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Ab&aet-Finite element procedures fur the dynamic analysis of fluid-structure systems are presented and 
evaluated. The fluid is assumed to be inviscid and compressible and is described using an updated &ran@an 
formulation. Variable-number-nodes isopammetric two- and threedimensional elements with hmtped or consistent 
mass idealization are employed in the finite element discretization, and the incremental dynamic equilibrium 
equations are solved using explicit or implicit time integration. The solution prucedures are applied to the analysis 
of a number of fluid-structure problems including the nonlinear transient analysis of a pipe test. 

1. MI11ow%I1oN 

The acctnatc and efficient transient analysis of fluid- 
structme problems has during recent years attracted 
much research effortjl-51. ~uid-sake problems need 
to be considered in various e~~g disciplines, and 
to a great deal in reactor safety &ll~~ns[l]. In this 
paper we consider the response of fluid-structure 
systems in which the fluid can be idealized as being 
inviscid and compressible, and we focus particukr 
attention on the analysis of problems in which the fled 
transmits a significant amount of energy in a relatively 
short tune duration (such as might occur under accident 
conditions). 

An obvious approximate procedure to analyze a fluid- 
structure problem is to perform the complete analysis in 
two steps: first, the fluid response is calcukted assuming 
that the structure is rigid; and then the suuctuml 
response is predicted that is due to the calculated fluid 
pressures. In most cases this analysis approach will 
Qmbably) yield a conservative estimate of the structural 
deformations. Thus, a drawback of this decoupling of the 
fluid and the structural analysis is that a substantial 
overdesign may be reached. On the other hand, this 
procedure of analysis may yield an unsound design if 
significant resonance between the fluid and the structure 
OCCWS. 

A decoupled analysis of the fluid and the structural 
response is somewhat a natural engineering solution, 
because, historically, finite difference analysis proce- 
dures are employed for analysis of fluid response and 
finite element procedures are used for structurai analysis. 
‘Ibus, it is natural to employ a finite d~er~~-~~ 
computer program to perform the fluid analysis and a 
finite element program to predict the structural response. 

Recog&& the serious deficiency of a decoupled 
analysis, emphasis has been directed in recent years 
towards the development of solution algorithms that can 
be employed to directly analyze the coupled response of 
fluid-structure systems. In the search for effective solu- 
tion procedures the versatility and generality of the finite 
element method for structural analysis and the close 
relationship between tinite difference and finite element 
procedures suggest that it be very effective to include 
fluid elements in the finite element programs. These 
elements can then be directly employed together with 
structural elements to model fled-s~ct~e systems. At 
present, some solution ~pab~ities are available, but the 
programs use only lower-order Auid elements, are 

restricted to two-dimensional analysis, and, in general, 
lack versatility with regard to explicit and implicit time 
integration and Imped and consistent mass 
~~ns[l]. 

The objective of this paper is to report on our recent 
~vel~~n~ of solution capabilities for fl~-~ 
interaction problems. in the paper, fnst the Lagmng& 
formulation of the inviscid and compressible variabk- 
number-nodes 3-8 two-dimensional and 4-21 three- 
dimensional isopmametric fluid elements is briefly 
summa&d[6]. YItese elements have been implemented 
in the computer program ALXNA[71. The elements can 
undergo large dkpkcements, they can be employed with 
implicit (Newmark or Wilson-f) methods) or explicit 
(central difference method) time integration schemes, 
and lumped or consistent mass ideal&ions. Next, the 
ekments, time integration schemes and modeling consi- 
demtions that lead to either a lumped or consistent mass 
idea&at& are discussed- F%tally, a near of demon- 
strative sampk soh&ns are presented. Here, the analy- 
~sofa~~s~~~kap~~ 
and kading to ekstic-pkstic structural response is dis- 
cussed in detail with regard to the finite element mode- 
ling and the time integration scheme employed. 

IcAuxJLAxsoNoppuRDslNlTxELw(&Ms 
The objective in this work was to develop a fluid- 

structure analysis capability that can be employed in the 
analysis of problems in which no gross fluid motion 
occurs. For these types of probkms a Lagrangian 
fade is effective. ‘Ihe &rid elements can than be 
ern~y~ in ~nju~ with structural elements that 
~e~~~~~~~~.~f~~ 
two basic assumptions have been used in the formuktion 
of the fluid ekments: 

1. The fluid is compressible and inviscid. 
2. Interaction between mechanical and thermal pro- 

cesses is negligible; thus only the mechanical equations 
are needed to describe the fluid response. 

