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Abstract

A brief overview of some procedures for the solution of
nonlinear finite element equations is given. The iterative
schemes we use for the solution of the complete finite element
equations are summarized, and the key ideas of a new method
for the stress integration in plasticity and creep are briefly
presented.

1. Introduction
It is well recognized that the procedures used for the

solution of the nonlinear finite element equations are a most
important ingredient of a computer program for nonlinear finite
element analysis. The equation solution techniques should be
as reliable and effective as possible, and indeed the state of
these procedures in the computer program freguently decides
whether a specific finite element model can or cannot be solved.

For the above reason, much research effort has gone into
. the .development of efficient and reliable equation solution
procedures, and significant advances have been made during the
recent years; however, with the successful application of non-
linear analysis methods to various problem areas, the demand
to solve ever increasingly complex problems has increased —
quite naturally and to our delight — which in turn led to
identify where important new improvements in equation solution
methods are necessary.

In this brief overview we consider the static analysis of
structures but the constitutive relations can be time-dependent.
In this case, using the notation of ref. [1], the equations to
be solved are



t+At§.‘ t+A#§ = 0 (1)

t+at, . . .
where R is a vector of the externally applied nodal point
forces and t+AtF is a vector of nodal point forces equivalent

in the virtual work sense to the element stresses. The left
superscript t+At denotes that we consider the configuration at
the time (load) step t+At. The superscript t+At is only a vari-
able to denote the load level if the constitutive relations are
time-independent, but denotes actual time otherwise (when creep
or visco-plastic material models are used in the finite element
model).

In the following discussion we assume that the externally
applied loads are deformation independent. If the external
loading varies as a function of the deformations, the load vec-
tor must be updated during the iterations given in Section 2,
and there is the question of whether to include a nonsymmetric
stiffness matrix contribution. We have found that, in practice,
it is frequently more effective to not include the nonsymmetric
part in the tangent stiffness matrix.

Using the displacement-based finite element method, the
basic unknowns in Eq. (1) are the nodal point displacements at
time t+At, which we denote t+Atg. Given the displacements of
the element nodal points, we evaluate the element strains,

+ +
t At&, and stresses, t Atg, and calculate the vector of nodal

forces t+AtF. In the discussion we need to consider only one

element , because the element contributions are added by the
usual procedures of the direct stiffness method.

Since the relations in Eq. (1) are nonlinear, we need to
iterate for the solution t+Atg, and at the end of iteration
(i-1), the displacement vector is t+AtU(1-1)

. t+at (i-1) t+at (i-1)
strains > o]

t+AtF(1—l),

, giving the element

, stresses and the force vector

tHtg(i-1) j’ g7 tHat (1) oy (2)
V H

where B is the strain-displacement matrix and V is the volume
of the finite element. In Eq. (2) we consider a materially-
nonlinear-only analysis, because the matrix B and scalar V are
constant. In a geometrically nonlinear analysis, the total or
updated Lagrangian formulation would be employed and the appro-
priate strain-displacement matrix and volume integrations are
used [1], but the same basic iterative procedures to solve
Eq. (1) are employed.

Considering the above steps of solution, there are two
major ingredients that are the basis and represent the iter-



ation; namely, first, the evaluation of the stresses from the
given displacements and, second, the evaluation of the next

displacement increments.

t+AEg(i-l)

The effective evaluation of the stresses from

+ i—
the given displacements t M’U(1 1) is important and can provide

difficulties in particular when creep effects that evolve over
long time spans are considered. In this case an implicit in-
tegration scheme must be employed for the stress integration
which leads to iteration for the stresses at each integration
point of a finite element. Since convergence must be reached,
it is necessary to select the size of the time step At — or
‘the subincrementation within the time step — such as to assure
iteration convergence in the stresses at each integration
point [2]. In effect, therefore, the radius of convergence in
the stress iterations at the element integration points has a
pronounced effect on the selection of the time (or load) steps
that can be employed in the solution.

The evaluation of the next nodal point displacement increment
AQ(*) should of course be performed in such a way as to obtain
rapid and cost-effective convergence to the solution for the
complete element system. This is achieved using an appropriate
coefficient matrix, updating procedures for this matrix, relax-
ation techniques, line searches or other methods [1,3].

Finally, there is the question of measuring convergence,
where basically the displacements, out-of-balance forces and
the strain energy can be used.

