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Introduction

Solutions to plate bending problems can often only be obtained by taking
recourse to numerical methods. A conventional finite element analysis can give
a solution to practically any plate bending problem. In such analysis, the
structure is idealized as an assemblage of a large number of small elements.
It can be shown that a solution approaching the exact solution to the problem
can be obtained as the number of elements used in the analysis increases [1].

In many practical plate bending problems, the continuum can be idealized
to an assemblage of a small number of large rectangular and/or right angle
triangular elements. For the analysis of such an assemblage, the flexibility
or stiffness matrices of the large individual elements are needed. In this paper,
the flexibility and the stiffness matrices of “large’ rectangular and right-
angle triangular elements in bending are derived by simple matrix operations
with finite differences equations.

The two main difficulties arising in conventional finite differences (F.D.)
analysis of complex plate bending problems may be outlined as follows:

1. To predict accurately the stress in the continuum it may be necessary
to use a large number of F. D. equations. The solution of large systems of F.D.
equations may become impossible due to the capacity of the computer used
or due to round-off errors.

2. Boundary conditions and discontinuities of the plate can not be easily
accounted for in the F.D. solution. It is mainly for this reason that in many
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cases finite element analysis is preferred, although it usually involves the solu-
tion of a larger number of equations.

The object of this paper is to show how the general] displacement method
(as used in the finite element analysis) together with finite differences can
overcome the difficulties mentioned above. The plate structures considered
may be of any configuration but shall have linear boundaries. For the analysis,
the structure is idealized as an assemblage of a small number of large
triangular and/or rectangular elements (Fig. 1). The largest number of equa-
tions to be handled simultaneously are either the F. D. equation used in deriving
the flexibility (or stiffness) of an individual element, or the force displacement
relations of the assembled structure. :

A
L

elements are connected at nodes
on their boundaries

Z A 8 /{ x

~
finite differences
mesh points

Fig. 1. Large Element Idealization of a Plate.

The method presented in this paper is developed to be used as a part of
the analysis of box-girder skew bridges. An analysis of such structures by
conventional finite differences appears difficult if not impossible for the reasons
mentioned above. On the other hand a conventional solution by finite element
may become expensive because of the large number of simultaneous equations
involved.

If, for example, a single-cell box-girder skew bridge is considered as an
assemblage of large plate elements subjected to in-plane and bending forces,
a solution by displacement method can be obtained in which finite differences
are used for the derivation of the element stiffness matrix. This paper deals
only with the bending of plates while the stiffriess matrix of the plate element -
corresponding to in-plane displacement is presented elsewhere [3].

SzILARD [4] derived the stiffness matrix of a square plate element using
finite differences. He used coordinates at the centre of each element side. The
structure must be divided into a large number of small elements to obtain
accurate results. In the method presented in this paper, the plates are divided
into elements which are essentially large (as mentioned earlier). Accuracy is
increased if the finite difference mesh size within the element is reduced and
larger elements are chosen. Axe¢ and NEWMARK [2] analyzed continuous slab
panels by idealizing the plate as a system of rigid bars and springs, for which
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the deflection and load are related by equations identical to the ¥.D. equations
of the plate.. First, the deflection of each slab panel is calculated: assumsing the
edges to be fixed. Then the panel -boundary displacements couldbe. deter-
mined using a relaxation technique. In this manner, the solution of a large
number of F.D. equations was avoided.

In the following section, the flexibility and stiffness matrices of rectangular
and triangular elements are derived.

Derivation of Element Flexibility and Stiffness Matrices

The large elements idealizing the plate are assumed to be connected at a
finite number of node points along their boundaries (Fig. 1). Fig. 2 shows a
typical rectangular element 4 and a right-angle triangular element B. A F.D.
mesh is chosen such that node points on the lines between the elements in the
assembled plate coincide with F.D. mesh points. At node points on the element
edges two degrees of freedom may be considered, a transverse deflection and

P2 T
Ax
A !._.‘
y o /I_‘
;[—'* /L [y ay y _
¥ / ¢ typical coordinate

ot g general node

z / / l

/ / / typical coordinote

L at a general node
typical coordinate

at a corner node

typical coordincte
90°~7 ata corner node

a) Rectangular Element A b) Right-Angle Triangular Element B
Fig. 2. Typical Coordinates at Nodes on Edges ant at Corners.

