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The nonlinear dynamic finite element solution of pipe whip problems is presented. The finite element modelling used, 
the step-by-step incremental solution of the nonlinear equations of motion and design considerations are discussed. The 
influence of various physical parameters on the response of the pipe and the restraint, and the effects of using different 
finite element models are considered. Specific emphasis is directed to the verification of the accuracy of the solutions ob- 
tained using energy balance checks. 

1. Introduction 

The US Atomic Energy Commission, now the 
Nuclear Regulatory Commission (NRC), has provided 
specific regulations for considering the consequences 
of major pipe breaks that occur inside and outside the 
containment vessel of  a nuclear power plant [1,2]. In 
the event of such an accident, the essential equipments 
for safe plant shutdown, namely the coolant equip- 
ment and the containment, have to be protected 
against damages from pipe break effects. The required 
protection of the equipment can be obtained by in- 
stalling pipe restraints (pipe whip restraints) onto 
which a broken pipe would impinge. The design of the 
pipe whip restraints can be based on experimental data 
or on an analysis which, because of the complexity of 
the problem, is best carried out using a computer pro- 
gram. 

Since the pipe whip analysis is relatively new and 
complex, a limited amount of literature is available. 

* Paper Q3/5 presented at the International Seminar on Ex- 
treme Load Conditions and Limit Analysis Procedures for 
Structural Reactor Safeguards and Containment Structures 
(ELCALAP), Berlin, Germany, 8-11 September 1975. 

Some parametric studies of pipe whip problems have 
been reported by Moreadith et al. [3] and Anderson 
and Singh [4], using special purpose computer codes, 
and by Palusmy et al. [5] using the ANSYS program 
[6]. Despite these past efforts, various problems must 
be investigated further. The objective in this paper is 
to discuss finite element modelling of the impact of 
the pipe on the restraint, and the selection of an effi- 
cient step-by-step solution procedure. 

In the investigation the finite element analysis pro- 
gram ADINA [7], which is an extension of program 
NONSAP [8], was used to provide solutions to a series 
of pipe whip problems of increasing complexity. These 
solutions are presented in this paper and discussed. Con- 
clusions are drawn regarding the effect of various phy- 
sical parameters and the selection of appropriate nume- 
rical solution procedures. Finally, some design implica- 
tions of the analytical results are pointed out. 

2. Nature of  the pipe whip problem 

In the pipe whip design now widely used in prac- 
tice, a gap is usually provided between the pipe sec- 
tien and pipe restraint to allow for thermal movement 
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of pipe displacements associated with normal opera- 
tions. Therefore, one distinct feature of the pipe whip 
problem is the analysis of impact of the broken pipe 
on the restraint. Since the pipe whip is a dynamic 
process, occurring in an extremely short time interval, 
the inertia forces of the pipe and its restraint system 
and the effect of the material strain rate are factors to 
be considered. Furthermore, the pipe and its restraint 
are expected to undergo inelastic deformations to ab- 
sorb a large portion of energy released from the broken 
pipe. Thus, it is important to recognize the different 
sources of energy absorption in the system and to find 
ways to account for them in the analysis. 

Pipe whip analysis is usually difficult because the 
system is expected to experience during the history of 
response instances a sudden stiffening due to the pipe 
contacting the restraint, as well as softening due to lo- 
cal yielding. Both of these factors may cause difficul- 
ties when using a standard step-by-step dynamic analy- 
sis procedure, because large unbalanced residual forces 
can develop. Consequently, specific emphases has been 
given in this study to test and verify the accuracy of 
the numerical solution procedure used. 

3. Computer program ADINA 

ADINA is a general purpose nonlinear static and 
dynamic finite element analysis program [7]. The 
basic ADINA step-by-step incremental analysis proce- 
dure is reproduced in the Appendix. Both material 
and geometric nonlinearities can be considered. The 
user is provided with the option of specifying stiffness 
reformations, or equilibrium iterations, or both at se- 
lected time steps. The Wilson 0-method or the New- 
mark method can be employed for the direct time in- 
tegration. In the present investigation, the Newmark 

= i (average constant accelera- operator with a = ~, 6 
tion method) was used. 

