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SUMMARY

A systematic procedure is presented for the stability and accuracy analysis of direct integration methods in struc-
tural dynamics, Amplitude decay and period elongation are used as the basic paramelers in order to compare
various integration methods. The specific methods studied are the Newmark generalized acceleration scheme, the
Houbolt method and the Wilson 8-method. The advantages of each of these methods are discussed. In addition,
it is shown how the direct integration of the equations of motion is related to the mode superposition analysis.

INTRODUCTION

Many integration methods are currently used for the direct integration of the equations of motion of lumped
parameter structural systems.}® Some investigators have concluded that a particular method is superior for
a certain type of problem. However, a procedure is lacking which can be used to compare the merits of these
methods in practical application for complex structural systems.

The stability of time integration methods can be proven by invoking one of the established theorems.®”
Also, various methods have been compared by studying a single degree-of-freedom system.” However, since
accuracy is not required in all modes of a complex structure this is not an adequate basis for comparison. In
fact, the participation of all modes in the solution is not desirable in most dynamic problems.

The objective of this paper is to present a systematic and fundamental procedure for the stability and
accuracy analysis of direct integration schemes and to apply the technique to the Newmark, the Houbolt and
the Wilson f-method. The f-method is optimized with respect to stability and accuracy. The integration
methods are compared and the relationship between integration and mode superposition analysis is discussed.
Based on the results of the analysis, guidclines can be established to select an appropriate time step for a
given problem.

Further research is required to develop better integration operators for linear and, in particular, non-linear
problems, The direct procedure of stability and accuracy analysis presented in this paper can be very effective
in this research. However, it should be recognized that the efficiency of an integration algorithm also depends
on other factors—for example, the number of numerical operations required for solution—which are not

discussed here.
PROBLEM .DEFINITION

In the dynamic response analysis of an n-degree of freedom structural system we are concerned with the

solution of the equation
Mii+ Ci+Ku =R (0

where M, C and K are the mass, stiffness and damping matrices, all of order n; the vectors u and R store the
displacements and forces, respectively, and a dot denotes a time derivative.® This equation arises, in particular,
in the finite element analysis of continuous systems.? In this paper we assume that the system is linear, in
which case the elements in M, C and K are constant.
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Mode superposition analysis

If the damping is assumed to be of a restricted form,® the quadratic cigenvalue problem is avoided and the
solution to equation (1) can be obtained by conventional mode superposition. In this analysis we consider
first free vibration conditions with damping neglected

Mii+Ku =0 (2)
Substituting u = ¢ sin w!t, we obtain the generalized eigenvalue problem

K¢ = w’Md (3
The » solutions of equation (3) can be written as

K® = MPQ? (4)

where the columns in & are the M-orthonormalized eigenvectors (free vibration modes) &, ... &, and * is
a diagonal matrix listing the eigenvalues (free vibration frequencies squared) w}... w?.
The next step is to write the equations of dynamic equilibrium in the basis of eigenvectors; using u = ®X

we obtain
X4+AX4+22X =PTR (5)

where A = diag (2w, £) and £; is the damping ratio in the i'th mode of vibration. Equation (5) consists of
n uncoupled equations which can be solved ‘exactly’ using the Duhamel integral. Alternatively we may use
numerical integration. Because the periods of vibration Ty, i = 1, ..., s, where T; = 2m/ew;, arc known we can
choose in the step-by-step integration of each equation a time step Ar which assures a required level of
accuracy.

The most time consuming phase of the analysis is the solution of the eigenvalue problem. If the order of
the matrices is large, the computer time required to solve all eigenvalues and vectors can be enormous.
However, it may be sufficiently accurate to include in the analysis only the lowest eigenvalues and associated
vectors because the higher modes do not participate in the response. Also, in comparison to the continuous
problem the highest modes of the discrete element system should be expected to be in error, so that there

may be little justification to include them in the analysis.

