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Abstract

Some mixed finite elements for large deformation analysis of incompressible solids are studied. The elements are based
on the displacement/pressure and enhanced strain mixed formulations. Specifically, it is shown that a quadrilateral
4-node element that satisfies the inf-sup condition in linear analysis — and hence is an effective element in such conditions
- fails in large strain analysis. The reasons for this element behavior are explored. Some comparisons of element
predictive capabilities are given. © 1997 Elsevier Science B.V.
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1. Introduction

During the last years, many researchers have been working on the development of low-order
two-dimensional and three-dimensional finite elements for the analysis of continuous media.
Low-order finite elements can be particularly attractive because of their robustness and simplicity
when compared to high-order elements, but effective low-order elements have been difficult to
obtain. As is well known, the classical displacement-based formulation leads to inaccurate results
in the analysis of incompressible media. Furthermore, shear locking behavior arises in bending
dominated problems [1].

The shear locking behavior can be effectively avoided by using either assumed strain or assumed
stress methods [1-3]. However, the incompressible situation represents a more complicated
problem and several techniques have been developed to deal with the divergence free constraint,
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Let us consider an arbitrary hyperelastic material whose strain energy density function per unit

of reference volume is denoted by W. The total potential of the body with original volume °V is

1

H(lhp)=J;V{W(C)—ﬁ(ﬁ_p)l}d"l/_*_HEXT "

where u and p represent the displacement and pressure field, respectively, and C denotes the |

Cauchy-Green deformation tensor. The quantity p refers to the pressure obtained from the
displacement field, the constant k represents the bulk modulus of the material and ITEX" denotes
the potential due to the externally applied loads. The functional given in Eq. (1) is modified by
enhancing the displacement gradient as follows:

H=Gradu + H. (2)
Accordingly, the deformation gradient X and the deformation tensor C are now given by

X=1I+ Gradu + H, (3)

C =+ Gradu + H)'(I + Grad u + H). (4)

Different enhancements in deformation measures have also been considered. For example, we
could define the total deformation gradient as a multiplicative decomposition of two motions, one
represented by the deformation gradient obtained from the displacement interpolation and the
other obtained from the enhancement (see Ref. [13]).

The proper kinematic decomposition into spherical and deviatoric parts for large strain analysis
is given using det X and

X = (det X)" 13X, (3)
C = (det X)"23X"X = (det X) ™ 2/3C. (6)
Substituting Egs. (2)—(6) into Eq. (1) we have the following modified total potential:
_ ~ - A 1 R o
H(u,p,H)zJ {W(C, detX)~§(ﬁ—p)2}d V + ITEXT, (7
oy
Invoking stationarity of IT we obtain the governing variational equations of the problem,
_ - 1 0
DII[du] EJ {DW[éu]—;(ﬁ—p)Dﬁ[éu]}dV—%=O ()
v
_ o~ o~ 1 ~ 0
DII[6H] Ef {DW[&H]—;(ﬁ—p)Dﬁ[éH]}d V=0 (9)
oy
_ 1 _ 0 10)
DII[op] = ;(p—P)Dp[ép]d V=0 (
v

Here we have, for a generic variable 0,

DII[30] = % {1100 + £60)} .o (1

an
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- {4 and

# = — DITF¥T[ou]. (12)

Egs. (8)—(10) constitute a set of nonlinear variational equations. Introducing the finite element
interpolations, a system of nonlinear algebraic equations is obtained. The Newton—Raphson

- { method is employed to iteratively solve the resulting equations. While we use here the total

Lagrangian formulation (referring the variables to the original configuration), the same finite
element equations are also obtained using the updated Lagrangian formulation (in which we refer
all variables to the current configuration), see [1].