Our objective in this talk is to give a brief overview
of some recent developments we have pursued for the more effec-
tive solution of nonlinear finite element equations, and to
summarize some experiences with these procedures. In Section 2
of the paper we discuss the methods that pertain to the iter-
ation for the nodal point displacements, for which we use the
Newton and BFGS methods — with or without line searches — and
an automatic step-by-step solution scheme [4]. The theory for
these techniques has been published extensively before; there-
fore, only a very brief summary is given here.

In Section 3 we briefly present a new algorithm for the
stress iteration at the element integration points [5]. The
method shows much promise because the iteration .converges ef-

- fectively and removes much of the restriction on the size of
the load or time steps encountered with earlier algorithms.

Finally, in Section 4 we summarize the convergence criteria
which we are using in analyses. Sample solutions with the
techniques presented here have been published in the references
and will be presented at the conference [4,5,9].

2. Iterations for the Displacements
The basic equations used in the Newton iterationsand the
BFGS method for the displacement solution are
+ i-
J bty b At§¥l 1,y

—_—

T

K AU =1,2,... (3)



_ . + . + . .
where AU = AU(l), t AtU(l) = t AtU(1 1) + Aéﬁl), unless conver-

gence (as defined later) has not been reached. In this case a
line search is performed by iterating with k=1, ..., £ as follows,

t+At t+at (1)
5T ( B- E(k))

< sto1# AT <t+m:B ) t+AtE(1-l)>

+ .
To evaluate t AtFE;; in Eq. (4) we use the displacement vector

+ B, AU3 st

(L)

t+at (1) _ t+AtH( i-1)

=(k) = 8, AU (5)

In Egs. (3) to (4) we use the following notation:

T

K = tangent stiffness matrix, different for the
various iteration schemes,
£ = number of line searches performed in iter-
ation (i),
stol = convergence tolerance on the line searches,
Bk = line search parameter in k'th line search.

We are using three differen: schemes based on Eq. (3):

Method 1
The modified Newton iteration, in which a new stiffness
matrix is computed at the beginning of each load step; hence

¥ = tK. Line searches can be performed using this tech-

nique [1].
Method 2

The BFGS method in which a new coefficient matrix is com-
puted in each iteration (i), but is evaluated using matrix

T, _ t *¥(i-1) .
updates of rank two; here K = K . Line searches are also
always used in this iteration [1,6].
Method 3 ,
The full Newton method in which a new coefficient matrix
is evaluated in each iteration; hence 'K = t+AtK(l-l). This

method can be employed with or without line searches.

By an additional approach the solution of the finite ele-
ment equations can be obtained using an automatic load stepping
algorithm [3], which is based on the concepts proposed by
Wempner [7] and Riks [8].

Method 4
The automatic brocedure uses the equations



. + . + .
T A!('l) _ tHat, (1) R-" Atz(l 1) (6)
t+AtH(1) - t+AtH(1-l) + Ag(l) ()

+ . + .
f(t By1) ¢ At}\(l)) A (8)
where R is a vector (constant) representing a load distribution
which is scaled by the scalar t+AtA(l), and Eq. (8) represents

a constraint between the load and displacement magnitudes. As
constraint equations we are using either the spherical arc length
constraint or a constraint on the increment of external work [4].
The practical advantage in using this method is that the
analyst does not need to specify load increments (as in Methods
1 to 3), and the procedure can also calculate the post-collapse
response of a structural model (the loads are decreasing while
the displacements are still increasing).

3. Iteration for Integration Point Stresses

With plasticity and creep effects in the analysis a major
difficulty lies in the accurate integration of the stresses.
This stress integration must be performed at each integration
point of the finite elements. The importance of an efficient
stress integration is readily realized by considering some of
the practical requirements.

For a mesh of 1000 three-dimensional elements evaluated
with 3x3x3 Gauss integration, there are 27,000 integration
points. If 100 time steps are used to evaluate the response
and an average of 3 to 4 iterations for the displacements are
performed per step, then a total of about 10' integration point
stress evaluations need be performed!

Fach of these stress computations involves the evaluation
of the following integral,

t+At§.( i)

t+Ato(l) =% 4 PP ge (9)

te

"where it should be noted that the integration is always per-
formed from the accepted equilibrium configuration at time t[1].
It is most important to integrate in each iteration anew from
time t in order to avoid the accumulation of solution errors.

