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ON THE CONVERGENCE OF A FOUR-NODE PLATE BENDING
ELEMENT BASED ON MINDLIN/REISSNER PLATE THEORY
AND A MIXED INTERPOLATION

K.J. Bathe(l) and F. Brezzi(z)

1. INTRODUCTION

The aim of this paper is to analyze, from a theoretical point
of view, a four-node element for Mindlin/Reissner plates recently
introduced by Bathe and Dvorkin [3]. We recall that the Mindlin/
Reissner formulation for '"moderately thick" plates amounts to
assume that the "in-plane" displacements u; and up have the
form [2]

* up(x,y,2z) = -2B1(x,y); ux(x,y,z) = -zBa(x,y) (1.1)

In the Mindlin/Reissner theory the unknowns are B1(x,y),

By(x,y) and u3 which is assumed as

uz(x,y,z) = w(x,y) (1.2)

The unknowns 8 and w are defined in 2 € R?, and the undeformed
configuration of the plate occupies the region ax]-t/2,t/2]
(hence, t is the plate thickness). The corresponding strain
field is therefore -

]

€11 = -2081/3x €55 = -23B2/3y €33 =0 (1.3)

—2(3B1/3y + 382/ 3%) 213 = dw/9x-By 2e23 = dw/dy-B,
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and the corresponding stress field is

011 = (e11+ver)) E/(1-v?) 022 = (egptvel]) E/(1-v2)

oij = E eij/(l+v): ij = 1,2,3; ifj (1.4)

where E is the Young's modulus and v is the Poisson's ratio.
If p(x,y) is the transverse loading per unit area, the total
potential energy is given by

Ie= % t3a (8,8 +%7\t sz-glz de -[pwdﬂ (1;5)
whereA ‘ Q
a(B,8) = = f [(381/3x+v332/8y)881/8x + ("331/' ox
- 12(1~v2) o
A (1.6)
+38,/3y) 38,/ 8y + 27 1(1-v) (3B,/dy+3B,/ 3x) 21dxdy
A = Ek/(2(1+)) (1.7)

and k is a constant to account for the actual nonuniformity of
the shearing stresses (namely, since 033=0,3=0 on the lower
and upper surfacesof the plate, we must "correct" (1.3) which
assumes €13 and €23 to be constant with z; for more details,
see e.g. [2]).

We assume here, for the sake of simplicity(f) that our plate
is clamped along the entire boundary 9Q; hence we look for
(B, w) in the space

V="{(n,0) | n€@} ()2, TEH} (M} . (1.8)

The well-known Korn's inequality (see e.g. [6]) states that

3 >0 such that ¥ .r_l_e(H% (2))?

(1.9)
a(n,n) = e [inll?
This implies that, from the mathematical point of view, for any
t>0 the functional T in (1.5) is strictly convex and hence has
a unique minimiser in V. However, it is also well known that
many finite element discretizations of (1.5) fail when the

() Although best tractable for mathematical analysis, in actual
computations, the clamped plate problem usually yields the worst
convergence properties. :



thickness t of the plate is "too small". In order to understand
this phenomenon, we thought it necessary to comstruct a sequence
of problems (P ) such that the corresponding solutions (B(t),
w(t)) stay bounded for t+0. Such a sequence 1s meant as a test
for the numerical discretizations and our analysis will concen-
trate on the behaviour of the discretization in [3] when applied
to the sequence. For a similar analysis on several beam elements
we refer to the very good paper by Arnold [1]. Unfortu-
nately, our (two-dimensional) case is much harder, so that the
generality of the results of [1] on beams is (at this time) out
of reach for plates.