Direct step-by-step integration

An alternative procedure to obtain the solution to equation (1) is by direct integration.? In this case the
step-by-step integration is performed directly on equation (1) without first representing the equilibrium
relations in the basis of eigenvectors. Whereas in the solution of the uncoupled equations a different time
step can be chosen for cach equation to insure integration accuracy, in the direct integration one time step
is used and the response in all modes is integrated simultaneously, This is equivalent to choosing a common
time step At in the integration of all n uncoupled equations. Accuracy in this integration can be obtained
only in the evaluation of those response components for which At is a small fraction of the period. The other
modal response components will not be cvaluated accurately, but the errors will be unimportant if the
amplitudes are small; however, we need integration stability for all modes. This means that the initial con-
ditions for the equations with a large value A¢/T; must not be amplified artificially and thus make the accurate
integration of the response in the lower modes worthless. Stability also means that any errors in the displace-
ments, velocities and accelerations at time ¢ which may be due to round-off do not grow in the integration.
Naturally, stability is assured if the time step is small enough to integrate accurately the response in the
highest frequency component. But this may requirc a very small timestep and, as has been pointed out, the
accurate integration of this response is usually not necessary.

DIRECT INTEGRATION SCHEMES

Because the direct integration of equation (1) is equivalent to the integration of equation (5) with a common
time step Ar, we only need to study the integration of a typical row in equation (5), which may be written
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as
it2fwitetx=r (D]

This is the equation governing motion of a single degree of freedom system with free vibration period T,

damping ratic £ and applied load r.
In the step-by-step solutions considered here an approximation operator and a load operator arc used

which relate explicitly the unknown required variables at time 1+ At to previously calculated quantities.

The Wilson G-method

Let the acceleration, velocity and displacement at time 1, i.e. ¥, %, and x;, where the subscript denotes
time ¢, be known quantities, For solution of %, ,;, %, and X, we assume that the acceleration varies
lincarly during the time interval Ar, where = 1. The parameter § shall be chosen to obtain accuracy and
stability in the integration. When 6 = 1 we have the linear acceleration method which is known to be only
conditionally stable. In Wilson's averaging method § equals 2 and the integration is unconditionally stable.
However, without losing unconditional stability, § can be selected to obtain a scheme which has less

integration error.
Let + denote the increase in time, where 0< +< 844, then for the time interval ¢ to 1+ 047 we have

.

j‘:t-l--r = -’I"::"' (-’I‘fnaa.l - -fr:'i (?)
2

- - o - T T
Xpyr = X+ K7+ (Kpa— &) At (8)
Xppr = Xk Z 74 3 72 (K 4 — 5) N, &)

At time ¢+ At we have
. - LYS
Xpppr = X+ (Rpgar+ -‘#.‘,)-rf (10)
. ) A2
Kipal = x;+x‘r£‘lf+(2x;‘.f‘.f¢+m)?' {“)

Equation (6) shall be satisfied at time r+ 0A¢, which gives
Epponrt 26y gprt 0F Xy oa0 = Fraont (12)

Using equations (7)~(9) at time 7= 0As to substitute into equation (12) an equation is obtained with %,
as the only unknown. Solving for ,, ,, and substituting into equations (10) and (11) the following relationship
is established

Kpat X
pat | =A| X | +Lryon (13)
Xprat A

where A is the approximation operator and L is the load operator; both are given in Table I. This recurrence
relation can be used to study the stability and accuracy of the integration scheme, where we note that the
solution at time (+nA¢ with n an integer is given by

Aenat X
Kpamar | = A X |+ AT L s o-nart o Dignaeo-nat (14)

Apnat Xy
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Table I, Approximation and load operator of the Wilson method

(ot g den] [
A= | Al _EIE-T_ 20) (1“%_") ﬁ(:zg) L= Zm'fm
sel-g-G5-5) »(-%-9 (-9 | |
where
041, £B

/] [ _ EB
B= (w’ﬂ!‘+m+ﬁ) .Y

The Newmark generalized acceleration method
In this integration scheme it is assumed that

Xerat = X+ [(1-8) %+ LY, (15
and
Xppar = X+ X AL+ [(§ = 0) X+ ok ] AP (16)

The parameters § and « can be chosen to obtain integration stability and accuracy. When éd=}andas=s}
we have the equations of the linear acceleration method. Newmark proposed as an unconditionally stable

scheme the constant average acceleration method, in which case 8 = § and a = }.
Table II gives the approximation operator and the load operator of the Newmark method, which are
obtained using equations (15) and (16) together with equation (12) when @ = 1, Note the close relationship

between this approximation operator and the operator of Wilson’s method.

