. Both electrical and
mechanical simulations use a single 9 node element. The
iterative procedure converges to the exact solution in five
steps, since the values computed for stresses at step 5 are
equal to the values calculated at step 2. Some calculated
values for displacements, stresses, electrical potential, and
electrical displacements at the different steps are reported in
Table 2. In the same table the exact solution is also given.

Analysis of the Piezoelectric Actuation
of an Aluminum Structure

We now consider the experiments performed on an alumi-
num cantilever by Anderson and Crawley (Anderson and
Crawley, 1989). Two 2024 aluminum beam specimen are
examined. They have thicknesses of 3.21 mm and 1.59 mm,
each has a length of 356 mm and width of 51 mm. Two G-
1195 piezoceramic actuators with dimensions 63.5 x 25.4
X 0.254 mm were bonded to each of the upper and lower
surfaces of the beam at a distance of 25.4 mm from the
clamped end of the cantilever. A small strip was left free in
order to enable strain measurements.

The beam specimen were statically deformed by applying
an electric field in a direction normal to the middle plane of

Table 2. Convergence of displacements, electric potentials, electric displacements.

x z Woxact w® w® w@/w,, W w,,
1.0 0.0 -1.72916 E-4 ~1.94444 E-4 -1.72916 E-4 1.1244 1.0000
1.0 0.5 -5.22152 E-4 —5.54444 E-4 -5.22152 E-4 1.0618 1.0000
1.0 -05 1.56181 E-4 1.23889 E-4 1.56181 E-4 0.7932 1.0000
0.5 0.0 -0.43229 E-4 -0.48611 E-4 -0.43229 E-4 1.1244 1.0000
0.5 0.5 —3.92464 E-4 -4.08611 E-4 —3.92465 E-4 1.0411 1.0000
0.5 -05 2.85868 E-4 2.69722 E-4 2.85868 E-4 0.9435 1.0000
Uoxact u® u® u®/u,, u®u,,
1.0 0.0 2.62778 E-4 2.62778 E-4 2.62778 E-4 1.0000 1.0000
1.0 0.5 4.35694 E-4 457222 E-4 4.35694 E-4 1.0494 1.0000
1.0 -05 0.89861 E-4 0.68333 E-4 0.89861 E-4 0.7604 1.0000
0.5 0.0 1.31389 E-4 1.31389 E-4 1.31389 E-4 1.0000 1.0000
0.5 0.5 2.17847 E-4 2.28611 E-4 2.17847 E-4 1.0494 1.0000
0.5 -05 0.44930 E-4 0.34166 E-4 0.44930 E-4 0.7604 1.0000
¢onc| ¢(1) 4,(3) ¢(1 )/¢“ ¢(3)[¢ ox
1.0 0.0 29.9003 0.0 29.9004 E-4 0.0 1.0000

X z O xx exact (4 g) 4 g) g ,(&)/ Oxx ex 4 ﬁ')/ Oxxex *
0.887298 —0.387298 —-12.745966 —12.7460 -12.7460 1.0000 1.0000
0.887298 0.0 -5.0 -5.0 -5.0 1.0000 1.0000
0.887298 +0.387298 2.745966 2.74597 2.74597 1.0000 1.0000

D, oxact D(z" D(zs) D(z”/Dz ex D(zs)Ithx

0.887298 -0.387298 -0.292 E-4 -0.301 E-4 -0.292 E4 1.0308 1.0000
0.887298 0.0 -0.292 E-4 -0.301 E-4 -0.292 E-4 1.0308 1.0000
0.887298 +0.387298 -0.292 E-4 -0.301 E-4 -0.292 E-4 1.0308 1.0000
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Table 3. Comparison between experimental and
numerical results (e11 is evaluated at P; see Figure 3).

Thickness ¢ E; Microstrain Microstrain
mm Volt Voit/mm  Experimental Numerical
3.21 50 197.9 14.7 15.54

100 393.7 32.6 32.48
150 590.6 52.4 50.90
1.59 50 197.9 26.8 24.26
100 393.7 60.1 52.03

the actuators. In order to produce bending the actuators on
the top of the beam were subjected to a field equal in value
but opposite in sign with respect to the actuators on the bot-
tom. During the static deformation different levels of volt-
ages were applied, as reported in Table 3. For the corre-
sponding level of the electric field a nonlinear constitutive
relation in the piezoelectric coupling was shown to be pres-
ent (Crawley and Lazarus, 1989). In Figure 2 the ex-
perimental curve obtained for the in-plane strain versus the
normal component of the electric field of a free piezo-
ceramic specimen is shown (Crawley and Lazarus, 1989). In
the same figure the nonlinear constitutive relation used in
the numerical simulation is also shown. A quadratic inter-
polation has been used to model the experimental curve
(Anderson and Crawley, 1989).

A two-dimensional finite element analysis was performed
in the bending plane using 2D elements both to represent the
aluminum structure and the actuators. A portion of the mesh
close to the end of the actuators is shown in Figure 4(a).
Perfect bond was assumed between the actuators and the
structure.

Table 3 shows a comparison between the numerical pre-
diction obtained with 10 time steps and the experimental
results for the bending strain measured at point P (see
Figure 3 on the top of the structure). Different loading cases
are reported for the two considered thickness. In Figure 4(b)
the distribution of in-plane strain along the thickness is re-
ported for the case of beam thickness 1.59 mm and applied
potential ¢ = 100 volts.
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APPENDIX 1: A 2D CLOSED FORM SOLUTION

Consider a rectangular strip of piezoceramics occupying
the region | x | < I, | z| < h of a two-dimensional space,
as shown in Figure 1. The piezoelectric material has been
polarized along the thickness, that is along z direction.

The governing equations can be written as follows (Parton
et al., 1989):

D,.+D..=0 (36)

O+ T =0 7n+0,,.=0 37N

_ _9¢ _ _9
E.=—% E = - 9z (38)
du ow ou aw

& = o e,=‘é; 7,,=a—z+a (39

D, = ¢ E, + dis7e. D, = ¢3E, + dsi0. + dsso,

(40)
€& = $110, + 5130, + dy E, €. = $130; + 5330, + ds5;E,
Viz = SssTex T disE, 41

Here Equations (40) and (41) are the constitutive relations
derived for the plane stress case in the form of Equations
(11) and (12) of section 2.

Consider now the following boundary conditions:

Atz = =h
T = 0 42)

¢=:bVo U,=O

g, =0+ 012 T,=0 43)

For this problem the exact solution was given by Bori-
seiko et al. (Parton et al., 1989):

ds Vi
u = Su(ao - ;1 ho)x + sl — ki )oyxz (44)
1

( d33 VO)
W = 81309 — Z
S13h

2 2

Z X
+ 513(1 - k?)o’li - s“(l - k§1)017 (45)

_ z d3104 2 _ 2
¢ = Voh 2833 (h )
. V. ds, o V
E, = _70 — —i;s—lz D, = —-é’uf + ds00 (46)
O, = Ty, = Ex = DX = 0 (47)
with
d3 dssds,
k% = ——— k= —— 48
3t s11533 leé,JJ ( )
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