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Abstract

This is a tutorial paper on the mathematical analysis of
finite element discretizations. We are concerned with the
convergence behavior of elements when internal constraints
need to be satisfied, in particular, the incompressibility
constraints in elasticity or fluid flow. As a model problem,
we consider the solution of incompressible, or slightly com-
pressible elasticity. First we discuss the general conditions
to be satisfied by the finite element spaces in order to
obtain optimal convergence behavior. This leads to the inf-
sup condition and various equivalent forms that are more
easily used. We then apply the inf-sup condition to the
9-node displacement/linear pressure two-dimensional element
and make some remarks on how other elements and problems would
be considered.

1. Introduction

In fluid and structural mechanics we often have to mini-
mize functionals of the form

JV) = 31(v) + Loy (1)

In some applications, the form (1) is mnaturally obtained in
the physical formulation, and ¢ is some positive physical
quantity that is very small. In other applications, the true
physical functional to be minimized is actually J1(v) and the
second term is introduced only as a penalty term, to take
account of a physical constraint. In other words, we have to
minimize Jj(v) under the constraint Jo(v) = 0 and we choose to
minimize, instead, (1) for some ¢ > 0 very small. Here,
therefore, ¢ is a mathematical parameter that is somehow at
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our choice: however the use of an ¢ too large will produce
unsatisfactory results, because the constraint Jo(v) = 0 will
be poorly satisfied. In what follows, we shall not distin-
guish between these two (philosophically different) cases. We
will just focus our attention on the question: "What happens
to the minimizers of (1) (before and, mainly, after discreti-
zation) when ¢ is very small?"

In many practical cases, a very small ¢ is known to be a
considerable source of difficulties, and the most popular
remedy is "reduced" integration for the functional Jo (V).
However, it is not clear when the reduced integration is nec-
essary and, most of all, how much do we have to "reduce" the
integration for saving a satisfactory accuracy. The solution
of problems of type (1) using reduced integration has been in
recent years connected to the use of mixed finite element
methods. From the mathematical point of view, such a connec-
tion really works only in special cases and is just false in
others. One analysis technique that is in some sense related
to reduced integration is mixed interpolation, and it is this
approach that we will consider in this paper.

Mixed finite element methods have received careful atten-
tion by mathematicians: sufficient conditions have been
introduced to guarantee their stability, convergence and error
estimates. Among them the inf-sup condition became popular in
the framework of incompressible fluids, probably because the
other conditions were trivially satisfied by any reasonable
discretization while the satisfaction of the inf-sup condition
was (and still is) the source of difficulties.

The objective of this paper 1is to discuss the inf-sup

condition -- and its various forms -- as it applies in finite
element analysis. As a model problem we consider the solution
of linear elastic (almost) incompressible solids. The dis-

cussion does not present new information, but is directed
towards providing insight into some mathematical conditions
for finite elements and into techniques to analyze whether
these conditions are satisfied.

In the next section we study the use of a general sequence
of finite element spaces to solve (1) and discuss conditions
on these spaces to obtain optimal convergence properties,
These requirements lead to the inf-sup condition.

In Section 3 we then analyze the use of mixed interpola-
tion with projection to solve (almost) incompressible elastic-
ity problems. 1In this analysis the inf-sup condition is used,
and we give the details of analysis to show that the (well-
known) 9-node displacement/3 parameter pressure element is a
reliable element to use in general two-dimensional solutions.
This analysis also gives insight into how other elements could
be analyzed.
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We conclude the paper with some short remarks regarding
the role of the inf-sup condition in the analysis of other
types of problems. ‘

2, Setting of the Problem Considered

In the following analysis we shall consider problems of
the form

inf J1(v) + el Jy(v) - C(v) (2)
veV

where V 1is a Hilbert space of admissible functions, the J;
(i=1,2) are quadratic functionals in V and C(v) is a linear
functional on V; £ is a very small real positive number.
Problems of type (2) arise frequently in engineering analysis.
Their origin can be two-fold: sometimes Ji + et Jg
represents the potential energy of a system and el is

some large physical parameter used to define the energy. This
is the case for instance in the linear elasticity of nearly
incompressible materials and in the analysis of Mindlin-
Reissner plates. In other applications, the form (2) appears
after introduction of a penalty term. This is the case in the
analysis of  incompressible fluids, when a penalty term
el f (div 3)2 dx 1is added to the potential energy to account
for the incompressibility condition.