An outline of the paper is as follows. In Section 2 we intro-
duce the sequence of problems (P ) and we study the behaviour
of the corresponding solutions for t+0. In Section 3 we recall
the definition of the element in [3] and we show that, when it
is applied to the sequence of problems (Pt)’ the corresponding
discrete solutions satisfy

lla(e)-g, () [} + llw(o)-w (O]} <cn(||s®lls+llye)]l,) (1.10)

with ¢ independent of h and t. We also have the (non-optimal)
result

tlly -y, ®|ly <en - (1.11)

where vy = t—z(gyfg) and‘xh.:_t-z(jwhfgh) afe the continuous and

discrete 'shear strains". For the sake of simplicity, the analy-
sis of Section 3 is carried out on the particular case of a
rectangular @ and for a decomposition into rectangles. The

- analysis of more general cases (using the element in shell prob-
lems [7]) is not a straight-forward generalization of the present
case,

2. TH? SEQUENCE OF PROBLEMS (Pt)t>0'

We construct our test sequence in the following way. We
assume that @2, E, v are kept constant, while the pressure
Pe(x,y) varies as

P.(%,y) = t3f(x,y) (2.1)

where f(x,y) is a given function, say, in LZ(Q), which obviously
does not change with t. By dividing the potential energy in
(1.5) by t3 we have therefore the following sequence of problems

Minimize, for (B,w) €V the functional

A

(2.2)
- 2
3 a@.8) +3 ¢ |lvw-gll; - (£,



where, as usual, ( , ) denotes the £2(Q) inner product.

Again Korn's inequality (1.9) ensures that (2.2) has a
unique solution, (B(t), w(t)), for all t>0. It is also an easy
matter to check that (say, for O<t<tg)

”_B_(t)”i;l- l]w(t)“% + t2||1(t) ”3 < c indep. of t 2.3
where y(t) 1is- defined by )

-

y(£): = t 2 (w(t)-B(t)) (2.4)

In order to analyze the behaviour of the solution for t+0 it
is convenient to consider the Euler equations associated with
(2.2)

find (B(t), w(t))€ V such that
a(B(t) ,n) + A(x(t),¥z-n) = (£,2) ¥ (n,0)€EV (2.5)
1(£) = 72 (T(e)-(c))
It is clear that in order to study the behaviour of the solu-
tions for t+0 we need estimates on y(t) rather than on ty(t)

as in (2.3). For this we introduce the space

Ho(rot;f) = {x | lG(Lz)Q, rotX € KON

X-T = 0} - (2.6)

where

rot(xl,xz)z = 3x,/3y = 8x,/9x (2.7)

T = counterclockwise tangent unit vector to 8% - (2.8

2 2 2 2

llxllg, (rot; @) = lIxllo + roex|l, =2 lixlly (2.9)
and the space

I':= (Ho(rot;Q))' = dual space of Hy(rot;Q) (2.10)
Theorem 2.1 We have

Hy(t)”r < c independent of t (2.11)

Proof. From (2.10) we have that there exists X€ Ho(rot:;Q) such
that -



2 2
(r(e),x) = llx (ol = llxIl . (2.12)
We shal} ‘show that it is possible to find (3,::)6 V such that

X=Vg =n (2.13)

lInfl+ llelly < ellx!ly (2.14)

with ¢ independent of x. If this is true, then from (2.3), (2.5)
and (2.12)-(2.14) we get

vl lxilg = Gox) = (£,0) - ag,n)

<cellelly, + lally) < e lixlly

which implies (2.11) ‘9 Hence we ‘have just to show (2.13), (2.14).
We first choose 6 E(I-IO(Q))2 such that

’

div 8 = -rot x (2.16)

(2.15)

llelly < ¢ [l rot xll, (2.17)

This is always possible (see e.g. [9]) since rot x has zero mean
value on Q. Then we set -

n H (ﬂlsﬂ2)= = ("92,61) . (2.18)
so that from (2.16) - (2.18) we have

rot n = -rot X (2.19)

Il

vell ror x[l) < ellxlly Iy
Now we choose [ as the unique solution of: Ar=div _:{_+div_rl ,
z € H3(R). Clearly

lzll, <.e(ldivx + divnll ;) < ({lx[ly + llnlly

A

(2.21)
< eflx lly

We have now

div(Vg-n) = divy; rot(¥z-n) = -rotn = rotyx

- - (2.22)
(¥z-n) Tt = x-T = 0 on 23Q

which easily imply (2.13). On the other hand (2.14) follows from
(2.20) (2.21).