Considering the integration in Eq. (9), some major dif-

ficulties are:

- In plasticity, the stress state must remain within or
on the yield surface. This requires tight constraints
on the possible variation of the stresses; namely, the
numerical procedure has to assure that the stresses do
not "grow out" of the yield surface.

- In creep, an algorithm need be used that — when long



time periods must be considered — allows relatively large time
steps. The a-method, discussed for example in ref. [2], allows

in principle relatively large time steps At when o 3;l. How-
ever, in practice, the iteration for the stresses in %he im~-
plicit time integration does not converge unless small enough
time steps are employed. The difficulty is somewhat alleviated
by using subincrementation within each time step, but even with
this approach the possible time step size is rather small when
measured on the total time span that need be considered.

The algorithm we have developed shows much promise with
respect to the above difficulties, because the iteration in
the implicit time integration of the integration point stresses
converges very effectively,which means that the time step size
and the subincrementation can be chosen based on accuracy con-
siderations only. The details of our algorithm are presented
in ref. [5], and in the following we only give a brief account
of the procedure.

A basic equation of thermo-plasticity is, considering iso-
tropic hardening, and denoting tensor components by a curl (~)

tP_ t,1
e =

e ATS, (10)

where the %g? are the time derivatives of the plastic strains,

the E§-are the deviatoric stresses and tA is a scalar,

t, 3 3 o+, . ot ¢
A = : < 6+ T ) (11)
2 ‘g 3% Y 3%
y Y

where toy is the instantaneous yield stress at time t, tEP is

the effective plastic strain and te is the temperature. With
the yield stress defined as a function of the effective plastic
strain and temperature, Eq. (11) can directly be used to eval-

uate A [5].
Considering the classical description of creep, the inelas-
tic strains are given by

t-C_t_t
e ="y 8 (12)
where
t-C
t. _ 3 e
Y= 3 T (13)

and tEC and to are the effective creep strain and the effective
stress, respectively.

For the numerical solution, we rewrite Egqs. (10) to (13)
in the form



ref = at A s (1k)

e, S

TA At = g ‘T‘EP (15)
g

A’e_? = &t 'y '8 (16)

Ty At = %f—é'c— (17)

where the superscript 1 denotes that weighted values using the
o-method are employed,

Ta _ t t+At
s, = (1-a) S +a 'S, (18)
and so on. In practice, we want to use a z_l-.
The deviatoric stresses at time t+At and iteration (i) are
+ . + + (3 + . .
trat (1) |, t+at, <t ot *(1) _ t+at P(1) t+At£_.C(l)) (19)

—~ — —
where
L+AE t+AtE
G = rery s (20)
2(a + )
and t+AtE, t+Atv are the Young's modulus and Poisson's ratio

t+At

at time t+At (that is at the temperature 8). In Eq. (19)
t+at ¥ '

e, stores the total deviatoric strains. Use of Egqs. (1k)
to (19) yields

tHae (1) _ Tty <t+Ate*(i)
S~ 1 4 BHAE L tHAEL (TA(J.) N ryﬁ)) —
~ at(1ma) TA(_1)+1Y(1)) t§‘_ tﬁf _ t"g—C . (21)

and the mean stress is obtained from

eeat (1) % fesat (1) t+at TH
o = —— e - e (22)
m t+At m
1-2 v
where t+Atem(i) is the mean strain and t+AteTH is the thermal

strain.



+ .

With the displacements ®*iPy(1)
1

iterate on Eq. (21), using > 7 until the stresses used to

T,(1) T (1)

evaluate TA and vy are very close to the stresses eval-
uated in Eq. (21). However, this iteration requires that the
time (or load) step be small enough for convergence of the
iteration. If a Newton-Raphson type of iteration is employed,
experience shows that in creep problems the time step At may
have to be unduly small.