Using a I+mngkn formulation, in principle, a total or 
updated Lagn&an formulation can be employed, but 
considering the numerical operations required for fluid 
systems, an updated Lagra&n (U.L.1 formulation is 
more eff e&e [S]. 

2.1 ~ntinuu~ mec~nics fo~~at~~ 
Consider a body of guid undergoing large defor- 

mations and assume that the solutions are known at all 
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discrete time points 0, At, 2At,. . . t. The basic aim of the 
formulation is to establish an equation of virtual work 
from which the unknown static and kinematic variables 
in the con~g~ation at time t + At can be solved. Since 
the displacement-based finite element procedure shall be 
employed for numerical solution, we use the principle of 
virtual displacements to express the equilibrium of the 
fluid body. In explicit time integration equilibrium is 
considered at time t [6] 

(1) 

whereas in implicit time integration ~~jb~urn is consi- 
dered at time t + At, 

In eqn (1) ‘p is the pressure at time t, de,, is a virtual 
variation of the volumetric strain at time t, 

&e,r8-$- (sumoni) (9 
I 

‘V is the vofume at time t and ‘Se is the external 
vilWal work ~~~,~i~~s~ 
e&t of body, surface and in&al forcesbf. TIN quan- 
tities in eqn (2) are defined analogously. 

EQuatiolH (1) and (2) contain the any balance 
and cafe equations used in analytical B&I 
mechanics(9]. in addition we also use the constitutive 
relation 

‘p =: - ‘a AV/Vi, (4) 

where AV is the total volume change of a being 
volume V0 and *a is a variable that my bc pressure 
depcdnt. Using eqn (4) we can directly employ eqn (1) 
in transient analysis. For static analysis or implicit time 
integration we liize eqn (2) as summa&& in Table I 
and obtain t8,9f, 

where ‘p is evaluated using eqn (4) and ‘a is the tangent 
fluid bulk modulus. 

The linearization used to arrive at eqn (5) introduces 
e~inthesolutionwhichmrmybe~ifthittimestcp 
is relatively large. In order to reduce solution errors and 
in some cases instabilities (see sampk problem 4.4) 
equilibrium iterations are used. In this case, we employ 
the f~owi~ eq~n to solve for the incremental 
displacements [ 101 

.I- 
SK A&&e,,‘dv - 

f 
‘p66,7&‘“‘dv 

W w 

s t+yjj + 

I 

oatp”-J~~,,~~-JJ:+~dvJk-JJ 

t+AfV(k-1) 

k=1,2,... (6) 
where 

‘+A’u;k’ = l+Arut’k-l>+AUI(k) 

and eqn (6) reduces to eqn (5) when k = 1. 

Table i. Updated Lagrangian formulation of fluid elements 

2.2 Fur&e element discmtimtion 
Using isoprtpmetric i%tite element discretization, the 

bask assum@ons for an eiement are [S] 

‘x, = 8, hlr 5, 
i = 1,2,3 depending on 

‘& = &zt h&‘uc* 
one, two or three- 
dimensional analysis, (71 

N respectively 
Aul = &xJ hk A&’ _ 

where N is the number of nodes of the element consi- 
dered, the k are the elemcut interpolation functions, and 
the %, ‘U: and hu: are the coordinates, displacements 
and incremental disp&zements of nodal point k at time t. 

~~ the reletioas in eqn (7) into eqns (I) and 
(6) and in&d& the effect of inertia forces, we obtain 
the governing tite element equations in explicit time 
integration, 

M’&=‘R-:F (8) 

and in implicit time integration 
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where the fist iteration, i = 1, corresponds to the solu- Table 3. Linear and nonhear straindisplacement trans- 
tion of eqn (5). formation matrices 

In eqns (8) and (9) we have 

M = time independent lumped or consistent mass 
matrix 

:KL, :K, = linear, nonlinear strain (tangent) stiffness 
matrixinthecon8gurationattimef 

‘.. ‘+*%= vector of nodal point accelerations in the a, 
contiguration at time t, f + At 

Aa = vector of incremental nodal point displace- 
ments 

Two-dimawiwtaI analysis 
Watationdispkcement transformation vector: 

where 

‘R ‘+&R = vector of external loads at time t, t + AI 
:F, :I%F = vector of nodal point forces at time t, t + At 

and 
the superscript (i) indicates itb iteration. 