a rotation about an axis along the edge. At a corner node puint, the degrees
of freedom can be a transverse deflection and rotations about axes perpen-
dicular to the two edges meeting at that corner. Compatibility of displacement
of elements will be achieved at these nodes at the chosen coordinates (Fig. 1).
If the boundary nodes are sufficiently close, the deformation of the assembled
elements will represent that of the actual slab.
The differential equation to be satisfied at any mesh point on the element
is [5] _ ‘
otw *w otw
Fr R rr Il i e (1)

where w is the deflection of the plate; ¢ intensity of a distributed transverse
applied load; ‘
Ep3
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E is the modulus of elasticity; » the thickness (assumed constant for each
element) and » Poisson’s ratio. Using central finite differences, Eq. (1) applied
at a typical mesh point 7, away from the boundary, can be written in the
. form {6]:

Nl ) = 0, (3)

where [A4] is a row matrix of dimensionless coefficients of the deflection at ¢ -
and at 12 other points in its vicinity;

Qi = q1; A:c Ay ’ . (4)
A; and A, being the mesh spacings in the 2 and y directions (Fig. 2).
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Fig. 3. Finite Difference Coefficients for a Rectangular Plate with Free Edges. Coefficients to be
Used in the Equation:

(ZK; y) [coefficients] {w} = @;.
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Fig. 4. Deflection Coefficients of the F.D. Equation Applied at Point 7 on or Adjacent to a Free
Edge of & Triangular Element. F.D. Equation Takes the Form:

(1\;?) [coefficients] {w} = Q.
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The pattern of the deflection coefficients of Eq. (3) (elements of [4)) are
shown in Fig. 3a. When the point ¢ where the F.D. equation is applied is at
or adjacent to the boundary, the coefficients must be modified to incorporate
the boundary condition of a free edge [6]. The modified coefficients are given
in Fig. 3b to f. The corresponding coefficients for the triangular element
(Fig. 2b) are given in Fig. 4.

The F.D. equations applied at all mesh points of an element with free
edges may be written in matrix form

[K]{w}={Q}, ()

where [K] is a square symmetric matrix formed by F.D. coefficients. It relates
the deflection and the forces applied at the mesh points and can therefore be
regarded as a stiffness matrix corresponding to the coordinates {w}. The
matrix [K] is singular. The element must be restrained at not less than three
coordinates (not on a straight line) in order that its stiffness matrix can be
inverted. If springs of arbitrary stiffness (say N A,/A3), are introduced at
three (or more) boundary nodes, then the spring stiffness is added to the
corresponding elements in [K] to obtain [K*] which can be inverted. Thus,

{w} = [K*171{Q}. (6)

Flexibility matrix [K *]~1 will now be transformed into another flexibility matrix
[7*] corresponding to the.degrees of freedom at the boundary (Fig. 2). The
displacements {D} at the coordinates in Fig. 2 are related by geometry to the
deflections {w} at the element mesh points as follows:

{D} = [Cl{u}, (7)

Therefore, the flexibility matrix of the element on spring supports corre-
sponding to the {D}-coordinates is given by [7]

[Z///

F
[ ] / 7
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Dz
Fig. 5. Mesh Points and Coordinates Referred to in Equation 7a.




ANALYSIS OF PLATES IN BENDING USING LARGE FINITE ELEMENTS 35
[1*] = [C1LK*]7 [CT, . (8)

where the superscript 7' means matrix transpose.

