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Introduction

In the analysis of plane stress problems it is very often necessary to take
recourse to numerical methods. A conventional finite element analysis can give
s solution to practically any plane stress problem. In such analysis, the structure
is idealized as an assemblage of a large number of small elements. It can be
proved that, in general, the solution obtained will approach the exact solution
to the problem as the number of elements increases [1].

However, the continuum can in many problems be idealized as an assemblage
of a small number of large triangles and/or rectangles. This assemblage of
elements can be analysed by matrix methods provided the stiffness or flexibility
matrices of the separate elements can be calculated. In this paper a derivation
is presented of the stiffness matrices of large rectangular and right-angle
triangular plate elements. A stiffness matrix is calculated by simple matrix
manipulations with conventional finite differences (F.D.) equations.

In a conventional finite differences analysis, one F.D. equation is applied at
each point of a mesh laid upon the continuum, leading to a group of simultane-
ous equations. Once these equations have been solved, it is an easy matter to
calculate all stress components in the continuum.

. Generally the following difficulties may arise in the solution of plane-stress
problems by finite differences: '

1. It is difficult to take into account discontinuities in the structure.
2. In a direct F.D. solution of a plane-stress problem, the structure must be
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externally statically determinate. The boundary stresses are therefore known.
If the structure is statically indeterminate, the direct F.D. solution must be
supplemented by compatibility equations [2].

3. A conventional F.D. solution may require a large number of simultaneous
equations. It may be the case that due to round-off errors or the capacity of the
computer, a solution to the problem cannot be obtained.

The object of this paper is to show how the displacement method — as used
in the finite element analysis — together with finite differences can overcome the
difficulties mentioned above.

The plate structures considered may be of any shape, but shall have linear
boundaries. They may be supported in any manner and be subjected to in-
plane loading at their interior and along their boundaries. In the analysis, the
structure is idealized as an assemblage of large triangular and/or rectangular
elements (Fig. 1). The largest number of equations to be handled at a time are
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Fig. 1. Large element idealization of & plate.

either the F. D. equations used in the derivation of an element stiffness matrix
or the force-displacement relations of the assembled structure, whichever is
larger. Generally, the larger number of equations is required in the analysis
of individual elements and this number of equations is of course, much less than
what would be used in a conventional F.D. analysis of the complete structure.

The method presented here is developed to be used in the analysis of box-
girder skew bridges. An analysis of such structures by conventional finite
differences seems difficult if not impossible. On the other hand, a conventional
solution by finite element can become expensive because of the large number of
simultaneous equations involved.

If a single-cell box-girder skew bridge is considered as an assemblage of large
plate elements subjected to in-plane and bending forces, a solution by displace-
ment method can be obtained in which finite differences are used for the deriva-
tion of the element stiffness matrices.

This paper, deals only with the plane stress problem while the stiffness
matrices of plate elements corresponding to bending displacements are given
elsewhere [3].
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SzILARD used finite differences to derive the stiffness matrix of a square ele-
ment corresponding to two in-plane coordinates at each corner [4] or at the
mid points of the element edges [5]. No accurate results were obtained in two
test problems solved by the use of these elements. However, SZILARD suggests
that when an “optimum’’ number of elements is used the accuracy is improved.
The elements which are used in the present paper are rectangular or triangular,
the coordinates and the method of derivation of the stiffness matrix are different
from SziLARD’s approach. Further, the solution using these elements give
aceurate results.

Derivation of Element Flexibility and Stiffness Matrices

The typical rectangular and right-angle triangular elements 4 and B used
in Fig. 1 are shown again in Fig. 2. The F.D. meshes on the elements are chosen
such that mesh points on the common line between adjacent elements coincide
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a) Rectangular element A b) Triangular element B

Fig. 2. Examples of finite differences meshes used in the derivation of the flexibility and stiffness
maitrices of rectangular and triangular elements.