Table 11, Approximation and load operator of the Newmark method

[ —G-0p-21-8x A(=B=20 7o (-B) v
A=| AdI=8-G-)88-20-8)8x] (1-p8=20k) 7:(~pd)[; L= £
Arfi—a=(}—a)ef—2(1-8) ax] ANl-of—2ax) (l=—af) :’—E

where

p= (m‘la&:’+lfﬁ_s+) ; K=E€£_r

The Houbolt method
In the Houbolt integration scheme two backward difference formulae are used for the acceleration and

velocity at time 74 At, namely

T = EIF; (24 0= 52+ 4%y~ X1240) (17
Staat = g, (1 g 1895, 2z (9
Substituting equations (17) and (18) into equation (12) when § = 1, we can establish the relation I
Xrrar X
X | =A| x_n |+Lnga . (19)
Xp-at Xi=2Al

where A and L are given in Table IIL
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To calculate the displacements and velocities at times between the discrete time points, we may use in
the Wilson method equations (8) and (9) and in the Newmark method equations (15) and (16) with At being

Table III. Approximation and load operator of the Houbolt method

Gaato) -(aar¥) GFaars) 5
A= 1 0 0 e
0 1 0 0
where
b= (oanront]) s *= ok

replaced by the increment in time 7, i.c. 0<7<At. In the Houbolt method an interpolating polynomial of
order three which fits the displacements at the four discrete time points in equation (19) was used.

STABILITY

Consider equation (14) with r equal to zero. An integration methed is unconditionally stable if the solution
for any initial conditions does not grow without bound for any time step At, in particular when At/T is large.
We should note then, that any error in the displacements, velocities and accelerations at time ¢, for example
due to round-off in the computer, docs not grow. The method is only conditionally stable if the same only
holds provided A#T is smaller than a certain number. In discrete element analysis of continuous systems we
may have very high (infinite) frequencies,’! and an unconditionally stable scheme is needed.

To investigate the stability of a method we realize that A = P-*JP and therefore in equation (14)

AP =P-1Jnp (20)

where P is the matrix of ecigenvectors and J is the Jordan form of A with the eigenvalues A; of A on its
diagonal.*® Let p(A) be the spectral radius of A, defined as

p(A) = max| N, i=1,2,3 (21)

then J* is bounded for #- o0 if and only if p(A)< 1. This is the stability criterion. Furthermore, J*-+0 if
p(A) <1 and the smaller p(A) the more rapid is the convergence,

Before the cigenvalues of A are calculated it can be convenicnt to apply a similarity transformation
D-1 AD, where D is a diagonal matrix with dy; = A%, As we would expect the spectral radii of the approxi-
mation operators therefore depend on Ay/T, £, 0, « and & but are independent of At

The unconditional stability of the Newmark and the Houbolt method was discussed in References 1, 4
and 7.

Consider the stability of the Wilson operator. Figure 1 shows p(A) as a function of 8 for different values of
At/T and €. We note that the curves for At/T = 0 and At/T = co are independent of £, and that the method
is unconditionally stable, i.e. p(A) <1 for any At/T ratio, provided 8= 1-37. For 8 < 1-37. Where the method
is only conditionally stable, the stability limit depends on the physical damping in the system.

There are therefore many different operators which can be used in a practical analysis. In the discussion
to follow we consider the Houbolt method and two typical operators cach of the Newmark and the Wilson
method. In the Newmark method we let 8 = § with a = } and § = }} with « = v%. In the Wilson method we
consider the cases 0 = 1-4 and @ = 2-0, The spectral radii of the corresponding operators as a function of
At/T are shown in Figure 2, where the unconditional stability of these integration schemes can be noted.

INTEGRATION ACCURACY

The accuracy of a numerical integration depends, in general, on the loading, the physical parameters of
the system and the time step size. To obtain an idea of the integration accuracy using the five schemes men-
tioned above the response of a system with no physical damping is evaluated for two different initial
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conditions and no loading:
(1) x, = 10, %, = 0:0 and %, = —w? for which the exact solution is x = cos wf;
@) xo =00, % = w and %, = 00 for which the exact solution is x = sinwt.

In the Wilson and Newmark methods, equation (14) can be used directly with these initial conditions. In
the Houbolt scheme the exact displacement values for x,, and x;,, have been used.

