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ON LARGE STRAIN ELASTO-PLASTIC ANALYSIS 
WITH FRICTIONAL CONTACT CONDITIONS 

A b s t r a c t . This paper presents a framework for finite element analysis of large deformation 
elasto-plastic problems with frictional contact conditions. The elasto-plastic c o s t i ­
tutive formulation is derived from basic principles. The formulation is hyperelastic-
based, uses the logarithmic strain tensor, and allows for both isotropie and kinematic 
hardening. The interface formulation enforces ali contact conditions explicitly in the 
governing equations. The proposed methods are aimed to provide consistent, re-
liable and efficient solution procedures for engineering analysis of large deformation 
elasto-plastic problems. 

1 - Introduction 

The finite element analysis of large strain elasto-plastic problems invol­
ving contact conditions has attracted much interest during the recent years. 
Sudi analysis capabilities are for example needed for the numerical prediction 
of the forces and strains in metal forming problems. If the forming of metals 
can be predicted in a reliable and accurate manner, considerable resources 
can be saved in the design of manufacturing equipment and the production 
of components, as encountered for example in the automotive and aircraft 
industries. 

Although a number of finite element programs have been developed and 
applied to large strain elasto-plastic problems involving contact, there is stili 
considerable need to further increa.se the general applicability, reliability and 
efficiency of the available solution schemes. Large strain finite element analy-
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sis requires a physically correct continuum mechanics formulation, appropriate 
finite element discretization and an efTìcient solution of the governing equa-
tions [1]. For the reliability of the complete solution scheme, the methods 
used must be mechanistically clear and numerically well-founded. 

The objective in this paper is to present a consistent formulation for 
large strain elasto-plastic analysis [2] and to briefly introduce a new approach 
for the analysis of contact problems. The elasto-plastic formulation is already 
in wide use, and the proposed contact procedure might provide a significant 
extension of a Lagrange multiplier method also widely used already for contact 
problems [3,4,5]. 

The major attributes of the procedures we discuss herein are that they 
are consistent and reliable from the continuum mechanics and algorithmic 
points of view, and that they are intended for general engineering analysis. 

2 - Material formulation 

In this section we derive a set of elasto-plastic constitutive equations 
that characterize the material response. Let X = D0xx be the deformation 
gradient and L = Dtxv = XX" 1 be the velocity gradient. 

2.1 - The reduced dissipation inequality 

Consider the field equations associated with the first and second law of 
thermodynainics 

pè = T D+pr- V q (1) 

^ > p J - V . J (2) 

where p is the density in the current configuration, e is the internai energy 
per unit mass, rj is the entropy per unit mass, D = sym L is the stretching 
tensor, r is the beat supply per unit mass, q is the heat flux vector, and 0 
is the temperature. Expanding the divergence operator in (2) and using (1) 
to eliminate r we obtain 

. -p(è - 0i)) + T • D - § • V0 > 0 . (3) 
V 

We next perform a transformation to eliminate the entropy rate and 
introduce the rate of change of temperature. For this purpose, let \p = e - 0ij 
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be the free energy per unit mass. Substitution in (3) yields the reduced 
dissipation inequality 

-p(tf + ij0) + T . . D - | - V 0 > O . (4) 

We restrict ourselves to isothermal processes where the temperature field is 
Constant over space and time. In this case 6 = 0, V0 = 0 and (4) reduces to 

-pj> + T • D > 0 . (5) 

2.2 - Description of plastic tìow 

We use the product decomposition X = X6XP of the deformation 
gradieiit [6], where Xe and Xp are respectively the elastic and plastic 
deformation gradients. The plastic deformation gradient takes the reference 
confìguration into an intermediate configuration, obtained conceptually by 
unloading a neighborhood of each particle from the current confìguration to a 
state of zero stress in sudi a way that no inelastic process takes place during 
the deformation [7, 8, 9, 10]. We have X = XCXP + X e X p and X " 1 = 
(XP)~1(XC)~1, so the velocity gradient can be written 

L = Lc + Lp (6) 

with Le .= X ^ X 6 ) " 1 and LP = XCXP(XP)-1(XC)-1. The elastic and plastic 
stretching tensors are, respectively, given by D e = sym Le and Dp = sym Lp. 