N 
I- x, = F h, ‘x ,‘. 

-1 

Nonlinear stmindispkccment transformation matrix: 

The matrices in eqns (8) and (9) are defined in Table 2 
for a single element using the following notation: 

Ii = displacement transformation matrix 
HS = surface displacement transformation matrix 
:V = dilatation-displacement transformation 

IIMtliX 

:BNL = nonlinear straindisplacement tINIS- 

formation matrix 

( h, . . 
5 IS included only in axisymmetric anaIysis 

> 

Thnx-dimakonal analysis 
Diktationdispkcement transformation vector 

‘+*&‘+*Af = traction and body force vectors. 

The displacement transformation matrices and force 
vectors are defined as usual [6, IO], and Tabk 3 gives the 
matrices 3 and :B,.,a for the two and three dimensional 
fluid elements. 

Using the above formulation, the 4-8 and 8-21 vari- 
able-number nodes elements (shown in Fig. 1[6]) with 
lumped or consistent mass assumptions have been im- 
piemented in ADINA for two- and three-dimensional 
analysis, respectively. The lumped mass matrix of. an 
element is calculated by simpiy allocating l/N times the 
total element mass (where N = number of nodes) to the 
nodal degrees of freedom. 

We may note that the continuum mechanics equations 
of motion (eqns 1 and 2) are valid for general displace- 
ments. However, considering the finite element equations 
of motion severe mesh distortions that are due to large 

ifiN‘ = 

tb., 0 0 ,hu 0 0 . . . &NJ 

th,3 0 0 ,hu 0 0 . . . ,hNJ 

h 0 0 h 0 0 . . . hN3 1 
displacements reduce tbe accuracy of a finite element 
sohttion. In order to preserve solution accuracy rezoning 
would have to be used which is not considered in this study. 

2.3 Analysis of pvid finite elewwnts 

Table 2. Finite ekment matrices 

Integral Matrix evaluation 

r+Ar& = I “A&,Su,oda 
,+A, 

B= 

0.4 I 
Iist’+A~toda 

0.4 

+ 
I 

ov oP’+A&5&odv SOP Hf’+A;fodn 

iILL8 = 
U 1” 

I -‘P&‘dv :F= -‘p:V”dv 
I” 

The variable-number-nodes thiid elements shown in 
Fig. 1 are compatible with the solid elements available in 
ADINA. This compatiiity is important because higher- 
order koparametric solid elements have proven to be 
significantly more effective than lower-order elements in 
analysis of problems with sign&ant bending response 
and would naturally be employed with high-order fluid 
elements. However, to model the complete fluid domain 
appropriately, the basic characteristics of the fluid ele- 
ments need to be hnown. 

The basic characteristics of a fluid element are dis- 
played by the element eigenvahres and eigenvectors[6]. 
Figure2s ummarizs the eigensystem of a Cnode two- 
dimensional ekment..The figure shows that, as reported 
earlier, using reduced Gauss integration (1 point in- 
tegration) for the 4-node element the hourglass patterns 
correspond to zero eigenvalues. Various attempts have 
been made to remove the instability of the hourglass 
deformation modes without increasing the computational 
expense signifkantly, but it is believed to be best to use 
2 x 2 Gauss integration. Indeed, the formulation-consis- 
tent removal of the hourglass instability using 2 x 2 
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TYPICAL ELEMENTS 

01 TWO-DIYENSIONAL FLUID ELEMENTS FOR PLANAR OR 
AXlsvYYETRIC cwDlTIoNS 

TYPICAL ELEMENTS x/ 
bl THIifE~0lYENSIONAl FLU10 ELEMENTS 

Fig. I. Fluid elements in ADINA. 

Gauss quadrature is an advantage of a finite element 
formulation over a hnite difference anaiysis. 

