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INTRODUCTION 

During recent years a considerable amount of research effort has been spent on the analysis of 
fluid-structure systems. An important feature of these analyses is in many cases the use of 
implicit-explicit time integration of the dynamic response:l’* the response of the fluid is 
integrated using an explicit method (central difference technique) and the response of the 
structure is integrated with an implicit technique (e.g. the Newmark method). The principal 
advantage of such time integration of the dynamic response is that no stiffness matrix need be 
calculated for the fluid and a relatively large time step can be employed in the incremental 
analysis. Various schemes for performing the explicit-implicit integration have been proposed, 
and these were analysed for their stability and accuracy  characteristic^.'*^ These combined time 
integration techniques are not restricted in their use to the analysis of fluid-structure systems, 
but can be employed for the analysis of systems with ‘stiff and flexible domains’ in general. 

The objective in this short paper is to point out that an effective solution of fluid-structure 
systems (and ‘stiff and flexible domains’ in general) can frequently also be calculated using an 
implicit time integration for the complete structural model with a lumped mass idealization and 
the recently proposed BFGS m e t h ~ d . ~ ”  In the analysis procedure used, the response is 
calculated with implicit time integration for the fluid and the structure without setting up a 
stiffness matrix of the fluid, and by satisfying the dynamic equilibrium equations using the BFGS 
iterations. 

THE SOLUTION PROCEDURE 

The equations used in implicit time integration in a geometric and/or material nonlinear 
analysis are? 

where 

M = time independent mass matrix, 
‘K =tangent stiffness matrix corresponding to time 7, 

R = vector of externally applied nodal loads corresponding to time t + At, f+At  

f + A f F ( i - l )  - - vector of nodal point forces equivalent to the element stresses at time t + At 

U - vector of nodal point accelerations at time t + A t  and iteration (i), 
and iteration (i - l), 

f t A t  (i) - 
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where AU'" is the incremental nodal point displacement vector corresponding to time t and 
iteration (i). 

Using the trapezoidal rule of time integration, the following assumptions are employed: 

Using equations (2)-(4) we obtain 

and substituting into equation (1) we have 

where 

T A  4 K='K+-  
(At)2M* 

In the BFGS iteration, equation (6) is solved as follows: 

+ A r F ( i - r ) )  
A u ( i )  = ( T k - l ) ( i - l ) ( f + A t g  -M f + A f a ( i - l )  - 

and 
r + A t U ( i )  = t + A f u ( i - l )  + p A u ( i ) ,  

(7) 

(9) 
where p is a scalar that is evaluated by a line search to satisfy the condition 

A U ( i ) T ( f + A t R  - f + A f  ( i )  - M f + A f u ( i ) )  STOL A U ( i ) T ( f + A f R  - ~ t + A f o ( i - l ) -  f+Af  ( i  1) F F - ) (10) 

with STOL a tolerance. The coefficient matrix in equation (8) is evaluated as follows: 

, 7 (11) 

where the matrices = I + v( i - l )w( i - l )T .  The vectors w ( ~ - ' )  and 
& I )  are given by the calculated nodal point displacements and forces. Convergence is achieved 
in the iteration when the following two criteria are satisfied: 

( T k - l ) ( i - l )  - - A(;-l)T(TK-l)(i-z)A(i-l). 7 8 ' 0 )  = T K  

are of the simple form 

I I f + A f R  - f + A f F ( i - I ) - M  f + A f i j ( i - l )  

11 K R - * - A f F  - M r - A t i j  1) :Illax) (12) 

where K is any one of the discrete times considered, and 
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where RTOL is an out-of-balance force tolerance and ETOL is an ‘energy’ tolerance. In 
equation (1 2) the superscript (max) denotes the maximum value ever calculated during the 
solution, and llallz is the Euclidean norm of the vector a.6 

The above equations have been written for nonlinear dynamic analysis, but they are equally 
applicable in linear dynamic analysis and static analysis (in which case the inertia forces must 
simply be neglected). 

An important point to note is that in the iteration of equations (8)-( 1 l), a very approximate 
stiffness matrix can be used, and indeed such use may yield a most effective solution if the 
number of iterations required for convergence is not excessive. For example, it may be effective 
to use throughout a nonlinear incremental static analysis the initial elastic stiffness matrix, in 
which case only one stiffness matrix calculation and LDLT decomposition at the beginning of the 
solution is required. However, the number of iterations required to solve the equilibrium 
equations increases when the matrix ‘K approximates the actual tangent stiffness matrix of the 
system less accurately. 