4. Study problems 

The various objectives of this investigation stated 
earlier have been pursued by analyzing two different 
groups of problems. In the first group, Problems 1.1- 
1.5, simple one- or two-degree-of-freedom dynamic 
models of a pipe and its restraint were studied. These 

Table 1 
Group 1 problems (1.1 and 1.2). 
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Table 2 

Group 1 problems (1.3- 1.5). 
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models cannot represent adequately an actual pipe 
whip problem, but they have been considered in order 
to gain confidence in the analysis procedure and to ac- 
quire a better understanding of various aspects of pipe 
whip analysis. Problems 1 .l- 1.5 and the analytical 
solutions are listed in tables 1 and 2. In the second 
group of problems, an actual pipe was modelled as a 
two-dimensional cantilever beam which is separated 
from the restraint by a gap, and various parametric 
studies were carried out using this model. 

It should be noted that in all problem solutions the 
dynamic response was predicted from the time of load 

application to the time of the maximum restraint de- 
formation. Also, the force applied on the pipe during 
the postulated break was characterized by a step force 
function. 

5. Group 1 problems 

In problems 1. l- 1.5 a few concentrated masses and 

springs have been used to model, in a very simplified 
manner, pipe whip problems. The masses and stiffnesses 
and the gap width used have been based on the physical 
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characteristic of  the pipe in fig. 7. The parameters 
studied include the effect of mass in the restraint, ener- 
gy absorption in the pipe and restraint, and impact of  
the pipe on the restraint. 

5.1. Finite element models 

The finite element models used for Problems 1.1 
and 1.2 and 1.3-1.5 are shown in figs. 1 and 2, respec- 
tively. The stiffnesses of  the pipe and the restraint are 
modelled using truss elements. The material behavior 
of  these elements was assumed to be linear elastic or 
nonlinear elastic in order to simulate elastic-perfectly- 
plastic behavior. This simple lumped parameter and ma- 
terial representation allows with relative ease insight to 
be gained into the stability and accuracy of  the incre- 
mental step-by-step solution as discussed in section 
5.2. 

The effect of  the initial gap is modelled by provid- 
ing an interface or gap element (truss element 2) with 
a stress-strain relationship as shown in fig. 2. A region 

2 
!11 

P (d 

~_. _ .  _ ~ 7 ; ~ L ~ . _ . . .  

I 
i 

LOADING FUNCTION 
It- t (time) 

P (t) CONCENTRATED MASS 
/ = 0.228 Ib-lec.2/IN. 

TRUSS I~  
ELEMENT 

(AREA - 26 IN 2) 

a STRESS o 

i ~ KSl 

29,900. KSI ~ . . . . . . . .  
,/f ~ 29,900 KSI 

• ~ STRAIN ° • 

PROB. 1.1 PROS. 1.2 

STRESS I STRAIN RELATIONSHIPS 
IN TENSION AND COMPRESSION 

Fig. 1. Finite element models (problems 1.1 and 1.2). 

of zero resistance is specified to simulate the effect of 
the initial gap. At the point when the initial gap is 
closed, or when the pipe deflection reaches 3 in. (the 
gap width), the corresponding strain in the gap element 
is -0 .003  in./in, at point B. Loading beyond the gap 
closure point will generate resistance from truss ele- 
ments 2 and 3, which is given by k' r = kr/(1 + kr/kg), 
where kg is the stiffness of the gap element after gap 
closure, and k r is the stiffness of  the restraint element. 
For the large kg/k  r ratio used ( k J k  r = 277), the values 

t t 
of k r and k r are almost identical, i.e. k r = 0.9964 k r. 

5. 2. Solution results 

Problems 1.1 and 1.2 require the analysis of a sim- 
ple one-degree-of-freedom spring and mass system sub- 
jected to a step force function without involving im- 
pact. The exact dynamic response solutions to these 
problems can be found in ref. [9]. Table 1 gives the 
maximum restraint deformations as predicted in this 
study and the exact values. In the numerical solution 
a time step A = 0.0001 sec was used, which is one- 
fiftieth of  the fundamental period of  the system. The 
response predictions obtained by performing stiffness 
reformations and stiffness reformations plus equili- 
brium iterations in each step were almost identical. 

To solve Problems 1.3-1.5,  the finite element model 
shown in fig. 2 was analyzed. The system parameter 
are given in table 2, where it should be noted that the 
amount of mass in the restraint was assumed as 0%, 
10%, and 50% of that of  the pipe. The step force func- 
tion acting on the pipe will force the pipe to impinge 
onto the restraint. 