We are now able to analyze the behaviour of B(t), w(t) for
t+0., -

Theorem 2.2 We have, for t+0,

B(t) ~ Bg, w(t) ~wo in Ho(R)

(2.23)
xft) ~yyinT
where Bg, Wo, Y, satisfy:
a(Bp,n) + A < yg,¥e-n >=(£,8) ¥ (n,2)EV (2.24)
Ywg = 8o (2.25)
E 02wy = 12(1-v3)f (2.26)

Proof. (2.23) is obvious from (2.3) and (2.11). Then (2.24),
(2.25) follow immediately passing to the limit in (2.5). Now,
taking £=0 in (2.24) we have

-A Bg = X Yo (2.27)
where -A is the (2-d) linear elasticity operator (associated

with the bilinear form a( , ) ). Taking instead n=0 in (2.24)
we get .

div vp = -f ’ ‘ (2.28)
and (2.26) follows from (2.25), (2.27), (2.28). -
Remark. Let wK(t) be the solution of the Kirchhoff model

EC A2 (t) = B, = £3f C(2.29)
12(1-v2)

corresponding to the same values of E, v, and load P, of our

test sequence of Mindlin plates. Then theorem 2.2 states that
the Mindlin solution w(t) converges to the Kirchhoff solution
W (which actually is independent of t). Note also that this

is independent of the choice of the correction factor k in (L.7).
For additional results on this convergence question see e.g.
Destuynder [5].

_Remark. It can be shown that the space T defined in (2.10) could
“also be written as

P={c| €@V, divee H2(Q)} (2.30)



It -seems natural to guess that optimal error estimates for xﬁt)
should be given in the space I'. However, for the case analyzed
in the next section we were not able to do so. The task is much
easier in the one—dimensional case where the space corresponding
to I' is just 12,

Remark. The main reason for proving theorem 2.2 is to show that
the sequence (B(t), w(t)) does not tend to zero when t+0. The
test would not be serious otherwise.

3. CONVERGENCE OF THE FOUR-NODE ELEMENT

We assume now that Q is a rectangle and that we are given a
sequence {Th}y of uniform decompositionsof Q into rectangles
R; if h; and h, are the lengths of the edges of R, we set

|h| = max hy . (3.1)

and we assume as usual that there exist two constants c;,
cp > 0 such that
ca|h| <hi/hy < e |h] . (3.2)

for all Th'
We define, for all Th’

Q, = {¢|s€H}(D); ¢lR€ Q ¥ RET, ) ' (3.3)
where Q; is the space of bilinear functions. We also introduce
Ty = {xIX€Ho(rots®), x)5 € (Qo1s Qo) ¥ RET,} (3.4)

where Qg; = span {1,y} and Q)¢ = span {x,1}. Note that the
condition x€ Hg(rot;R) means in this case that x * 1 = 0 on 3Q,

x1 is continuous on the horizontal edges, and that x, is con-
tinuous on the vertical edges. Hence the degrees of freedom in
r, are: values of x; on the internal horizontal edges and values
of ¥, on the internal vertical edges.

For any vector nhG (Qh)2 we define now its interpolant nh in
Fh by the formulas

h =n at the midpoints of horizontal edges
h,l h,l (3.5)
* '3
ﬂh’z = "h,z at the midpoints of vertical edges

We finally set

= Q)% x q (3.6)



Applying the four-node element introduced in [3] to each problem
(2.2) we have the following sequence of problems:

Minimize, for (gh,wh)é Vh the functional -

1 =2 %
3 a8 *X— (12w - & 17 - (2w

It is easy to check that each problem (3.7), for >0, has a
unique solution (§_h(t) ,wh(t)). The dependence on t will not be’

made explicit in the notation when unnecessary. Our aim is to
estimate the error ||8(t) - B (©) ||y + |[w(t) - w () ||y uni-

formly in t. As in the continuous problem, it will be convenient
to introduce

=2 : *
lh(") =t  (Ww(t) - _B_h(t)) (3.8)
and to write the Euler equations of (3.7) in the form
find (_B_h,wh)e Vh such that
*
= 2 o
Yp =t @y - By
The following lemma summarizes a few properties that can be
proved by simple algebraic manipulations or standard numerical
integration techniques.
Lemma 3.1 We have, for all (Dh,wh) in V. and for all X € I‘h:

h
w €T, (3.10)

(lh’Dh) = (l(h ’ﬁh) (3.11)

o
rotp_h|R- TRl Rrot_g_h dxdy -VRGTh (3.12)

The following lemma provides some asymptotic estimates that will
be used later on.