(Fig. 1). The adjacent elements are assumed to be connected at boundary mesh
points referred to as nodes and all external forces are applied at the nodes. At a
node, two degrees of freedom may be considered, representing in-plane dis-
placements normal and tangential to the element edge (Fig. 2). At a corner point
the two degrees of freedom represent displacements normal to the element

edges.
The differential equation to be satisfied at all points on the element is [2]:
*rd 2000 D

7 Vowap T = ®



64 AMIN GHALI - K. J. BATHE

where @ is the Airy stress funetion. This function is related to the stressesby the

equation:
2D
% =G (2)
2D
v = ®)
*P

Using central finite differences Eq. (1) to (4) applied at any interior mesh point
4 can be represented in the schematic form given below, in which the horizontal
and vertical lines represent F.D. mesh lines parallel to the # and y directions

respectively.
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A, and A, being the mesh intervals in the # and y directions (Fig. 2).
The boundary conditions at a point on a free edge parallel to the £-axis
making an angle y with the z-axis (Fig. 1) are:
(0p)a = (03)esin®y +(oy), cos?y + 2 (Uzy); siny cos y, (10)

(o'fn)a = (g,),Sinycosy— (a'y)e sinycosy+ (Uzy)e (00527 —sin® Y)s (11)
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in which the subscript a refers to the external applied stress and the subseript
e refers to the stress as calculated by Eq. (2) to (4). In the element analysis to
follow, Eq.(10) is satisfied at mesh points on the boundary while Eq.(11) is
applied at mid-points between the boundary mesh points. Let the number of
boundary conditions for the element be m, corresponding to m values of exter-
nal applied stress a,. .

Assume that an element is supported at any three non-parallel coordinates
and a flexibility matrix corresponding to % other coordinates is required.
Boundary forces {@} applied at the k£ coordinates are related to p external
applied stresses {o,} by the relations given in Fig. 3, which can be combined in
one matrix equation.

{oa}pxl = [O]pxk{Q}kxl ’ (712)

where p=m-3.

The three o,’s omitted from the m stresses in Eq. (12) represent the equi-
librants to the p-boundary applied stresses.

If a unit load is applied in turn at each of the k-coordinates the external
boundary stress matrix is

[o'a]pxk = [O]p)(k' (13)
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Fig. 3. Boundary stresses equivalent to concentrated forces. Thickness of plate = h.
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Using Eq.(10) and (11) combined with Eq.(6) to (8), the p boundary
stresses are related to the Airy stress function values at the mesh points by p
equations. These equations together with Eq. (5) applied at the interior points
lead to a group of simultaneous equations, which can be put in the form

{0
[A]an {(p}nxk i s

{Ga}p X1,

(14)

where r is the number of interior mesh points and » is the total number of mesh
points less three. Since the stress depends on the derivatives of ¢, any arbitrary
values for ¢ can be assigned at three points not-on a straight line. Let the ¢-
values at these three points be zero. Solution of Eq. (14) gives the ¢ values at
the other mesh points.

Using Eq. (6) to (8), the stresses o,, 0, and o,, at the mesh points on the
element can be calculated. Thus,

{ohs1a = [E]szXn{¢}nx1 . (15)

The element stresses corresponding to a unit load applied separately at each
of the k-coordinates is given by

[oulsixe = [E]slxn [B]nxk’ (16)

where [B] is obtained by solving for [¢] in Eq. (14) with the right-hand side as
follows:

[O]rxk
[A]nxn [B]nxk =y . (17)
[Clox
Let the stress matrix [c,] in Eq. (16) be subdivided as follows:
[owd]
[ouanae = | 72 |. (18)
[o'ul]

The elements of a typical submatrix [0,;]5.; are the stresses ¢,,0, and o,, at
mesh point ¢ due to the k-unit load cases.
Using the “unit load’’ theorem [7], the flexibility matrix of the element is

ek = 3, (4 A) (o0l 4] ] (19)

where (A4); = w; A Ay, (20)
B 1 —v 0

and , [d] =57 1 0 . (21)

0 0 2(1+v)
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E being Young’s modulus, » Poisson’s ratio, and 4 is element thickness. (4 4); is
an elemental area around mesh point 7 and equals A, A, for all interior points.
The multiplyer w; = 1/2, 1/4 and 1/8 for the typical boundary points D, E, F,
respectively (Fig.2).