For better interpretation of  the numerically pre- 
dicted response, some exact analytical solutions are 
given in fig. 3. In the figure the time history response 
of the pipe when free from any restraint, and the plastic 
impact response are given, which have been computed 
as follows. Using the notation given in fig. 2, we have 
for 0 ~< t ~< t~-, where t~- is the time just before impact 
rp(0) = Vp(0) = rr(0) = Vr(O) = 0.0 and 

t 

Vp = f a dt , a = (P - Rp)/Mp , 
o 

t 

rp-- fVpdt, 
o 

(l) 
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Fig. 2. Finite element models  (problems 1 .3-1 .5) .  

where Rp is the internal resistnace force in the element 
modelling the pipe. Let t~ be the time just after im- 
pact. In plastic impact the total momentum is pre- 
served and Mp and M r attain the same velocity V i. 
Thus we have 

1 
Vr(t+) = VP (t+) = V i -  1 + m Vp(t~-), (2) 

where m = Mr/M p. The kinetic energy loss due to 
plastic impact is given by 

KEloss 1 2 - = ~Mp Vp(t i ) - ½(Mp + Mr)V 2 

Vr(t +) = V i, r r = 0 and 

t 

V r ( t ) = V p ( t ) = V  i+  f a d t ;  

ti 

P -  (R r + Rp)  

a = M p + M  r , (4) 

and 
t 

r r = f V r d t .  (5) 
ti 

_ m t!a,t T12tt_xx (3) l + m  %U"P r P~" i l l  

or, in words, the kinetic energy loss is equal to 
m/(1 + m) times the kinetic energy before impact. 
For t t> t~ we then have rp(t +) = rgap , Vp(t +) = 

The responses in fig. 3 corresponding to different 
mass ratios m show that for a larger mass ratio the ma- 
ximum energy absorbed in the restraint (or the maxi- 
mum restraint deformation) rrmax decreases, since the 
amount of  energy lost during the plastic impact in- 
creases as expressed in eq. (3). On the other hand, in 
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Fig. 3. Calculated plastic impact responses. 

the analysis of  Problems 1.1 and 1.2 the maximum res- 
traint deformation is independent of  the mass of  the 
system; namely, we have for Problems 1.1 and 1.2, 
respectively; 

l 2 
rrmax = (~Krrrmax)/P (6) 

and 

rrmax = Rry(rrmax - ~r~y)/P, (7) 

where rry and Rry are the displacement and internal 
resisting force of  the restraint at yield. 

Fig. 4 shows the time history solutions to problems 
1.3-1.5. These solutions have been computed using 
1500 time steps and a time step At = 0.00001 sec, 
which is about 1/135 to 1/165 of  the vibration of  the 

pipe when engaged with the restraint. The response 
predicted using stiffness reformation at each time step 
and stiffness reformation plus equilibrium iterations 
were almost identical for the cases of  small mass ratios 
m = 0.0 and m = 0.10 (Problems 1.3 and 1.4), but for 
a relatively large mass ratio m = 0.5 (Problem 1.5) they 
are significantly different. To check the accuracy of 
all the solutions an energy balance relationship can be 
used, namely that the external work is equal to the 
sum of the internal energies, i.e. we have 

1 2 ( 8 )  Prp = Epipe + Erestrain t + ½Mp V2p + ~M r V r , 

where Epipe and Erestrain t are the energies absorbed 
by the pipe and the restraint, respectively. 

In all cases when equilibrium iteration was specified 
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Fig. 4. Time history response of the pipe and the restraint of different pipe mass/restraint mass ratios (problems 1.3-1.5). 

Table 3 
Energy balance check on ADINA solutions * (problems 1.1-1.5,  table 1). 

PROBLEM 

INTERNAL ENERGIES (E i) (We'~;Ei)/We 
EXT, WORK 

(We) Epipe Erestraint K.E. (pipe) K.E. (restraint: ENERGY 
K-in K-in K-in K-in BALANCE 

K-in CHECK 

P rp R(rp - rpy/2) R(rr -rry/2) +/=M p Vp 2 ½MrVr 2 K-in/K-in 

0 .1% 1.1 26.63 26.60 - 0 - 

1.2 29.87 29.85 - 0 - 0.1% 

1.3 5078.6 242.3 4819.2 0.0 6.9 0.2% 

1.4 4077.1 187.4 4024.9 0.4 0.15 3.3% 

1.5 5391.3 259.4 5128.5 0.0 - 0.1% 

*ENERGY BALANCE FROM t = 0 TO THE TIME OF MAX. RESTRAINT DEFORMATION 
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Table 4 
Transfer of momentum at impact. 