2.2. Element interpolations

We use the standard four-node isoparametric interpolation for the original geometry and the
total displacement field

X = i h;(r)x,-, (13)
i=1
4

u=y h(ru. (14)

i=1
In these equations, the his are the usual bilinear interpolation functions, r indicates the isoparamet-
tic coordinates (r, s), and x; and u; are the nodal point coordinates and nodal point displacements,
respectively.
The enhancement in the deformation gradient is given by
H = G(r)a (15)

where H contains the elements of &

a—|H2|. (16)

The components of the matrix G(r) in Eq. (15) are functions of the isoparametric coordinates.
The vector a contains the internal parameters thaf are condensed out at the element level prior to
the assemblage process. The matrix G(r) has to satisfy the condition that its integral over the
volume of the element must vanish. This condition does not assure a stable formulation but is

necessary. Therefore, we must have that,

jﬂ j‘+ 1 G(r)J(r)dr=0 a7

-1 J-1
where J(r) is the Jacobian determinant for the transformation from the physical coordinates (x,¥)
to the isoparametric coordinates (r, s).
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For a regular quadrilateral element, J () is constant and condition (17) will be satisfied as long as
G(r) itself satisfies it. However, for a general distorted element the Jacobian determinant is not
constant. The usual procedure is then to consider (15) and (17) in the isoparametric coordinate
system with G*, H* and H* instead of G, H and H, respectively. A transformation to the actual
coordinate system then gives

~ Jo oot Fr o
H(r) = =% X TH*(r)X5 ! 18
(r) J(r)Xo H*(r)X, (18)
where
%, = &0 and Jo=J|,_s (19)
6" r=0

are the geometry gradient and its determinant evaluated at the center of the element.
We consider the plane strain case and define G*(r) as (see [6])

r 00 0 rs O
0 s 0 0 O rs
*(p) — 20
=10 0 r 0 0 of (0
000 s 0 O

According to expressions (15) and (20) the enhanced part of the displacement gradient is obtained
as

roy + rsas

S0, + rSotg
ro3
S04

B*(r) = Q1)

or written in matrix form,

() = [ @

roiy + rsus ros
SOy S0, 4 rsag |

The pressure interpolation is obtained using the same interpolation functions as used for the
displacements and geometry. Namely we have,

4
p= Z hi(r)p; (23)
i=1

where the pis are the nodal point pressure values. Hence the element yields a continuous pressure
field across the element boundaries.

We wish to remark that this seems to be the only possible option of pressure interpolation if the
inf-sup condition is to be satisfied. Namely, considering the linear analysis case and a squar¢
element of side length 2, the volumetric strain due to the displacements and the enhancement in the

st
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strain components is given by

¢, = B.U+ G (24
where

=i+ () —(+s) (=) = (=9 —(1=n(=s) —(1+n] (25)

G,=[rs00rsrs} (26)

Let us first consider the case of a discontinuous pressure field across the element boundaries, and
1 consider the constant pressure term in the field. Recall that we have a spurious pressure mode p;

{1
j Pt dV =0 Ve, 5" Q27
1 4

where Zy° is the space of volumetric strains reached by the nodal point displacements and the
strain enhancement modes given in Eq. (24), and ¢, is an element in that space.

As is well-known, the 4/1 (or Q1/P0) element, with the volumetric strain displacement interpola-
tion of Eq. (25), contains the spurious pressure mode shown in Fig. 2(a) (see for example Ref. [1]),
and clearly each of the volumetric strain terms in Eq. (26) also integrates to zero over the element
volume. Hence, Eq. (27) is satisfied and the mode in Fig. 2(a) is also a spurious pressure mode for
such an element. Therefore, the pressure has to be continuous and the linear pressure distribution is
the natural one to use.