The elements of [C] are either zero, 1, 1/A,; or 1/A,. Consider for example
the plate in Fig. 5 which has 25 mesh points. The edge displacements {D} at
the five arbitrary coordinates shown in the figure are related to the deflections
{w} at the 25 mesh points by Eq. (7) as follows:

Column » .
Number 1 2 ... 6 ... 9 10 ... 25
, - -
1 1 Elements not
7\; - 7\; shown are zero
1 1
D= |- —< 9
D=5 -, @ o
1
1.1
L AT A 4
or : {D} = [C1{w}. .  (99)

In this equation any of the edge rotations, say D, (Fig. 5) is considered
equal to the slope of the deflected surface midway between mesh points 10
and 9. This would be accurate if the mesh size A, is small or the curvature
perpendicular to the free edge is small. Using [C] in the above form in Eq, (9)
would give a less accurate value for the elements /%, f¥ and f¥% than the other
elements of the matrix [f*]. This is because these elements represent the
rotation at a coordinate due to a unit couple applied at the same coordinate.
A more accurate value of any of these elements, say f%, is given by:

Row
Number
0 } 1
Colomn
Number 1 ... 7 8 9 10 ... 25 0
1
— 9
f;‘s:(a%)[o 0 2 —9 18 —11 0 ... OJ[K*™{ A& }  (10)
) 1 10
S
0
0 |25




36 AMIN GHALI - K. J. BATHE

In this equation the slope at the element edge is caloulated from the deflec-
tions using the pattern of coefficients [8] (1/6A,) [11, 18, 9, —-2] and a unit
couple at the edge is replaced by a pair of equal and opposite forces (of mag-
nitude 1/},) at mesh points 9 and 10.

The flexibility matrix [f*] derived above (Eq. (8)) is for an element on
spring supports. »

From [f*] the flexibility matrix of the element supported in any manner
can be derived [7]. The inversion of [f*] gives the stiffness matrix [8*] of the
element on spring supports. When the arbitrarily chosen stiffness of the
springs are deducted from the appropriate diagonal elements of the latter
matrix, the stiffness matrix [S] of the free (unsupported) element is obtained.

Fixed-end Forces

If the displacement method of analysis is used, the fixed-end forces {F}
at the {D} coordinates will be needed for any transverse loading {@} on the
element.

Combining Eq. (6) and (7), the node displacements of the element on spring
supports due to forces at mesh points can be written as

{D} = [CI[K*1{Q}. (11)

These node displacements are reduced to zero by the restraining forces
{#}. Hence,
[FHE}+[CIK*T1{Q} = {0},
from which
| {B} = — [ [CIE*11{Q}. (12)

Stress Resultants

The stress resultants at any mesh point can be calculated by F.D. Egs. [7]
from the final deflections {w}. In the displacement method, the final deflections
are given by the superposition equation: ‘

{w} = {w}+[w]{D}, - (13)

where {w,} are mesh point deflections of the element with restraint edges and
[w,] are mesh point deflections corresponding to unit nodal displacement, and
{D} are the final nodal displacements. Eq. (13) can be put in the form:

{w} = [K* 7 ({@Q}+ OV { B+ [f*I{D}}). (14)
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General Remarks

1. A study of the finite difference coefficients in Fig. 4 shows that the stiff-
ness matrix [K] for a triangular element is not quite symmetric. The coefficients
introducing unsymmetry in the matrix have been marked with a prime. For
example, for symmetry, D’ in Fig. 4d should be equal to D in Fig. 4b. The
difficulty of obtaining finite differences coefficients which have reciprocal
relationships at mesh points near skew edge corners is reported by JENSEN [6].
To overcome this difficulty, it is suggested that unsymmetric elements of [K]
are to be replaced by their average.

2. It should be noted that [f*] can only be inverted if a displacement at
each of the D-coordinates can be imposed while the displacement at the
other D-coordinates is prevented. For example, the rotation D; in Fig. 5,
which is expressed in terms of the transverse deflection at points in edge 1-5,
cannot be produced if at the same time the transverse deflection at points
1, 2, 3 and 4 are zero. This does not provide serious difficulty. It only has to
be noted when choosing the system of the D-coordinates representing the
element degrees of freedom.

3. The finite differences patterns of coefficients required for the derivation
of the flexibility or stiffness matrices of rectangular and triangular elements’
are included in Fig. 3 and 4. However, in some cases, some saving in the
computations may be achieved by using trapezoidal elements. The writers
used trapezoidal elements for the analysis of skew bridges.