Mp = 2.24 LB-SEC2/IN, Mr/M p = 0.10 (PROB. 1.4) Mp = 2.24 LB-SEC2/IN, Mr/M p = 0.50 (PROB. 1.5) 

Mp M r 
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J~ - -  - -  --e,.. V~(1066 IN/SEC)'] ELASTIC 
(RESTR.) Vr(0 IN/SEC) *', r | IMPACT 

" =,- Vr(2369 IN/SEC)/ (EQ. 9) 

Mp Mr 

@ t = 0.00456 SEC @ t = 0.00460 SEC 

= Vp(473 IN/SEC) "1 / ADINA ! 

(PIPE) Vp(1303 IN/SEC)~" / r  '''1=~ Vr(1863 IN/SEC)/ 

i x -  -- - - ~  Vn(434 IN/SEC) -1ELASTIC 
(RESTR.) Vr(0 IN/SEC) % .  v l IMPACT 

~-- -- - -  ~" Vr(1737 IN/SEC) _J (EQ. 9) 

the energy balance check was excellent as shown in 
table 3. However, if equilibrium iterations were not 
specified, the energy balance check after impact could 
be violated by about 20% in Problem 1.5. 

The solution results in fig. 4 show that the effect 
of  the mass in the restraint was to cause a series of 
separations and new collisions of  the two masses after 
the first impact. For a larger restraint to pipe mass ra- 

4.0  
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/ 3 / - , . ,  _ WITH EQUILIBRIUM / .  i .  ° * • 
ITERATION " ~ _ _ ~  ° ~ J  

W,THOUTEQO,L.~R,O. / ~ ~  ........ "" " . . . -~ 
== ,TER,T ,ON ' - -== := : :~¢ . . I ~ .  ! ........ 

.i ,,2 - -  

/ ~ "  ~" ~ = Mr/M p = 0.5 
~2.o / ."/ 
i I /  (PROB. 1.5,1"ABLE 1) 

/" 
1.o / ¢- 'y 
0.O I I • 

5 10 15 
TIME (HI LLISECONDS) 

Fig. 5. Comparison between predicted restraint responses with and without equilibrium iteration. 
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Fig. 6. Comparison between plastic impact solution and ADINA solution. 

tio the maximum separation of the two masses after 
each collision can be significant. 

The momentum transfer which took place during 
the impact in the numerical solutions closely match 
the relationships given by elastic impact theory, as 
shown in table 4. The elastic impact relationships are 
based on the conservation of momentum and kinetic 
energy during impact, which yields 

An important point is that the numerical solution 
obtained in this study when equilibrium iterations 
were not specified was close to the plastic impact solu- 
tion as shown in figs. 5 and 6. Therefore, if unbalanced 
forces are not properly corrected at each time step, an 
artificial source of energy absorption is introduced 
which can lead to an over-estimation of the energy ab- 
sorption capacity of the structural system. 

Vp(t +) = [(1 - m)/(1 + m)] Vp(t 0 , 

Vr(t +) = [2/(1 + m)] Vp(t~-). (9) 6. Group 2 problems 
The reason for the close correspondence is that im- 

pact took place in a very short time interval (in this 
case within the time interval of 0.00001 sec) and the 
incremental displacements that occurred during this 
interval were small. It follows that the changes in 
Epipe and Erestrain t in eq. (8) must be small and the 
kinetic energy of the system must remain almost con- 
stant during impact. Therefore, the elastic impact mo- 
mentum transfer was predicted. 

It should be noted that the plastic impact response 
solution lies between the responses predicted numeri- 
cally for the pipe and the restraint. The difference be- 
tween the numerical solution and the plastic impact 
solution is due to the fact that in elastic impact no 
energy is lost. Hence, the system conserves more ener- 
gy in the numerical solution than is predicted assuming 
plastic impact. 