Silice plastic deformation is considered isochoric det Xp = 1, so detX c = 
= detX = J > 0 and the elastic deformation gradient admits the polar de­
composition 

Xe = R e U c (7) 

where Re is the elastic rotation tensor and Ue is the elastic right stretch 
tensor. We use the Hencky strain tensor Ec = lnUc and its elastic work 
conjugate stress tensor T, defìned by l 

T È€ = JT De . (8) 

Equation (8) yields T = T(UC)T, where T(U6) is a linear operator acting 
on T that depends on Ue [11]. 

Note that this definition difTers from that in reference [2] by the factor J. While 
both defìnitions can be equally used, for small elastic strains the resulting difTerence in T 
is negligible and definition (8) simplifies the introduction of the free enthalpy function. 
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Multiplying (5) by ,/, recalling that by mass conservation pJ = °p, 
where °p is the density in the reference configuration, and using (6) and (8) 
we obtain for the reduced dissipation inequality 

- V ^ + T - È 6 * J T - D P > 0 . (9) 

It is now convenient to exchange the strain rate for the stress rate. For that 
purpose we define the free enthaply per unit reference volume as 
u = °pip - T • Ec . DifTerentiating with respect to time and substituting in 
(9) we obtain 

- w - E c . t + 7 T - D p > 0 . (10) 

2.3 - State variables 

We consider the plastic state of the material as characterized by the two 
internai variables <r and B. The "deformation resistance" <r is a scalar 
that represents an average macroscopic resistance to plastic flow. The "back 
stress" B is a symmetric second order tensor with zero trace and represents 
an average intensity of the microscopie residuai stresses [12]. Both <r and 
B have the dimension of stress. To be consistent with the choice of stress 
measure in (8), we define a referential back stress by B = T(Ue)B. 

The list of state variables that characterize the elasto-plastic process 
is then taken to be r = (T,<r, B). We seek a stress-strain law for Ec and 
evolution equations for Dp , <r and B in terms of r and f. Since the free 
enthalpy is a function of the state, we have u = u(r), and equation (10) can 
be written as 

(~S) 
_i_ flit (9i/ -!— 

•T-— ( T - - = - B + J T - D p > 0 . (11) 

This equation is interpreted as to hold for ali stress rates T, see for 
example reference [13]. Necessary condìtions are then 

Ee = - - = (12) 
dT v ; 

D(r, T) = - p. ò - ^L • 6 + JT • Dp > 0 (13) 
da dB ~ 

where V(T,T) is the dissipation function. 
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2.4 - Stress-strain law 

We adopt the following special form of the free enthalpy function 

U(r) = U(T,.,D) = - Ì T . C T + ^ + 5 l | ^ (14) 

where H is the plastic hardening modulus, /3 € (0,1) is a fìxed number and 
C is the compliance tensor, given by 

c =è I +fc-è)1 0 1 • (15) 

In this equation 1 and I are respectìvely the second and fourth order identity 
tensors, and \i and /e are taken to be respectìvely the shear modulus and 
the bulk modulus of small-strain elasticity. 

Using (14) in (12) we obtain Ee = CT, or equivalently 

T = £E e (16) 

where C = C~l is the isotropie elastic moduli tensor, given by 

£ = 2jil+ U -^A 1 0 1 . (17) 

For the isotropie stress-strain law (16) the stress and strain tensors 
commute, and T and B take the simple form 

T = J(Re)TTRe (18) 

B = J(R e )TBR e . (19) 

In this case we cali T the "rotated stress tensor" and B the "rotated back 
stress tensor". 

In view of the symmetry of the Cauchy stress tensor, the definition of 
Dp below (6), equation (18), and the polar decomposition (7), the last term 
in (13) can be written as 

JT • Lp = JT • XcLp(Xe)"1 = ITIXU*)-1 E" = f 17 (20) 

where by defìnition 17 = (Xe)~lLPXe = XP(XP)-1 and the last equality 
follows from the fact that T commutes with Ue. Using (14) and (20) we 
obtain for the dissipation function 
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2.5 - Yicld surface 

Define the "eflective stress tensor" by S = T ' - B , where T ' is the 
deviatone part of T, and the "eflective stress" s by 

-fir*. (22) 