The basic idea in the development of our effective stress
function algorithm is to iterate on a single unknown variable —
the effective stress — rather than on the six unknown stresses
in Eq. (21). The governing equation is obtained by taking the
scalar product of both sides of Eq. (19), which gives

(t+At3(i))2 - 9(t+AtG)2 <t+At€*E(i))2 (23)

t+At€*E(i)

given, it is possible to

where denotes the elastic deviatoric effective

strain at time t+At and iteration (i),

Ot _FE(1) _ \/_2_ (t+Ate*E(i))(t+Ate*E(i)> (o)
3 — — 2

Since the right-hand-side of Eq. (23) depends only on the ef-

fective stress t+At611), our problem has reduced to finding
the effective stress which corresponds to the zero of the
effective stress function,

f<t+At6_(i)> _ (t-l-AtE(i))e _ 9(t+AtG)2 (t+At§-*E(i))2 (25)

To solve for the zero of the effective stress function, ie.
t+At3(i)

the unknown effective stress , we substitute for

3
tritg E(1) from Eq. (21) and use a simple but very stable bi-
section algorithm. Formally, the iteration is continued until
with k=1,2,3..

e+at_(1) t+at_(1)\2 t+at \2 [t+at_*E(1)\2

(“At’&i)l <e (27)
" where € is a convergence tolerance.
Once the effective stress t+AtEIi) is known (assumed equal
to t+At_§zg where % denotes the last iteration), Eq. (21) is
used to calculate t+A€§£i) and Eq. (22) gives t+Atcm(i).

The importance of the algorithm lies in that only one



unknown variable, the effective stress, need be solved for in
the stress point iteration, which allows very large time steps
without difficulties of iteration convergence. Hence, with this
algorithm the step At need only be selected based on accuracy
considerations. The algorithm can of course also be employed
with subincrementation [5].

4. Convergence criteria
A pa?éicuiar difficulty lies in establishing convergence

criteria for the iterative solution of Eq. (1) that are gener-
ally applicable in the sense that

- the iteration will be terminated as soon as a reasonable
accuracy has been achieved, but not earlier;

- the convergence tolerances to achieve a desired accuracy
can be chosen by the analyst.

There is much difficulty in satisfying the above objectives
in a general analysis program because of the variety of non-
linearities and response histories that may be modeled. Based
on our experience, we have chosen the following convergence
criteria to measure the iterative process,

energy tolerance

Ag(i)Té;mtB _ t+At£(i-l))

= < ETOL (28)
ey (t-a-AtB ) t£>
force tolerance
l lt+At_R - t+AtE_( l-l) I Ig ( )
RNORM < RIOL 2
where || .. || denotes the Buclidian norm and only the nodal
point forces are included,
moment tolerance
| '|‘l',+A'l',---11 _ t+AtF(1—l) | llg o
< RTOL o (30)

RMNORM
where only the nodal point moments are included. In Eqs. (28)
to (30) ETOL and RTOL are energy and force/moment convergence
tolerances, and RNORM and RMNORM are a reference force and a
reference moment, respectively. All of these measures have to
be chosen by the analyst, and we can give the following brief
recommendations :

e It is frequently only necessary to use the energy conver-
gence tolerance, provided ETOL is small enough, say



ETOL = 1o'h. Note that the convergence check in Eq. (28)

includes the effects of the forces, moments, transla-
tional displacements and rotations.

¢ The force and moment convergence tolerances are by-passed
when only the energy convergence tolerance is employed.
However, it is advisable to always calculate and print
+ +A - » +
the values of Ilt A#g -t t§¥l l)llg K Atg.-

t+at (i-1) M
e T

and I

so that the analyst can check whether,

when convergence has been reached using only Eq. (28),
the magnitudes of the out-of-balance forces and moments
are actually small enough. To assure that the out-of-
balance forces and moments are smaller than a certain
value the force and moment tolerances in Egs. (29) 5
and (30) are employed with RTOL typically equal to 10
and appropriate values for RNORM and RMNORM. The choice
of RNORM and RMNORM clearly depends on the desired ac-
curacy in the analysis, but typically RNORM would be
equal to the maximum of the applied load to the structure.

5. Concluding Remarks

The solution of the finite element equations in geometric
and material nonlinear analysis encompasses a number of diffi-
cult aspects that still require much research effort to obtain
increasingly more effective and more automatic procedures —
these difficulties lie in the load/displacement incrementation
and iteration on the coupled finite element equations for the
nonlinear response and the calculation of critical points, in
the computation of the stresses at the element numerical inte-
gration points and in choosing appropriate convergence toler-
ances. Surely, an experienced analyst can already solve very
complex nonlinear problems. However, a major research challenge
lies in providing significantly more automatic solution pro-
cedures that can be employed in CAD/CAM software by a large
community of design engineers.
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