Figure 2 also gives the number of zero eigenvalues of 
the&nodetwodimensionaiand8and2O-n&three- 
dimensional elements. As for the Qnode two-dimensional 
element, reduced hUegraM introduces additional zero 
eigenvalws that can result in solution instabWies in the 
analysis of a fluid-structure system. 

Of particular interest is the analysis of fluid-Wed 
pipes. If the geome&y and loading are axisymmetric, 
these thud-structure systems can be mod&d using the 
axisymme&ic elements, and the question is whether 
higher or lower-order elements should be employed. It is 
well-known that in axisymmetric analysis of solids, 
hiqher-order isoparonletric elements need be employed 
for accurate pruWion of stresses. The same concht!Jion 
is reached for the fluid elements. Figure 3 shows the 

D 
A,’ 0 _ - 

II 
A6:A,'0 IN 

I POINT GAUSS 
CUAORATURE 
(HOURGLASS MODESI 

(01 EIGENVALUES AND EIGENVECTORS OF ‘l-NODE TWO-DIMENSIONAL 
PLANE FLUID ELEMENT, EXACT INTEGRATION 

(bl NUMBER OF ZERO STRAIN ENERGY MODES FOR FLUID ELEMENTS 
(INCLUOING RIGID BODY ~130~5) 

Fii. 2. Eigcnsyatcms of two and threedimensional fluid 
elements. 

stresses calculated in axisymmetric plane strain fluid- 
sdid models with a varying bulk modulus in the fluid and 
compares the results with theoretical values. 

The use of higher-order fluid and solid elements in 
transient analysis requires that a distinct choice be made 
on the use of a lumped or consistent mass idealization. If 
Qnode twodimensional elements (and 8-node three- 
dimensional elements) are employed it is probably most 
effective to use a lumped mass model. Not only is the 
comprdotional expense less when using a lumped mass 
matrix but the similarity between the finite element 
equations and the finite difference equations (in some 
cases these are the equations used in the method of 
characteristics) requires the use of a lumped mass 
matrix for best solution accuracy [ 111. On the other hand, 

- SOLID ELEMENTS- 
iRADIAL STRESSI 

-~,.IIFJ’PSI J. -~,M+Ps~-& -4 

-- -- FLUID ELEMENTS 

IPRESSURE 

APPLIED EXTERNAL FflESSURE 2 IW 1 IO’ PSI 

- - - - ANALYTICAL SDLUTMll 

-60 FINITE ELEMENT SOLIJMWS IEXACT lNTECRAl0N USEDI 
- A-NOOE ELEYENTS MC9EL 
- 6-wODE ELEUENR MOOEL 

-loot 
CZOIN-, 

Fig. 3. Analysis of axisymmetric plane strain fluid-structure model, Cnode vs 6-node elements. 
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IO AxISYYYETRlc 
FLUID ELEMENTS 

considering the use of hiier-order elements, a lumped 
mass characterization leads to spurious oscillations that 
arise because a lumped mass distribution does not 
represent a consistent loading on the elements. Since it is 
the objective to employ as few higher-order elements as 
possible to model the fhrid-structure domain, a consistent 
mass idealization is in most cases desirable. 

step pressure applied at its free end. Lumped and 
consistent mass idealizations were employed in this 
analysis, and the objective was to study the accuracy 
with which the response of the water column is pre- 
dicted. 

3..TB(El?r!EGithTlou 
In ADINA, the central differs method is employed 

in explicit time in~~t~n and the Newmark method or 
the Wdson-6 method can be used in implicit time 
integration[6]. Using implicit time integration a lumped 
or consistent mass matrix can be employed, but in 
explicit time integration only a lumped mass idealization 
can be specified. Table 1 in [7] summarizes the complete 
solution algorithm employed. 

Figure 4 shows the calculated longitudinal displace- 
ments at the free end of the column and compares these 
displacements with the analytical solution. It is seen that 
using implicit time integration (Newmark method) the 
free-end displacements in the ~nsis~nt mass analysis 
were predicted accurately for a time period that include 
6 wave reflections, whereas the lumped mass analysis 
results are inaccurate. 