The standard yield surface for combined isotropic-kinematic hardening is given 

by 
0(r) = <r - s = 0 . (23) 

In rate-independent plasticity, the state variables r = (T,cr,B) are 
constrained to satisfy </>(r) > 0. Furthermore, no plastic deformation takes 
place if </>(r) > 0. Recalling that for any second order tensor T 

dT' 1 
= 1 - - 1 0 1 (24) dT 3 

we bave for the derivatives of <P(T) 

» = -i/fu 
T V 2 

(25) 

OB V2 

where N is the unit norma! to the yield surface 

dT 

l - * <»> 
d+ ^ N (27) 

w-4!- (28) 

2.6 - Evoluitoli equations 

So far we bave derived the condition that for ali state variables r and 
ali rates f the dissipation function V(T,T) has to be nonnegative. We now 
strengthen this condition with the principle of maximum plastic dissipation 
[14, 15] as follows. For fixed rates f, the actual state variables r are such 
that plastic dissipation is maximized subject to the constraint <j>(r) > 0, i.e. 
r is determined from the problem 

maxV(T,T) such that <J>{T) > 0 . (29) 



87 

Denoting by èp the Lagrange multiplier associated with the inequality 
constraint in (29), the first order necessary conditions for a maximum are [16] 

èp > 0 <f> > 0 èp<j> = 0 . (31) 

Using equations (21) and (25-27) we obtain 

5 ^ ^ = 0 (32) 

a ^ • f é - 0 (33) 

3 dr 

2(1- /? ) / / 
B + é P ^ N = 0 (34) 

or equivalenty 

D* = ^ N (35) 

& = (3Hèp (36) 

Ì=]Jl(l-p)HèpT1 • (37) 

These, together with the assumption W = skw E? = 0, constitute the 
evolution equations for the plastic variables. Note that for /3 —* 1 we recover 
the isotropie hardening case while for (3 —• 0 the purely kinematic hardening 
limit is obtained. It follows from (35) that èp satisfies 

é' = ^ D " D ' . (38) 

This justifies the denomination "efTective plastic strain rate" for èp. 
We summarize below our constitutive equation for further reference 

T = £ E e (39) 

Xp = D^Xp (40) 

& = / f è'N (41) 

& = 0Hèp (42) 

^ = ? ( l - / ? ) / / D , , (43) 
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where for convenience (43) combines equations (35) and (37). 
The above equations are solved in the ADINA program using the effec-

tive-stress-function algorithm [2, 17]. 

3 - Contact formulation 

Consider two bodies and a system of loads such that various contact 
conditions are established during the motion. Let T1 and rJ be the part of 
the boundaries where contact between body / and body J may occur. For 
convenience, we cali F7 the "contactor surface" and VJ the "target surface". 

Let x be a point on the contactor surface, Let y* be a point on the 
target surface that minimizes the distance to x, 

| | x - y * | | = min{ | |x-y | | : yZTJ} . (44) 

We define the gap function g on the contactor surface by 

0(x) = ( x - y * ) . n (45) 

where n is the normal to the target surface at y*. 
Let us decompose the contact tractions onto body / into a scalar 

normal component A and a vector tangent component t. Actually, t is a 
scalar or a vector depending on whether two or three-dimensional problems 
are considered. The conditions for normal contact can then be summarized 
by the complementarity conditions 

g > 0 A XO gX = 0 . (46) 

If there is no contact, the gap g is greater than zero, and the third 
condition in (46) implies that the normal contact traction A must vanish. 
Conversely, if the normal contact traction is strictly positive then the gap 
must be zero. 

We assume that the classica] Coulomb's law of friction holds pointwise 
on the contact region. This law states that the frictional resistance //A, where 
fi is the coefficient of friction, is always greater than or equal to the norm 
of the frictional force t. If //A is strictly greater than ||t|| we have sticking 
contact, and the relative veloci ty ùIJ between the two bodies is zero. If ^A 
is equal to ||t|| we have sliding contact, and ù,J must be in the direction 
of the frictional force, i.e. ùIJ = 7t for some 7 > 0. We note that we here 
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defme ùÌJ to represent the velocity of point y on body J relative to point 
x on body / , where points y and x are in contact at time t, and t to 
represent the tangential traction acting onto body / . 