The common feature in all these cases is that after dis-
cretization an ¢ which is too small (employed with the mesh
size h) is a potential source of major difficulties.

In order to start the discussion of such difficulties, let
us consider two very simple, purely academic examples.

Example 1: 1In this example we will not, actually, discuss a
problem of the type (2). We shall just make some remarks on
the approximation of functions by finite element spaces. Let
V, be the space of piecewise linear continuous functions on
(-1, 1) vanishing at the endpoints. Consider v(x) = 1-x2; it
is a nice and smooth function. We know that

v o€ 02(-1,1) and inf "V'thl =ch
: VheéVh
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(here | [} is the energy norm: [p[] = fl (¢')2dx). However,

inf - fvewalyi - inf  fvewplly = ] - /873 v b
VheVRNC VRe{0) 1

Of course, we know that we would not proceed this way; but we
want to point out the following philosophy. We are given a
sequence of finite element spaces (here V) that allows us to
approximate in a satisfactory manner every function in some
space V (here functions in C<(-1,1), vanishing at the end-
points). We choose a function v in V and recognize a nice
property (here, to have a continuous derivative). Now (big
mistake) we try to approximate the function v by means of
functions that are in Vy, and share the same nice property
(here to have a continuous derivative). We find that the only
function in Vp with continuous derivative is the zero func-
tion. As we shall see, this simple example displays the
essence of the "locking" phenomenon.

Example 2: This again will be a very academic case, but will
teach us something. Assume that we want to minimize

1 1

J1(v) - C(v) -J (v)2 ax - AJ v dx
0 0

over the space of functions v(x) defined in (-1,1), wvanishing
at x = * 1, smooth and symmetric: v(x) = v(-x). The solution
is v(x) = 1 - x2. In order to enforce the symmetry condition,
we add a penalty term
1
el Jyv): = &7l J (v(x)-v(-x))? dx.
0
The new problem is now to minimize
1 1 1
J (v')%? dax + 71 J (v(x)-v(-x))2 dx - aJ v(x) dx
' 0 0



over the smooth functions v(x) vanishing at x = + 1, Again
the unique solution is wv(x) = 1 - x* for every positive .
Now we discretize with piecewise linear functions vanishing at
x = % 1, but for each integer n, we split the subinterval
[0,1] into n equal parts and the subinterval [-1,0] into n+l
equal parts (we are really looking for trouble!). Now the
only symmetric function in our finite element subspace is the
function identically zero. If we try to minimize the func-
tional on the subspace Vy, for very small e (compared to h =
1/n) the term el f (v(x)-v(- x)) dx will be an unbearable
burden for our trial minimizer that will force the solution
to remain at zero.

In both examples we made the same mistake. We had a nice
function v(x) and a nice sequence of subspaces Vh that was
able to approximate the function in a satisfactory manner.
However, by imposing a certain condition on the solution in Vh
we could not obtain a reasonable solution. The important
point is that when we minimize a functional of type (2) on a
finite element subspace Vj, with ¢ > 0 very small, we are
actually minimizing

J1(v) - C(Vv)

on the intersection of Vi, with the set of functions Vh such
that Jo(vRp)=0. 1If the space of intersection is too small, we
loose in accuracy.