Whereas the first group of problems was designed 
to study various important characteristics of pipe whip 
analysis and design in a very simplified manner, in the 
second group of problems an actual pipe and restraint 
shown in fig. 7 were analyzed for the loading indicated. 
The pipe rupture is assumed to occur at 360 in. away 
from the fully restrained end and directly above the 
pipe restraint. The pipe cross section has a 30 in. o.d. 
and a 1 ~ in. wall thickness. The restraint is a 24 in. 
long steel rod with a 543- in. dia. The initial gap between 
the restraint and the pipe is 3 in. The pipe and restraint 
have a yield strength of 29.14 ksi and 38 ksi, respec- 
tively. The load applied on the pipe during the pipe 
break is idealized as a step force loading as in Problems 
1.1-1.5. Since the pipe deflection will be relatively 
small, for the analysis small displacement conditions 
have been assumed. 
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Fig. 7. Pipe whip problem. 

6.1. Finite element model  

The pipe cantilever beam was modelled as an as- 
semblage of  seven 8-node isoparametric plane stress 
elements as shown in fig. 8. Due to the symmetry in 
the stress and strain distributions above and below the 
pipe neutral axis, only one-half of  the structure and 
applied load needed to be simulated. The thickness of  
the plane stress elements was chosen to give the same 
value of  moment of  inertia as that of  the actual pipe 
section. In the numerical evaluation of  the element 
stiffness matrices 3-point gauss quadrature was used, 
i.e. nine integration points per element have been em- 
ployed, and the plastic behavior of  the pipe during the 
dynamic response was modelled using flow theory of 
plasticity with yon Mises yield condition. The effect 
of the initial gap was modelled in the same way as in 
the Group 1 problems, except that the effect of the 
gap was directly incorporated in the nonlinear stress- 
strain elastic-plastic relationship of  the restraint 
(truss) element. This modelling procedure was accept- 
able in this particular case because the mass of  the res- 
traint was negligible and assumed to be zero. 

The objective in the analysis of  the finite element 
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Fig. 8. Finite element model for Group 2 problems. 



model of the pipe and restraint was to evaluate 
(1) the effect of using different time step sizes At; 
(2) strategies of equilibrium iteration and reformation 
of stiffness matrix; 
(3) the effect of using different mass models, i.e. 
lumped or consistent mass modelling; 
(4) the effect of the gap width rgap; and finally 
(5) the effect of the yield strength of the restraint Ry. 

The finite element representation of the pipe des- 
cribed above for simulating the beam action of the pipe 
was thoroughly checked for elastic behavior. The anal- 
ysis results assuming elastic behavior showed excellent 
agreement in deflections and stress with corresponding 
values calculated using beam theory. 

6.2. Solution results 

-0.10 • 

o 

,~ ~ o.lo. 

1 
0 . 4 0 .  

The effect of the time step size At on the response 
predictions was studied by analyzing the problem given 

in fig. 7 using At values of 0.00l, 0.0005, 0.0001, 
0.00005, and 0.00001 sec. These time step values cor- 
respond to a At/Tf ratio of 1/28 to 1/2800, where Tf 
is the fundamental period of the structure assuming 
that the pipe is engaged with the restraint. The solu- 
tion results using the different At values did not vary 
significantly, and in the following only the response 
predicted using At = 0.00005 is discussed. 

Figs. 9 -12  show the response of the pipe at various 
stages of loading when the mass of the beam was lum- 
ped at six nodal points along the beam. It should be 
noted that the first yielding did not occur at the root 
of the cantilever as it would be predicted in static anal- 
ysis, but in a region close to the loaded end. Also, 
prior to the pipe engaging with the restraint, a trans- 
verse displacement wave travels along the beam from 
the free to the fixed end. 

Considering the response of the pipe, the maximum 
restraint deformation occurs when the pipe tip is at 
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rest. Fig. 12 shows that at that time the velocity at 
other points of the beam is still high indicating that 
only a part of the kinetic energy of the pipe has been 
absorbed by the inelastic deformations of the restraint. 

The response of the pipe was also predicted using a 
consistent mass model. The solution results did not 
change a great deal, but the restraint deformation 
reached was about 10% lower. 