‘l’be stability and accuracy characteristics and the 
computational details of using these techniques in linear 
analysis have been summarized in 161. Considering 
general nonlinear analysis the main difficulty is to assure 
the stability of a time integration solution. In explicit 
time in~~n the sohttion is simply marched forward, 
and it may be back to identify an insect that 
manifests itself only as a silt error turn-on 
over a few time steps. On the other hand, using an 
implicit time integration method, in each time step the 
incremental equilibrium equations are solved and equili- 
brium iterations can be performed on the solution quan- 
tities. These equilibrium iterations arc equivalent to an 
energy balance check and can be very important to 
assure a stable and accurate solution (see sample prob- 
lem 4.4). 

Ekcause of the simplicity of the problem the method 
of characteristics shows that in this analysis the exact 
solution can be calculated using the central difference 
explicit solution method [ 111. To obtain the exact solution 
the pressure and lumped mass idealizations must be such 
that the displacements are uniform over the column 
cross section aud At = AL&, where c is the wave velo- 
city and AL. is the length of an element. 

4.2 Static analysis of an asse~&ge of co~cent~c ftuid- 
~~ caged 

Five concentric flu~-~l~ cylinders were analyzed for 
a load applied on a stiff cap. This same problem was 
studied by Munro and Piekarski[12]. Figure 5 shows the 
finite element model employed and the predicted fluid 
pressures. The finite ekment solution is compared with 
the approximate analysis results of Munro and Piekarski. 

csMPLE~oNs 
The sample analyses presented in this section have 

been performed using the computer program ADINA in 
which the fluid elements discussed in this paper have 
been implemented. 

4.3 Transient analysis of a water-filled copper tube 
The dynamic response of a water-filled copper tube 

subjected to an impact loading was analyzed. The struc- 
ture, the loading and the finite ekment model employed 
are shown in Fig. 6. This problem was also analyzed by 
Walker and P~~i~[l3], who es~blis~ governing 
~cfen~ equations based on a number of ~s~ptions 
and solved these equations using the method of charac- 
teristics. 

4.1 Analysis of rigidly-contained wafer column Two finite element analyses were performed: a lumped 
A simple axisymmetric water cohunn idealii using mass and a consistent mass idealization was used. The 

&node elements as shown in Fig. 4 was analyzed for a mass allocation employed in the lumped mass analysis is 

-05 
r 
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25 !- 
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- =- CENTER DISPLACEUENT (POINT AI 
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-* - FREE END BSPULWMENT IPOINT A 6 9) 

ibl L~GITUDINAL DISPL~EME~T OF RIGIDLY CONTAINED WATER COLUMN 

Fig. 4. Longitudinal displacement of free end of rigidly contained water column under pressure step load. 



388 K. J. BATHE and W. F. HAHN 

TOTPL LOAD 2 2 04 I IO’N 

AMRAGE CYLINWR WLL TNtCKlESS JO cm 

---- ANALmcAL sauYwN 
- FINlIE ELENENT SOLUYNIl 

00 
- -aosu---------I 

CYLINDER RADIUS (cm) 

lb) PRESSURE IN FLUtDS Am, RAVYL STRESS IN CWNOERS 

Fig. 5. Static analysis of fluid-f&i concentric cylinders. 
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Y+ lb) FINITE ELEMENT MODEL OF FLWD-FILLED TUBE 

Fig. 6. Analysis of water-filkd copper tube. 
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shown in Fig. 6. This distribution of mass corresponds to 
the assumption used by Walker and Phillips. It should be 
noted that a thin layer of elements was used at the tube 
wall in order to “release” the axial displacements of the 
fluid. 

In both finite ekment analyses the Newmark method 
was employed with a time step 1 gsec, i.e. 65 time steps 
correspond to the pulse length. The length of the ele- 
ments (axial aeon) was about l/l~ of the pulse 
length. The aspect ratio of the elements was very high 
(1:34). 

Piis 7 and 8 show the response of the system at 
2 = Sin (see Fig. 6) as predicted in this study and by 
Walker and Phillips. It is seen that for t < 100 ksec the 
finite element solutions correspond reasonably well with 
the results of Walker and Phillips, but relatively large 
solution discrepancies are observed at larger times. 
These solution discrepancies are due to the different 
assumptions employed in the analyses. Si no 
experimental or “exact analytical” results are available, 
it is difhcult to assess the actuaI accuracy of the different 
models. However, considering the finite element solution 
results it is seen that the consistent mass model predicts 
a somewhat smoother response for the hoop strain than 
does the lumped mass model and gives also results that 

compare somewhat better with the response predicted in 
1131. 