Application
To test the above method, a uniformly-loaded rectangular plate with two
simply-supported edges, a built-in edge and a free edge was analyzed (Fig. 6).
The plate was idealized as an assemblage of two elements A and B, with the

F.D. mesh shown in Fig. 6. The finer mesh in the y-direction for element B

Table 1. Moments and Deflections of Plate in Fig. 6 (v=0.3)

Section CD Section EF
Mesh Pomms | Moment Myin | .. | Moment Myin | Dofiectionsin
terms of gL terms of g L? terms of -———-%7 e
axd 2 -0.097 6 ©0.091 0.114
4 -0.134 8 0.121 0.159
6x6 4 -0.132 8 0.122 0.157
8x8 4 -0.130 8 0.128 0.156
Exact 4 -0.124 8 0.123 0.154
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was chosen to get accurate values of M, which is known to change rapidly
near the fixed edge. The two elements are connected at two coordinates at
each of the internal mesh points on line GH.

Table 1 gives moments and deflections along CD and E F obtained by a
solution in which a 4 X4 mesh was taken for each of elements 4 and B. The
table also includes the results of two other solutions in which the meshes
were 6 X 6 and 8 X 8 instead of 4 x 4.

Conelusion

In conventional finite element analysis of a plate in bending, displacement
functions are assumed to calculate the element stiffness matrices. For accurate
results, it is necessary to idealize the plate as an assemblage of a (compara-
tively) large number of small elements. In this paper, the stiffness matrix is
derived by finite differences, without assuming a displacement function.
Therefore, the plate can be considered as an assemblage of a small number
of large elements. In fact, the larger the elements used in the idealized structure,
the smaller is the error caused by element division.

The results of the test problem show that the method gives accurate
answers.
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Notation

transformation matrix defined in Eq. (7)
displacements at nodes on element edges

flexibility matrix corresponding to the {D}-coordinates
forces at the {D}-coordinates when {D}={0}
“equivalent’’ stiffness matrix formed by F.D. coefficients (Eq. (5))
flexural rigidity of plate (Eq. (2))

concentrated mesh point transverse loads

intensity of distributed load

stiffness matrix corresponding to the {D}-coordinates
mesh points transverse deflections

spacing between F.D. mesh lines

Poisson’s ratio

Subscripts and Superscripts:

used as superseripts in [K*], [f*] and [S*] to refer to plate element on
arbitrary chosen spring supports _

refers to restrained element, that is — displacements {D}={0}
rectangular coordinate axes
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Summary

Plates in bending are analyzed by idealizing the continuum as an assem-
blage of large rectangular and triangular elements. The flexibility and stiffness
matrices of these elements corresponding to boundary displacements are
derived using finite differences. The analysis involves simple matrix operations
which can be easily computer programmed.

The stiffness matrices derived by this method are intended for use in the
analysis of structures which can be idealized as an assemblage of large rec-
tangular and triangular plate elements, e.g. box-girder skew bridges.

Résumé

- On calcule les plaques fléchies au moyen d’une idéalisation du continu par
un assemblage d’éléments rectangulaires et triangulaires de grandes dimen-
sions. Les matrices de flexibilité et de rigidité de ces éléments pour les déplace-
ments au contour sont obtenues & I'aide du calcul aux différences finies. Le
calcul se fait & 'aide d’opérations matricielles simples et peut aisément &tre
programmsé. '

Les matrices de rigidité assemblées par cette méthode sont destinées au
- calcul de structures qu’on peut idéaliser au moyen de grands éléments rectan-
gulaires ou triangulaires, p. ex. des ponts biais 4 section fermée.

Zusammenfassung

Die Biegung der Platten wird durch eine Diskretisation des Kontinuums
in eine Reihe von rechteckigen und dreieckigen Elementen groBer Abmessun-
gen berechnet. Die fiir die Randverschiebungen ausgedriickten Flexibilitéits-
und Steifigkeitsmatrizen werden anhand endlicher Differenzen ermittelt. Die
Analyse umfaBt einfache Matrix-Operationen, die fiir den Computer leicht
programmierbar sind.

Die durch diese Methode abgeleiteten Streifigkeitsmatrizen sind fiir Trag-
werke bestimmt, die zusammengesetzt aus groBen rechteckigen und dreieckigen
Plattenelementen idealisiert werden konnen, z. B. Kastentridger von schiefen
Briicken. ' ’
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