An important consideration is the choice of an ef- 
fective step-by-step procedure. For this reason, the 
pipe model was analyzed using the option of 
(1) reformation of stiffness matrix plus equilibrium 
iterations; 
(2) using equilibrium iterations and not reforming the 
stiffness matrix; and 
(3) reforming the stiffness matrix but not iterating 
for equilibrium. 
The results showed no significant difference. These 

results are substantiating the observation made in the 
analysis of Problems 1.1-1.5, that the use of equili- 
brium iteration does not change the response predic- 
tions significantly provided that the mass in the res- 
traint is negligible, which in the present case was as- 
sumed to be zero. 

Fig. 13 shows the response of the pipe tip for dif- 
ferent gap widths. It is observed that the initial gap 
width is a very significant parameter in determining 
the maximum restraint deformation, r r max" The larger 
the gap the more kinetic energy is built up in the pipe 
which has to be absorbed later by the restraints. 

The effect of using a higher yield strength for the 
restraint is shown in fig. 14. By increasing the yield 
strength of the restraint from 38 to 76 ksi, the value 
of r r max is reduced from 2.2 to 0.5 in. However, the 
stress developed in the restraint is increased from 38 
to 76 ksi, which may not be desirable because the res- 
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traint support structure has to be designed to take this 
increase in load. 

7. Conclusions 

Considering the numerical solution of  pipe whip 
problems, it is important to satisfy accurately the non- 
linear equations of  motion throughout the response 
calculations. For this reason, equilibrium iteration is 
recommended in the step-by-step nonlinear dynamic 
analysis of pipe whip problems. The advantage of  using 
equilibrium iterations is that the accuracy of  the solu- 
tion is ensured, thus eliminating the necessity of  per- 
forming a series of  runs using different time step sizes. 
In the pipe whip problem where the impact phenome- 
non is significant, the response predicted after impact 
without iteration can exhibit damping. Since physically 
a corresponding source of  energy dissipation does not 
exist, an analysis without equilibrium iteration could 
lead to an unconservative prediction of  the energy ab- 
sorption capability of  the pipe and restraint system. 

The above statement is based on the assumption 
that convergence does occur in the iteration. If conver- 
gence difficulties are encountered, the time step size 
has to be decreased until the convergence criteria are 
satisfied [10]. For reasons of  cost, it is probably most 
effective if the solution algorithm changes the time 
step size automatically to optimum values during the 
response calculations. Such a self-adaptive algorithm 
is also useful for many other types of  problems [10]. 

In utilizing the incremental dynamic analysis proce- 
dure described in Appendix 1 the problem was able to 
predict closely the momentum transfer between two 
colliding masses (modelling the pipe and restraint) 
given by the elastic impact theory. This was possible 
by performing equilibrium iterations and without 
providing special constraint equations for specifying 
impact relationships. 

Considering design aspects, it is desirable to mini- 
mize the gap between the pipe and the stop in order 
to keep to a minimim the kinetic energy that will be 
acquired by the pipe. An increase in the kinetic energy 
of the pipe results in a higher demand on the energy 
absorption characteristics of  the restraint. Another 
means to decrease the energy absorption demand on 
the pipe restraint is to increase its mass, for example by 
attaching additional mass. 

The analyses of  the actual pipe whip problems re- 
ported in this paper have been carried out using stan- 
dard isoparametric elements to model the pipe. Only 
relatively few elements were required for an adequate 
finite element representation. However, since the res- 
ponse is calculated over many time steps, the cost of  
solution can be significant. To reduce the analysis 
cost, a general three-dimensional material and geome- 
tric nonlinear special pipe element should be used for 
production analysis. This element must include all im- 
portant nonlinear effects, and for an effective and ac- 
curate solution should be used in conjunction with a 
step-by-step incremental analysis procedure that is 
based on the above stabliity and accuracy considera- 
tions. 

Appendix: summary of step-by-step integration 

A. 1. lnitial calculations 

(1) Form linear stiffness matrix K, mass matrix M and damping matrix C; initialize 0u, 0t), 0/j. 
(2) Calculate the following constants: 

tol ~< 0.01 ; nitem/> 3; in static analysis 0 = 1 and go to (3). 
Wilson 0-method: 0 ~> 1.37, usually 0 = 1.4, 7. = OAt 

a 0 = 6/7. 2 a 1 = 3/7" a 2 = 2a I a 3 = 2 
a 4 = 2 a 5 = 7./2 a 6 =ao/0  a 7 = - a 2 / O  
a 8 = 1 - 3/0 a 9 = At~2 al0 = At2 /6  
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Newmark method:  0 = 1.0, 8 ~> 0.50,  a i> 0.25(0.5 + ),)2, r = At 

a 0 = l / ( a A t  2) a 1 = 8 / (aAt )  a 2 = 1/(aAt)  a 3 = 1 / ( 2 c t ) -  1 

a 4 = 8/a -- 1 a 5 = A t (8 /a  -- 2)2 a 6 = a 0 a 7 = --a 2 
a 8 = - a  3 a 9 = At(1 - 8) a l 0  = 8At  