Let us also note that if we discard the last two columns in G* and consider the linear continuous
pressure field, the pressure distribution depicted in Fig. 2(b) is a spurious pressure mode. The proof
is as follows. The pressure inside each element is given by

p =71+ Yo + 73S+ 7a4rs. (28)

Now we need to evaluate over each element (m) the integral

Lw (71 + y2r + 738 + 7ars)[BU + Ga] dyem (29)

and we have with Egs. (24)—(26), for element (m),
Lwyl[BvU + Ga]dV™ =y [uy + vy —uz+ vy — Uy — U3+ Us— val, (30)
| l JV(M)VZV[BUU + GaldV™ = }—} [0 — vy + 03 — Vg + 4% ] j r2dyem, (31)
J‘w’ y3s[B.U + G.a] dym = X4§ [uy — iy + us — g + 402 ] J ~ s2dv™, (32)

j yars[BU + Gal dV™ =y, [os + %]J‘ r2s? dv . (33)
V(M) V(n-)
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(a) Checkerboard pressure distribution in assemblage of square 4/1 elements.
Discontinuous pressure
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(b) Checkerboard pressure distribution in assemblage of square 4/4-c/4 elements.
Continuous pressure

Fig. 2. Spurious pressure modes for element assemblages. The displacements are fixed everywhere on the
boundary.

Note that if the last two columns of G* are not included, then the integral considered in Eq. (33) is
automatically zero. However, for the pressure distribution depicted in Fig. 2(b) only the y, asso-
ciated pressure term is present, that is, for each element

p™ = p* rs sgn(p}") (34)

where p}"w is the nodal value of the pressure at the local node 1 of element (m), see Fig. 2(b). The
evaluation of (27) for the element assemblage then gives

f pe, dV =) p* sgn(p*™) {f (rs)e,, dV""’} =0 Ve,ez;" (35)
v m ym

and therefore the pressure distribution depicted in Fig. 2(b) is a spurious pressure mode.
The contribution of a5 and a¢ to the integral defined in Eq. (33) assures that there exists no
spurious pressure mode when G*(r) as defined in Eq. (20) is employed.
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3. The hour-glass mode and stability
The appearance of the hour-glass mode is associated with a nonphysical loss of stability of the

problem under consideration. Namely, there is a negative eigenvalue that becomes very large in
absolute value and the corresponding eigenvector dominates the deformations.

3.1. Eigensolution of a compression lest
To gain insight into the appearance of the hour-glass mode, we analyze a simple compres-

sion test. The model is depicted in Fig. 3. A rubber-like material of the Mooney-Rivlin type is
considered [1],

W=Cith =)+ Gl =) + 50— 1 (36)

where the J; are the reduced invariants of the deformation gradient,

Jy= LIz, (37
J, = LIP3, (38)
Jy =1} = detX (39)

and the I; are the invariants of the Cauchy—Green deformation tensor. We used in our analysis
C,=20,C,=02and k=10x 103, so that we have an almost incompressible material. The

Plane strain
Mooney-Rivlin material
C,=20

C,=02

K =1000.0

AA

v |

07 1o e e e e == =

time

e
A

Fig. 3. Compression test. The displacement 4 is imposed very slowly, hence a static analysis is performed.



92 D. Pantuso, K.J. Bathe [ Finite Elements in Analysis and Design 28 (1997) 83—104

———- \

Fig. 4. Hour-glass pattern for the 4 x 4 mesh, discretizing half the specimen, and using the 4/4-c/6 element.

analysis is accomplished as follows: we consider 4 x4, 8 x8 and 16 x 16 meshes for half the
specimen, using symmetry conditions, gradually (that is neglecting inertia effects) increase the
prescribed displacement 4 from 0 to 0.7, and study the eigenvalues and corresponding eigenvectors
of the stiffness matrix obtained for the complete finite element discretization as a function of the
imposed deformation. In the case of the 4/4-c/6 element discretizations, we first condensed out the
pressure degrees of freedom and then performed the eigenanalysis. Hence, the following problem is
solved for each load step,

(K = sy i=1,2, ... . (40)

where oK represents the stiffness matrix calculated at the beginning of the step considered and
referred to the original configuration, /4; is an eigenvalue and ¢; is the corresponding eigenvector.

We performed the analysis using the 4/4-c/6 element and also the displacement/pressure 9/3
element [1]. Figs. 4 and 5 show typical hour-glass patterns obtained using the 4/4-c/6 element for
the 4 x 4 and the 8 x 8 meshes, respectively. The original meshes are also shown with dashed linesin
both figures.