Lemma 3.2 We have
= e ————_ S ————
I 1/2
llz-2 Hl.v’R = c|h|(||82c/3x2||§’R + |32 /3y2||%’R) /

¥ Re-,-h (3.13)

for ¢ smooth and t;I = interpolant of ¢ in Qh




*
”ﬂh"ﬂh“o = CIh' Ill‘h“l

2 (3.14)
for n € (Q)

Proof. The inequality (3.13) is well known (see e.g. [4] [11]).
The proof of (3.14) is an easy exercise. .

We now give the main theorem.

Theorem 3.1 Let (B(t), w(t)) and (B, (1) ,wh(t:)) be the solutions
_9_? (2.5) and (3.9) respectively. We have

| 8- () |1, + [[w(®)=w (][, + t]| x(&)-y, (O],
<efn| B, + el (3.15)

w1th ¢ independent of h and t, and y(t), 1h(t) given in (2.5)
and (3 9).

Proof. Let §-I € (Qh)2 be such that

e - eIl < clu] Ilgll, (3.16)

Other requirements on B. will be given later on. Using the
Korn's inequality (1.9) we have

cll -8, 112 < a(e-8p,8-8,)

= a(B-8,,B8-B,) + a(B-B 8

~ByoBrBy
<clnl [[glly + a(B-8;.878,)

) (3.17)

On the other hand, from (2.5) and (3.9) we obtain

(B -8, ) A(y,B.-B, ) A( g g)
a N = AlXLBs~ = A, 5B '
BBy it BBy Y2818 (3.18)

2 )\(r’lh,ﬁl‘_h) + ”l”o cln| H_B.I'Ehnl
where we have used (3.14) for gh= __B_I- Eh . Now we have
R *
Mtk = MPQerLY D - Ay By + By
(3.19)

2 %
+ A(l-lh, ty +§I)
Note now that from (2.5) and (3.9) we have

(X-y,» ¥5,) =0 ¥, €Q (3.20)



' *
so that, since tzlh +§h = s (3.19) becomes
* 2 %
- - = -Atl||y~ 2 -
MY, 88,0 = Ay 112+ Gy »tTrEy)
Combining (3.17), (3.18), (3.20) we have

c|lg-g, |12 + 22y 15 < elnl (llglly [l18-8, 1l

%
| + 1lxlly 118778 l11) + A=y, t2y+8p) (3.21)
Here we need more help from _é‘_I. More precis_.ely we require that
rot EI = - L] t2rory ="t | rotg (3.22)
1 8] /R ~ |§]

for all R in T,. The existence of a B, satisfying both (3.16)
and (3.22) is proved in lemma 3.3 below. Next we choose
q G(Hé(ﬂ))z such that
*
rot ql = t2 roty + rot_gl. (3.23)
=g AR

It follows from (3.22) that q may be chosen such that

llall, < clnle? || rory (3.26)

(see (2.19), (2.20) for a similar argument, plus the standard
bound |]rotl-% I rot:'y||0 < c|n| ||roty|l,). Hence
R s

t27+§I-q has zero rotation, so that we may write
%

t2y + B8, -9=% (3.25)

for some z€ H;(Q). Using (3.25) and (3.20) we have
%
MYy £2y+8.) = AMy=y. g + ¥5)
I

= l(l-lh,g) + )\(I:";Y_h’_v‘;‘z; ) (3.26)
We have finally from (3.13) and (3.25)