The solutions show that the errors in the numerical integration can be measured in terms of period elonga-
tion and amplitude decay. Figures 3-6 show the percentage period clongations and amplitude decays
in the integration schemes as a function of A¢/T. In general, the integration is accurate when A#/T is smaller
than about 0:01, but as A#/T increases the numerical integration results in large period elongations and
amplitude decays. The Newmark method with & = } and « =} is most accuratc and only gives period
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clongations. A small negligible variation of the amplitude results from using equations (15) and (16) to find
the maximum displacement at times between the discrete time points. Note the improvement in the accuracy
of the Wilson method if 8 = 1-4 is used.

From the discussion in the previous section the amplitude decay in an integration is directly related to
the spectral radius p(A) of the approximation operator. Figure 2 shows that for the Newmark method with
& = } and « = } the spectral radius is unity for any value At/T, but that for the other integration schemes
p(A) is smaller than unity for At/T larger than about 0-01.

Consider now the simultaneous integration of all rows in equation (5), i.e. the direct integration of equation
(1). We may choose a time step to obtain accuracy in the low mode responses in which we are interested.
The question is then, what results are obtained with the same time step in the integration of the response in
the highcr modes. For illustration, assume that using Wilson’s method with @ = 1-4 a time step is sclected
which gives At/Ty = 0-01, where Ty is the fundamental period of the system. Let the initial conditions in
cach mode be those gwcn in (1) above and let the integration be performed over 100 time steps. Figure 7
indicates the response in the higher modes. We observe that the amplitude decay caused by the numerical
integration errors effectively “filters’ the high mode response out of the solution, The same effect is observed
using the other integration schemes except when Newmark’s method with 6 = 4 and « = } is used. In this
case the response in the high frequency components is retained in the solution with large errors in the periods.

The effective filtering of the high frequency response from the solution appears to be bencficial. Integration
accuracy cannot be obtained in the response of the modes for which A¢/T is large. But the filtering process
allows one to obtain, with a relatively large time step, a total system solution in which the low mode response
is accurately observed. Naturally, in this integration a scheme should be used which has minimum integration

crror when AtfT is small,
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DIRECT INTEGRATION YERSUS MODE SUPERPOSITION

The observations made in the previous section may be used to draw an instructive comparison between a
mode superposition analysis and the direct integration of equation (1) using an integration scheme in which
the high frequency response is filtered out of the solution. As discussed, the direct integration is equivalent
to a mode superposition analysis in which all eigenvalues and vectors have been caleulated and the uncoupled
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equations in equation (5) are integrated with a common time step At. The integration is accurate for those
modes for which A¢/T is small, but the response in the modes for which A#/T is large is eliminated by the
artificial damping, Therefore, the direct integration is quite equivalent to a mode superposition analysis in
‘which only the lowest modes of the system arc considered, The exact number of modes effectively included
in the analysis depends on the time step At and the distribution of the periods. Clearly, the direct integration
is most efficient when all important periods of the system are clustered together. In this case a time step which
is chosen using the smallest of those periods is not unnecessarily small with respect to the largest period.

The comparison of the direct integration with mode superposition analysis also indicates on which basis
the time step size should be chosen. The most important modes arc those for which r in cquation (6) is non-
zero, Thus, the load distribution and frequency content of the loading largely determine which modes need
to be integrated accurately and hence what size of time step should be used. In practice, the mode shapes and
frequencies of the system are not known, and it is best to select a time step increment which will accurately
represent all of the frequency content of the load.

CONCLUSIONS

A systematic and fundamental procedure for the stability and accuracy analysis of direct integration methods
has been presented. The procedure was applied to the Newmark generalized acceleration method, the Houbolt
method and the Wilson #-method, which was optimized for integration accuracy, It is concluded that all
of these methods will yield accurate results for certain types of problems. In addition, the relationship between
direct integration and mode superposition was discussed. Both methods of analysis can be used to truncate

the frequency demain.

It should be emphasized that the discussion of direct integration methods presented here has been limited
to lincar problems. Additional difficultics arise with the stability and accuracy of numerical methods applied
to non-linear systems, and further research is needed concerning such cases. It is believed that the approach
to stability and accuracy analysis described in this paper would be of value in these investigations,
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