It is expected that, due to the strong compression, loss of stability takes place at some level of
deformation and, as a consequence, negative eigenvalues will appear. We give in Table 1 the
number of negative eigenvalues calculated as a function of the imposed displacement A. Notice
that, even though the 9/3 element discretization has more degrees of freedom than the correspond-
ing model using the 4/4-c/6 element, it contains a fewer number of negative eigenvalues. This
indicates that non-physical modes arise as the applied displacement increases when using the
4/4-c/6 element discretization.

We monitored the smallest eigenvalue (or largest negative eigenvalue) as a function of the
applied displacement 4. The results are plotted in Figs. 6 and 7 for the 4 x 4 and 8 x 8 meshes.
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Fig. 5. Hour-glass pattern for the 8 x 8 mesh, discretizing half the specimen, and using the 4/4-¢/6 element.

Table 1
Number of negative eigenvalues as a function of the imposed displacement 4

9/3 element 4/4-c/6 element
A 4x4 8x8 16 x 16 4x4 8x8 16 x 16
0.0 0 0 0 0 0 0
0.1 0 0 0 0 0 0
02 0 0 0 0 0 0
0.3 0 0 0 5 25 101
0.4 2 3 6 7 25 99
0.5 4 8 16 5 23 93
0.6 4 8 16 5 23 96
0.7 4 8 16 6 26 104

respectively. We should note the difference between the results obtained with the 4/4-c/6 and the
9/3 elements. Considering the 4/4-c/6 element discretizations, in each case the smallest eigenvalue
decreases very rapidly to a large negative number. The corresponding eigenvector represents an
hour-glass mode. There are also other modes that correspond to hour-glassing and whose
eigenvalues are also very large in negative values. The remaining negative eigenvalues (which do
not correspond to hour-glass modes) stay of the same order of magnitude throughout the analysis
and are much smaller in absolute values. Clearly, the very large negative eigenvalues lead to the
appearance of the hour-glass modes in an incremental analysis. In contrast, the 9/3 element
discretizations give reasonable negative eigenvalues throughout the analysis and none of them
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Fig. 6. Smallest eigenvalue as a function of the imposed displacement 4 for the 4 x 4 mesh discretization.
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Fig. 7. Smallest eigenvalue as a function of the imposed displacement 4 for the 8 x 8 mesh discretization.
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§ correspond to an hour-glass mode. Hence, hour-glassing is not expected when using the 9/3
clement.

32 The inf-sup and ellipticity conditions

The following question arises in general: “Why is it that even though the 4/4-c/6 element satisfies
the inf-sup condition (in linear analysis), the discretizations still fail in large strain analysis due to
the appearance of the hour-glass mode?”. To answer this question we need to investigate whether
the ellipticity and inf-sup conditions are satisfied in large deformation analysis.

Let us consider a typical current configuration of the body in the incremental solution. Let Vol
§ be the volume of the body and let us introduce the following spaces:

E=E@E, (41)

zZe=V(V), 42)

V = {vfv;, 0,0 € L2(Vol),i,j = 1,2, 3}, (43)

== {5/2,.,. e L*(Vol) and J E;dVol =0, i,j=12, 3}, (44)
Vol

0 = {g/q e L*(Vol)}. (43)

Hence, we have that the space Z is split into the direct sum of Z¢ and Z¢. The space =° is the space

of gradients of functions in V' whereas the space Z¢ is the strain enhancement space. Note that it is
possible to define a continuous operator G such that

G:Z—>V
& — v with vsuch that V() =& (46)

with & e Z°.
The space L*(Vol) denotes the space of square integrable functions in Vol. Assuming that zero
displacements are prescribed on the boundary S, of the body, we also define the space Vo as,

Vo = {vfvs, dxvi€ L2(Vol), i j= 1,2, 30} s, = 0,i =12, 3). 47)

Hence, we also have the space Zo which is defined as Zo = Z6 ® Z° and E§ = V(V,). We assume
that the prescribed displacements, at a minimum, do not allow rigid body motions.