Ilc-cllll?n < c|n| (|[22%z/a=2[3 o+ lla2z /25212 o112

2 3.27

< clnl tw2llxll; + llally (3.27)

and collecting (3.26), (3.24) and (3.27) we get

Ay=ry, t2r-Ep < elnle? lly=wlly Hxll, (3.28)



Combining now (3.21) and (3.28) we obtain

188,11, + Ae? |ly=v, 112 < c|n] tisll, Ite-gyl,

(3.29)
+ “I_”o ”:B.I"_B.hlh + tzlll‘lhllo ”1”2}
and hence easily (for fixed 1))
8=, M1, + elly=x, 1l, < clul cll8ll, + llx]l2) (3.30)
Finally
- x 2, _ 2
Jo-Vw = -8 + toy -ty (3.31)
and (3.15) follows from (3.30), (3.31) using again (3. 14), now
with n __h Eh -

The proof of theorem 3.1 used the existence of a function
BI satisfying (3.16) and (3.22). The proof of existence of
B is the object of the following final lemma.

Lemma 3.3 For any _@E H3A Hé)z there exists EI € (Qh)2
such that (3.16) and (3.22) aré satisfied.

Proof. Let us first set 6;: = -B5 and 6,: = B; so that
rotf = divf, Next consider the auxiliary problem

~43 + 3 = -08 -
(3.32)
dive = dive

which obviously has the unique solution e 8 and P= 0. Next
consider its finite element approximation

fee, - m, - [y e, - [amm, #n, €2

(3.33)
fdive =f aive ¥ RET,
g 2

where gh is sought in (Q )2 and p,, among piecewise constants.
Pllowing [8], [10] (anJ‘their notations) we obtain that
(3.33) has a unique solution, which satisfies

ey lly +nllell, < e llo-otl, : (3.34)

where m is a projection operator that filters out the checker
board modes by blocks of four elements. Hence we have, for all

8. € ()3,



: (3.35)

On the other ﬁand

f(YQ.“YQh)‘(YQI*YQh) = [ Py, div(gr-8,) (3.36)
= [py div(gI-Q) = 7Py div(QI—g) 4-Jf(l-n)ph div(QI-g)

1f we choose now 97 to be the interpolant of 8 by blocks of
four elements ([8]) we have (I-nph) ding=0. Then

ﬁph atvee-9 < clle-gyll Nle el (3.37)

f(I—'rr)ph dive < c“tho |n|?2 udivgll2 (3.38)

because of the shape of (I-n)ph. Combining (3.35)-(3.38) we have

lle-g Il < elnl llell, (3.39)
Now we rotate back, setting

' BI,lz = Gh’z ’ 81,2 = -eh,l (3.40)
Therefore (3.39) implies (3.16) and (3.33) with (3.12) gives
(3.22).

Remark. In the proof of theorem 3.1, we discard at several
points, information (for instance an estimate of order |n]t.
would be enmough in (3.28) instead of the |[h|t?). This is due
to two reasons. Firstly, our estimate is not optimal. The
optimal estimate to be expected should be, for instance

g8 ll, + llwsm |l + llxgylly < clnl

for B, w, Y smooth enough. Secondly, since the estimate is
already non-optimal, we did not endeavor to reduce the regu-
larity required on B and y. An improvement of (3.15) in this
respect should also be possible.

Remark. We used the assumption that the mesh Th is uniform

only in proof of lemma 3.3 (namely in (3.38)): Actually ,

a general rectangular mesh can be allowed, provided that each
rectangle is then split into sixteen equal subrectangles, see [10]

for more details.



4. CONCLUSIONS

‘ We analyzed from the mathematical point of view the finite
element discretization proposed in [3] for Mindlin plates. At
least for particular cases (like a uniform rectangular mesh) we
proved that the element is uniformly stable with respect to the
thickness parameter t and that it converges with optimal rate
0(|h|) in H!, uniformly in t. We did not prove uniform stabil-

ity of the "shear strains Yh = t (th-B ) nor uniform con-
vergence. Actually, we have Hy-y}Jl < c|h|t”! which is ba-

sically unsatisfactory. Probably a filtering procedure should
be applied to y, in order to have L? stability and an optimal
rate of convergence uniformly in t.
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