Once the flexibility matrix of the element is calculated, the analysis of the
assembled structure may be carried out by either the force or the displacement
method. If the displacement method is chosen, the stiffness matrix of the
unsupported element is to be determined from [f]. (See ref. [7], p. 148).

The analysis of the assembled structure gives the forces {@} acting at the
boundary nodes of the elements. The stresses at all mesh points of an element
of the assembled structure are then calculated by the equation:

{o}srn = [au;‘slk{Q}kl' (22)

General Remarks

1. While displacement continuity is preserved in the interior of elements, on
the element boundaries, compatibility of displacements is achieved only at
the node points. Therefore, the number of these points should be sufficiently
large and the larger the elements the smaller the error caused by the idealization
of the structure to an assemblage of elements. Thus, in contrast to a conventional
finite element idealization, the structure should here be divided into the largest
elements possible.

2. Most structures can be idealized as assemblies of rectangular and tri-
angular elements. Sometimes, trapezoidal elements can conveniently be used,
as for example in the analysis of skew bridges. The same procedure given above
can be used for the trapezoidal element.

3. It is to be noted in computer programming that [4], [C] and [Z], are
sparse matrices and only non zero elements should be stored or generated when
needed.

4. It is possible to solve for ¢ values from a number of simultaneous equations
applied at the interior points only [2]. However, for easy computer programming,
the form in Eq. (14) was used.

5. Improved coefficients [8] can be used to form matrix [4] in Eq.(14)
instead of central finite differences. More accurate results can then be expected.

Application

Consider the continuous deep beam in Fig. 4, which has two equal spans L,
unit breadth and is of depth equal to the span. For the analysis, the beam is
considered as an assemblage of two equal elements connected at 7 node points
along F B. The F.D. mesh used to derive the element stiffness matrix is of size
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Fig. 5. Stresses in terms of g at sections DE and FB of the plate in Fig. 4.

A; = A, = L[6. Table 1 and Fig. 5 give the stresses calculated for a uniform load
of intensity g/unit area on the bottom side of the beam in the two spans and in
one span only. .

The same problem was solved by ScuLEEH [9]. He determined the stresses
of a statically determinate beam by a solution using Fourier series. To deter-
mine the statically indeterminate reaction at the central support, he treared a
continuous beam on spring supports as an idealization of the deep beam. His
extensive study shows that his method can be expected to give accurate results
for continuous deep beams with depth-to-span ratio smaller or equal to unity.
ScHLEEH’s results (see Table 1 and Fig. 5) are in good agreement with the results
of the large element analysis used in the present paper.
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Table 1. Stresses in terms of q for the deep continuous beam in Fig. 4

69

Section DE . Section F'B
Loading Y
oz oy Ozy Oz Oy Ozy
(-0.212)*
-Lj2 | -0.245 | 0.000 0.000 | -0.046 0.000 0.000
-L{3 | -0.180 | 0.054 0.004 | —0.031 | —0.055 0.000
-Li6 | -0.195 | 0.171 | -0.013 0.059 | -0.197 0.000
IL’;‘MFE‘ ad g (-0.237) | (0.367) (0.254) | (~0.471)
per unit & 0.0 -0.222 0.363 | —0.060 0.250 | -0.493 0.000
on ABC
L6 | -0.155 | 0.635 | -0.135 0.600 | -1.151 0.000
L3 0.236 | 0915 | -0.167 0.791 | -2.728 0.000
(1.858)
L2 1.280 | 1.000 0.000 | -3.201 | -5.894 0.000
(-0.364)
-Lj2 | -0.352 | 0.000 0.000 | -0.023 0.000 0.000
-L/3 | -0.236 | 0.065 0.027 | -0.016 0.038 | —0.118
_ -L/6 | -0.230 | 0.209 0.022 0.029 | -0.077 | -0.167
Uniform load g (-0.203) | (0.421)
B 0.0 —0.241 | 0.426 | -0.012 0.125 | -0.237 | -0.230
Lj6 | -0.137 | 0.703 | -0.078 0.300 | -0.603 | ~0.254
L3 0.320 | 0.954 | -0.126 0.396 | —1.403 | -0.221
(1.295)*
L2 1.399 | 1.000 0.000 | -1.646 | -3.169 0.000