The discrete finite element spaces are denoted by Z, and Qy, and correspond to the interpolation
functions presented in Section 2.2. They are subspaces of Zo and Q, respectively. Note that the
spaces Z¢ and Z,, correspond to strain spaces and the compatibility conditions must be satisfied
when choosing the finite element interpolations. In our case, we use linear functions and, therefore,
these conditions are automatically satisfied.

A typical Newton—Raphson iteration step for the solution of Egs. (8)-(10), after condensing out
the degrees of freedom corresponding to Eq. (9), can now be written as:
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Find &, € =, and p, € Q;, such that
a(en, §n) + b(&n, pn) = {f, Gu(&))> VEwe E,,, (48)
b(&n, qn) — c(pn, an) =<9, qn) Vqu € Q. {49)

Here, a(-,) is the bilinear form of the elasticity problem considered, see [1], the forms, b(-,-) and -
c(-,") correspond to the (almost) incompressibility constraint, and the right-hand sides in Egs. (48) -
and (49) are due tc the residuals in force balance, £, and constraint, g.

The two mathematical conditions for existence, uniqueness, stability and optimality of the
solution of (48)—(49) are the ellipticity and inf-sup conditions [1, 4, 14], which we consider for the
case of total incompressibility.

The ellipticity condition is,

a(&n, &) = B &ull? V& e K, (50)

where f3; is a constant independent of i and greater than zero, and
Ky, = {&, € Z,, such that &, =0} (51)

where ¢,, denotes the volumetric strain in Z,,. Once the ellipticity condition is satisfied, the inf-sip
condition,

. b(qn, &n)
inf sup

weorgez, anllg I &llz, =~ 72

where 3, is a constant independent of h, is the criterion for stability and optimality of the solution.

In our incremental finite element solution we clearly do not satisfy — from a particular
deformation level onward — the ellipticity condition and hence, we have strictly lost the mathemat- -
ical stability of the solution. While the small negative eigenvalues (as encountered in the 93
element discretizations) nevertheless allow a physically realistic solution, the large negative eigen-
values (as encountered in the 4/4-c/6 element discretizations) lead to the non-physical hour-
glassing. We note also that the space K, is larger in the discretizations using the 9/1 element
(assuming a constant pressure in the 9-node element, see Fig. 1) than using the 9/3 element. Hence.
the loss of ellipticity (that is, the violation of (50)) must be expected “to occur more easily” when
using the 9/1 element. And indeed, we will observe in the next section that an hour-glass mode does
appear when using the 9/1 element in an analysis case in which the 9/3 element discretization does
not show such mode.

4. Numerical tests

We consider in this section two problems in which the hour-glass mode appears: a plate with
a hole subjected to tension and compression conditions and a rubber bushing in compression. The
plate analysis does not show an hour-glass mode when tension conditions are considered.
However, under a compressive load, the hour-glass mode appears. In the rubber bushing problem
the hour-glass mode appears already at very early stages of deformation.
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Fig. 8. Plate with a hole. Model problem.

The constitutive law used in these two cases is that given by Eq. (36) with the following values for
the constants:

C, = 0.177, (53)
C, = 0.045, (54)
K = 666.66. (55)

4.1. Plate with a hole

This is a classical problem widely used as a numerical test in finite element analysis. The model
* problem is depicted in Fig. 8. We have considered both, a downward and an upward vertical
displacement imposed at the top of the specimen.

The deformed configurations for a vertical displacement corresponding to two different values of
A are shown in Figs. 9-11. The deformed configurations of the 4/4-c/6 and the 9/1 element
discretizations show the hour-glass pattern. Note that using the 4/4-c/6 element the pattern extends
throughout the mesh while using the 9/1 element the hour-glass mode is localized to near the hole.
Convergence was harder to achieve for the 4/4-c/6 and 9/1 element discretizations at larger
deformations and it was not possible to obtain the solution for the imposed displacement of
4=-10.