Considering a dynamic analysis of a fluid-structure system, it is recognized that as the time 
step At becomes small, the contribution of the mass matrix to the effective stiffness matrix 
becomes predominant in the fluid domain. If in such analysis a lumped mass matrix is used, it can 
be effective not to include the fluid element stiffness matrix contributions to the matrix ‘8. This 
is particularly the case when the fluid domain is large (modelled using a large number of 
elements) compared to the structure. Thus, if we write, 

‘K= TKs+TKf, 

where ‘Ks and ‘Kf are the stiffness matrices of the structure and the fluid, respectively, it can be 
effective to use in equation (1 1) 

The use of equation (15) may decrease the bandwidth of the coefficient matrix a great deal. 
Considering the computations, the solution scheme is now similar to an explicit time integration 
of the fluid response and an implicit integration of the structural response, but in fact, by the 
iteration, all finite element equations are integrated implicitly. 

The procedure is appealing because the integration scheme does not require the use of special 
interface conditions, and the method is not subject to severe time step size constraints in the fluid 
domain. 

SAMPLE ANALYSIS 

The BFGS iteration scheme is available in the ADINA computer program,’ which was modified 
for this analysis not to include the stiffness contributions of the fluid elements in the coefficient 
matrix. 

The fluid-structure problem considered is shown in Figure 1. A similar problem was already 
earlier analysed by Belytschko and Mullen using explicit-implicit integration.’ Figure 2 shows 
the x-velocities predicted at points A and B as a function of time. It should be noted that our 
objective was only to study the use of the proposed technique for the solution of the finite 
element equilibrium equations of this model and not to investigate whether this model does 
represent the physical situation in an accurate manner. 

In the first analysis, the response was calculated using the usual solution procedure with the 
implicit trapezoidal rule and At  = lo-’ sec.6 Next, the response was calculated with the BFGS 
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AtCRIT FOR CENTRAL DIFFERENCE 

METHOD k 1.5 a I O - ' s e c  

DETAIL OF NODE ARRANGEMENT 
AT S H E L L - F L U I D  INTERFACE 

MATERIAL PROPERTIES [p lane  stroin m o d e l )  

B U L K  MODULUS O F  F L U I D  

DENSITY O F  F L U I D  

3 . 0 ~ 1 0 ~  p s i  

: 9.35X10-5 Ibs / ln4 -sec2  

YOUNG'S MODULUS OF SHELL : 3.0 I( 10' PSI 

POISSON'S RATIO OF SHELL : 0.25 
D E N S I T Y  O F  S H E L L  : 7.35r10-4 I b t / i n 4 -  s e t 2  

Figure 1 .  Analysis of long cylindrical shell surrounded by fluid; fluid is subjected to step pressure 

method with the starting coefficient matrix of equation (15) and using At = lop5 and lop4 sec. 
These two analyses were also performed using the modified Newton method with the constant 
coefficient matrix equal to the matrix in equation (15), in order to evaluate its effectiveness as 
well. Table I shows the average and maximum number of iterations required per time step in 
these computations. Figure 2 shows that, for the smaller time step, practically identical 
responses are predicted using any one of the procedures. But Table I shows that, for the larger 
time step, the Newton method failed to converge within 30 iterations at the eighth time step, 
whereas the BFGS method never required more than 5 iterations per time step. In all the above 
analyses we used equations (12) and (13) with RTOL= and ETOL= 



SHORT COMMUNICATIONS 947 

40 80 120 160 200 240 280 300 
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b )  VELOCITY AT POINT 8 ( S E E  FIG.1) 

Figure 2. Velocity response at points A and B of the shell 

CONCLUSIONS 

An effective application of the BFGS method to some wave propagation fluid-structure 
problems was pointed out. The essence of the solution is that the stiffness matrix contributions of 
the fluid elements are neglected in the starting coefficient matrix of the iteration. It is concluded 
that in nonlinear dynamic analysis, in which iteration is required anyway in order to preserve the 
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Table I. Number of iterations used in solutions 

At = sec At = sec 

Maximum Average Maximum Average 
BFGS 2 2 5 4 
Modified Newton 2 2 Failed to converge in 

30 iterations 

stability of the solution* and the fluid element stiffness effects in the coefficient matrix are small, 
this iterative technique may be very efficient. The solution scheme has the computational 
advantage of explicit-implicit time integration that no coefficient matrix corresponding to the 
fluid elements needs to be assembled and dealt with, and has as an additional advantage the 
stability of the implicit time integration in the fluid domain. The method can be cost-effective as 
a practical tool because of the good convergence characteristics of the BFGS method. 
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