It is possible to restate these conditions in terms of a set of complemen­
tari ty equations as follows. Defìne 

h = fiA - ||t|| (47) 

then Coùlomb's law of friction can be written as 

/i > 0 7 > 0 hy = 0 (48) 

X(ùIJ - yt) = 0 . (49) 

If there is no contact, then g > 0 and A = 0, and it follows from (47) 
and the first condition in (48) that t = 0. Also, equation (49) is trivially 
satisfied for any value of ùIJ. Conversely, suppose that A > 0. If h > 0, 
the frictional resistance exceeds the frictional force and the third condition in 
(48) and (49) imply ùu = 0. Ilence, in this case there is no relative motion. 
If on the other hand sliding does occur, i.e. ùIJ ^ 0, it follows from (49) 
and the second condition in (48) that 7 > 0. The third condition in (48) 
then gives h = 0, meaning that the nomi of the frictional force equals the 
frictional resistance. 

In order to enforce ali inequalities arising from the contact conditions 
we use the following approach. Let w(x,y) be a continuously differentiable 
function such that w(x, y) = 0 if and only if x > 0, y > 0 and xy = 0. Then 
conditions (46) and (48) are equivalent to 

u;(y,A) = 0 (50) 

^ , 7 ) = 0 . (51) 

Let si and S2 be orthogonal unit tangent vectors on the target surface, 
and let the frictional force be written as 

t = <isi+<2s2 (52) 

where t\ = t s i and t2 = t s 2 . Then (49) is equivalent to the scalar equations 

A ( ù / J
S l -7<i ) = 0 (53) 

X(ÙIJ • s2 - yt2) = 0 . (54) 
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We use equations (50-51) and (53-54) to complete the formulation of 
the equilibrium equations. 

4 - Equilibrium equations 

For the solution of large strain elasto-plastic contact problems we com­
bine the developments of the last two sections. We partition the relevant time 
interval into a sequence of time-steps. Assuming quasistatic conditions, iner-
tia forces are neglected and the relative interface velocity ù,J at time t + At 
is approximated by AurJ/At, where A u / ; is the change in the relative in­
terface displacement from time t to time t+ At. With these simplifications, 
given the solution at time t we seek displacements and contact tractions at 
time t + At that satisfy 

/ J T X - T . G r a d u a - / °pb u°dV - [ 0 fu°rf5 
Joy Joy JodVJ 

(55) 
- / f u d S = 0 

Jav* 

I M0,A)À+ u;(&, 7 )7+ A(si * Au / J /A«-7*i)?i 
Jave (56) 

+ A(s2 • Au,J/At - yt2)t2]dS = 0 

where u is a virtual displacement field, Grad indicates the gradient with 
respect to the originai coordinates, b is the body force per unit mass, °f 
is the traction per unit reference surface, and A, 7,/1 and Ì2 are virtual 
fields associated with the contact traction degrees offreedom A, 7,̂ 1 and <2> 
respectively. 

We note that the relation in (55) is of course the principle of virtual 
work including the unknown contact tractions on dVc [lj. These forces are 
given in terms of An and t. For the finite element solution, the first integrai 
in (55) is stili modified to correspond to the u/p formulation to allow for 
almost incompressible analysis conditions [18, 19]. 

The relation in (56) expresses the contact constraints as obtained in the 
previous section. 

A two point implicit time integration algorithm is used to solve equa­
tions (39-43) for the updated Cauchy stresses and plastic variables. The re-
lations in (55) and (56) are then solved by a Newton-Raphson iteration with 
line searching. 
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Note that the specific difTerence in this contact formulation to previously 
proposed formulations is that ali contact constraints are explicitly enforced in 
the governing equations. 

5 - Conclusions 

The objective in this paper was to present a material model and an 
interface model for the formulation of large-strain elasto-plastic finite element 
analysis with frictional contact condìtions. 

The large strain elasto-plastic model has been presented starting from 
the basic laws of thermodynamics and clearly delineating the assumptions 
used. The contact formulation represents a new approach in that ali contact 
conditions are explicitly enforced in the governing equations. 

The formulations given are intended for wide use in engineering appli-
cations sudi as the analysis of metal forming problems. 
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