The force—displacement curves displayed in Fig. 12 show good correspondence between the
results obtained with the 9/3 and the 4/4-c/6 element until the hour-glass mode appears in the
4/4-c/6 element model.
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Fig. 9. Plate with a hole. Deformed configurations corresponding to vertical displacements of 4 = — 0.5 and
A4 = — 0930 using the 4/4-¢/6 element.
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Fig. 10. Plate with a hole. Deformed configurations corresponding to vertical displacements of 4 = — 0.5and 4 = — 1.0 .}

using the 9/3 element.

The results when the plate is subjected to tension are shown in Fig. 13 only for the 4/4-c/6
element discretization. As seen, the hour-glass mode did not appear in this case.

4.2. Rubber bushing

Fig. 14 shows the cross section of the rubber bushing. We assume that the frame and internal
shaft are rigid and that the rubber is perfectly bonded to these components. This example was also
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Fig. 12. Plate with a hole. Force—displacement curve.

considered in Ref. [12]. In this problem the hour-glass mode appears at very early stages of

deformation.
The models considered consisted of 32 elements when we used the 4/4-c/6 and 9/3 elements, and

32 and 128 elements when we employed the 4/1 element.
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Fig. 13. Plate with a hole. Deformed configurations corresponding to vertical displacements of 4 = 5.0 and 4 = 100 1
using the 4/4-¢/6 element.
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Fig. 14. Rubber bushing. Model problem.

Figs. 15-18 show the deformed configurations of the different models. The hour-glass mode
appears for the model based on the assumed displacement gradient approach whereas it does not
appear for the 4/1 and the 9/3 element discretizations. The hour-glass mode appeared when the
applied displacement was approximately 4 = 2.3. In contrast, no negative pivots were found
during the factorizations of the stiffness matrices throughout the solutions using the 4/1 and the 9/3
elements.

Regarding the convergence in the iterations, both, the 9/3 and the 4/1 element discretizations
reached a displacement of 4 = 8 in eight equal load steps. It was not possible to achieve this level of
deformation with the enhanced displacement gradient approach. In fact, convergence was harder
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Fig. 15. Rubber bushing. Deformed configurations using the 4/4-c/6 element.

Fig. 16. Rubber bushing. Deformed configurations using 32 4/1 elements.

1 and almost impossible to achieve after the hour-glass mode appeared and tiny load steps had to be
1 imposed to continue the analysis.

[ The force-deflection curves given in Fig. 19 show that, as expected, using the 4/1 element, the 32
§ clement discretization is very much stiffer than the 9/3 element model of the problem, but using the
1 finer 4/1 element model a better correspondence between the 4/1 and 9/3 element results is
1 achieved.




102 D. Pantuso, K.J. Bathe Finite Elements in Analysis and Design 28 (1997) 83-104

Fig. 18. Rubber bushing. Deformed configurations using the 9/3 element.

5. Conclusions

Our study, reported in this paper, regarding the performance of finite elements in the analysis of :
(almost) incompressible large strain response leads to some important conclusions.

Only elements that satisfy the inf-sup condition in linear analysis should be used. However, even }
such elements may not perform well in large strain solutions. The 4-node element proposed in [6]
for linear analysis is such an element. In large strain solutions, an hour-glass mode can develop- ,“
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Fig. 19. Rubber bushing. Force—displacement curve.

| This mode corresponds to a very large negative eigenvalue. As the mesh is refined, more such
excessively large and nonphysical negative eigenvalues appear.

The most effective element for two-dimensional large strain analysis appears to be the
9/3 displacement/pressure element. For three-dimensional solutions its counterpart is the 27/4
element [1].

In this paper we concentrated upon exposing the basic difficulties encountered. A detailed
mathematical analysis of the occurrence of the hour-glass mode would be very valuable.
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