(3) Fo rm effective linear stiffness matrix:  I~ = K + aoM + alC.  
(4) In linear analysis triangularize K .  

A.2. For  each t ime step 

(A) In linear analysis 

(i) Form effective load vector 

t+r/~ = t R + O(t+AtR _ tR)  + M(aotu + a2tft + a3tiJ ) + C(al tu  + a4tfi +a5t/J)  . 

(ii) Solve for displacement increments :  

i c t+r  u = t+r/~ ; u = t+ru  - tu . 

(iii) Go to C. 

(B) In nonl inear  analysis 

(i) If  a new stiffness matr ix  is to be formed, update  ic for nonl inear  stiffness effects to obta in  t g ;  triangula- 
rize tiC: 

tiC = LDL T 

(ii) Fo rm effective load vector: 

t+¢1~ = t R + O(t+ A t R  _ tR ) + M(a2 t fi + a 3 t ~  ) + C(a4 tfi + a5t//) - tF  . 

(iii) Solve for displacement increments  using latest D,  L factors: 

L D L T u  = t+ r /~  

(iv) If  required,  i terate for dynamic  equi l ibr ium; then  initialize u (0) = u, i = 0. 
( a ) i = i +  1. 

(b) Calculate (i - 1)st approx imat ion  to accelerations, velocities, and displacements:  

t+ r / j ( i -  1) = aou( i -  1) _ a2 t fi _ a3tii ; t+z ~t(i- 1) = al u ( i -  1) _ a4 tit _ a5tii ; 

t+ru( i -  1) = u( i -  1) + t u . 

(c) Calculate (i - 1)st effective out-of-balance loads: 

t+z1~(i- 1) = t R + O(t+AtR _ tR)  _ Mt +r i j ( i -  1) _ Ct+r~( i -  1) _ t+rF( i -  1) . 

(d) Solve for i th  correct ion to displacement increments:  

LDLTAu(O = t+rl~(i- 1) . 
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(d) Calculate new displacement increments: 

u(i) = u ( i -  1) + Au G ) .  

(f) Iteration convergence if IIAu (i) 112/Ilu (i) + tu II 2 < tol. 
If convergence: u = u (i) and go to C; 
If no convergence and i < nitem: go to (a); otherwise restart using new stiffness matrix and/or a 
smaller time step size. 

(C) Calculate new accelerations, velocities, and displacements 
Wilson 0-method: 

t+ atii = a6u + a7tft + a8tiJ 

t+At(i = t(i + a9(t+Atij + tii) 

t+Atu = tu + A t  tfi + alo(t+At~j + 2 t i i ) .  

Newmark method: 

t+ zxtij = a6u + a7t(t + a8 tiJ 

t+ Attj = t{t + a9t~ + alot+ Atii 

t+Atu = lU + tt . 

Nomenclature 

a 

KEloss = 
Epipe = 

Erestrain t = 
Kp = 

g r = 
Mp : 
Mr - -  

p = 

rgap = 

rp = 
rpy = 

r r = 

rr max = 
try = 
Rp = 

R r = 
Ry = 
t = 

acceleration 
kinetic energy loss during impact 
energy absorbed by  the pipe 
energy absorbed by the restraint 
elastic stiffness of the pipe 
elastic stiffness of  the restraint 
mass modelling pipe 
mass modelling restraint 
applied external force 

gap width or separation between the pipe 
and the restraint 
pipe displacement 
pipe yield displacement 
restraint displacement 
maximum restraint deformation 
restraint yield displacement 
internal resisting force (pipe) 
internal resisting force (restraint) 
yield strength (restraint) 
time 

t i = time at impact 
Vp = velocity of  pipe 
V r = velocity of  restraint 
m = mass ratio = Mr/M p. 
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