Conclusion

* values between brackets were given by Scareex [9]

For finite element analysis of plane-stress problems, stiffness matrices of
triangular or rectangular elements are needed. If displacement functions are
assumed to calculate the element stiffness matrices, it is necessary to idealize
the structure as an assemblage of a large number of small elements. In this
paper the stiffness matrices of the elements are derived by finite differences,

without assuming displacement functions. Therefore,

structures can be

considered as assemblages of a small number of large elements. In fact the
larger the elements used in the idealized structure, the smaller is the error
caused, by element division.

The method is used in a test problem of a continuous deep beam. The results
obtained show good agreement with those calculated by another method.
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Notation

matrix formed by finite differences coefficients of Airy stress func-
tion, Eq. (14)

values of Airy stress function at mesh points due to unit load
applied separately at each of the boundary coordinates
transformation matrices defined by Eq. (12) and (15), respectively
concentrated boundary forces

elemental area

elasticity matrix (Eq. (20))

flexibility matrix

plate thickness

number of coordinates for which the flexibility matrix is derived
number of finite differences mesh points on the element

number of boundary stress equations for an element

total number of finite differences mesh points less three

equals (m—3)

number of interior points. Also r=n—p

constant = (A,/A,)2

angle between z- and £-axes

finite differences mesh spacings in the x and y directions
Poisson’s ratio

stress; type and direction of stress defined by subscripts z, ¥, £ and

Y.
applied boundary stress

internal stresses at mesh points on the element due to a unit load
applied separately at each of the coordinates

Airy stress function

multiplying factor, Eq. (19)
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Summary

A derivation of the flexibility and the stiffness matrix of large rectangular
or right-angle triangular plate elements for in-plane degrees of freedom is
presented. The flexibility matrix is calculated using finite differences. This
matrix is then used to derive the element stiffness matrix. The calculations
involve simple matrix operations and can be easily programmed.

The stiffness matrices derived by this method are intended to be used in the
analysis of structures which can be idealized as an assemblage of large rec-
tangular or triangular plate elements, e.g. box-girder skew bridges.

Résumsé

On présente une méthode permettant d’obtenir les matrices de rigidité et
de flexibilité pour des éléments plans (degré de liberté = 2) en forme de rectangle
ou de triangle rectangle de grandes dimensions. La matrice de flexibilité est
calculée en traitant des différences finies. On déduit ensuite de cette matrice
la matrice de rigidité de I’élément. Les calculs font appel & des opérations
simples sur les matrices et peuvent étre aisément programmés.
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Les matrices de rigidité obtenues par cette méthode sont supposées étre
utilisées pour 'analyse de structures qui peuvent &tre idéalisées comme assem-
blage .d’éléments plans de grande dimension en forme de rectangle ou de
triangle rectangle, par exemple ponts inclinés & ceintre en caisson.

Zusammenfassung

Gegeben wird eine Herleitung der Flexibilitats- und Steifigkeitsmatrix von
groBen rechteckigen und aus rechtwinkligen Dreiecken bestehenden Elementen
fiir die Freiheitsgrade der Scheibe. Die Flexibilitdtsmatrix ist mit Hilfe von
endlichen Differenzen berechnet und zur Herleitung der Steifigkeitsmatrix
verwendet worden. Die Berechnung besteht aus einfachen Matrixoperationen
und kann leicht programmiert werden.

Die so hergeleitete Steifigkeitsmatrix kann fiir Bauwerke Anwendung fin-
den, die durch rechteckige oder dreieckige Elemente idealisiert werden kénnen,
unter anderem fiir schiefe Trigerroste.
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