4.4 Nonlinear transient analysis of 0 pipe test 
The experience gained in the above analysis was used 

to analyze the water-filled straight piping configuration 
show in Fe. 9 subjected to a pressure pulse at its end. 
The ela&-pla&c response of this pipe was experi- 
mentally assessed as mported in 1141. Figure 9 shows 
also the finite ekment model employed in the analysis. 

in this analysis, a consistent mass matrix was 
employed and the time integration was carried out using 
the Newmark method. The time step was changed to half 
its size at the time the pulse entered the nickel pipe so 
that the pulse front would pass thruugh a solid element in 
about three time steps. The effective stiffness matrix 
used in this analysis was reformed only at time t = 1.905, 
2.302, and 3.435 msec. However, to take into account the 
elastic-plastic response of the pipe, ~1~~ iterations 
wereusedateactrtimestcponokthepufJeteachedttre 
nickel pipe. The ~~t~~ iteratiuns (energy balance 
check) were found to be necessary for a stable solution, 
although an average of only 1 to 2 iterations per time 
step were carried out. 

Figure 10 shows the calculated pressures and hoop 

NEWMARK METHOD 

o HOOP STRAIN 
x PRESSURE P 

l B 

----WALKER 8 PHILLIPS 

Fig. 7. Response of water-tilted copper tube to half sine pulse of 65 j~sec duration. 

----WALKER 8 PMlIPS 

Fii. 8. Response of water-t&d copper tube to half sine pulse of 65 JSCC duration. 
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3-Inch FLEXIBLE NI 200 PIPE 
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-5 
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H P TRAIN t IN THE NICKEL RPE AT VARIOUS AXIAL LOCATIONS OBTAINED BY E : u/r WHERE 
+d-TrI RA IAL DISPLACEMENT OF A MIDSIDE NODE AND r IS THE INITIAL RADI$L LOCATION 

OF THE HIDSIDE NODE k.p& : I?‘Y I.5325 HOOP STRAIN I.5 IN INTO NICKEL PIPE) 

PRESSURE LOAO APPLIED TO NODES I AND 2 CONSISTENT MASS NEWYARK lNTEGRATlQ& 
SMALL DISPLACEMENTS 

Fig. 9. Finite element model of straight pipe test. 

strains at various locations along the pipe as a function 
of time and compares the ADfNA results with the 
experimental data. It is noted that in general the cal- 
culated response compares well with the experimentally 
observed response. 

5. CB 
The transient analysis of fluid-structure systems 

presents a great deal of diflkulties because an ap- 
propriate @Mural and fluid representation together 
with effective numerical procedures must be employed. 
In this paper, the fluid is assumed to be inviscid and 
compressible, an updated Lagangian formulation is used 
to describe the fluid motion, isoparame tric finite element 
discretization is employed with lumped or consistent 
mass idealizations and the incremental equilibrium equa- 

tions are solved using explicit or implicit time in- 
tegration. The solution capabilities have been implemen- 
ted in the ADINA computer program, and the solution 
results of various sampie analyses are presented. 

The study performed here indicates that higher-order 
isoparamatric finite elements can be effective in the 
representation of the fluid. Depending on the dis- 
cretization used, the elements may have to be employed 
with a consistent mass idealization and implicit time 
integration. 

Considering nonlinear analysis, it can be important 
that equilibrium iterations be performed in order to 
prevent sohuion instability. In some analyses only very 
few iterations are needed to greatly improve the solution 
accuracy (see Section 4.4). 

Since there does not exist a single analysis approach 
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Fig. IO. Puke propagation in water l&d straight pipe system. 

that is always most eiktive for the analysis of fluid- 
s@ucture problems, it is deemed best at this time to have 
versatile c43mpuWional capabilities available. ibis way, 
different finite element discretizations, mass idealizations 
and time integration procedures can be chosen for an 
effective soiution to a particuhr problem. In this paper 
much emphasis has been placed on the use of higher- 
order isoparamehc finite ehents, consistent mass 
idealization and implicit time integration. However, it 
need be noted that these techniques have been employed 
primarily in twodimensional analysis and can be pro- 
hibitively expensive in ~~~nsio~ response Cal- 
culations. 
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