The two small examples above suggest our strategy of ana-
lysis. Assume that we are given, together with the problem
(2), a sequence of finite element subspaces V, that can
approximate every smooth function of V with a "satisfactory
accuracy". What are the conditions on Vi and Jy(v) such that,
no matter how small is £>0,the discrete solution of

inf  Jy(vp) + e 1 Jo(vy) - Clvp) (3)
VheVy

approximates the solution of (2) .with the same "satisfactory
accuracy"? '

The above question has two weak points: it is not formu-
lated in a mathematically precise manner and it 1is too
abstract to be properly understood. Hence it will be more
convenient to discuss a particular case.

3. The Linear Elasticity Problem Solved Using Exact Integra-
tion

We consider as a model problem the 1linear elasticity
problem [1]



inf 1/2 a(y,v) + /2 [ (div ¥)2 dx - [ fey ax (4)
veV Q Q
where
3 1 D
a(u,v): =24 ) e5j (W) e55(¥) ax
i,j

D
€3 (u): = €13 (u) - 1/3 div u Sij
£ij (ub): = 172 (aui/axj + auj/axi)

(bulk modulus) , p = —t
3(1-2v) 2(1+v)

AH

(shear modulus)

E = Young’s modulus, v = Poisson’s ratio
Ve (x| avy/axy e L2(0) (1,5-1,2,3 ),

vilag = 0 (i=1,2,3 ))

s a2 = q2 ).
L2(a)

<

2
el = 3 lavisaxs]

2
i, L2(q)

The use of homogeneous Dirichlet boundary conditions is mainly
to simplify the notation. Let u be the minimizer of (4) and
let V, be a sequence of (finite element) subspaces to be
specified later on. It is clear that the discrete problem

inf  1/2 a(vp,wy) + 3/2 [ (div w)? dx - [ fewpdx (5)
YheVh Q Q
has a wunique solution wu,. If the sequence Vy has good

approximation properties the quantity

d(u,Vp): = inf  [u-wyl
YheVh

*In the following discussion we will not explicitly give the
subscripts on the norms but always imply that a vector w has
norm [|w[y and a scalar y has norm [v|g.



will be small for small h. Moreover, it must be pointed out
that the solution u will be uniformly smooth no matter how

large A, A > 0. Our purpose is to find conditions on V
such that

Ju-upll = ¢ du,vy) (6)

with a constant ¢ independent of h and ).

The inequality (6) means that the distance between the
continuous solution u and the discrete solution up must be
asymptotically of the same order of magnitude as d(u,Vy). For
instance if d(u,Vy) = 0(h2) then (6) requires lu-up]| to be
also O(hz).

On studying (5) we remark that for large A the quantity
laiv w| will be small. The larger is A, the smaller
is [div Bh"' As we have seen in Example 2, for very large A\
we are practically trying to approximate u in the intersec-
tion of V, with the space of vectors with vanishing diver-
gence. It is now convenient, for the following discussion, to
introduce some notation. For any scalar function q(x) defined
on {3 we set

K(q) = (¥|yx e V, divy = q)

Kp(q) = (yplvn € Vh, div vy = q) = V, N K(q).

It is clear that Ky(q) € K(q) for all q and for all h.-
When X grows to + = the solution u will be closer and closer

to K(0) while the solution u will be closer and closer to
Ky, (0).

Hence it is reasonable to consider directly the two limit
problems

inf  1/2 a(v,y) - [ £ (¥ . (7)
veK(0)
and
inf 1/2 a(yp,vy) - [ £2vp - (8)
VheKy (0)

For the sake of simplicity, let us call again u and |y
the minimizers of (7) and (8), respectively. We still want
(6) to hold true. It is now easy to note that, since

u, € Kh(O) ’

* We imply integration over the domain Q.



d(u,Kp(0)):=  inf lu-wnll = flu-uy
Yp €Ky, (0)

so that, if (6) holds, then
d(u,Rp(0)) =cd(u,v,). (9

The following Proposition 1 will show that actually
lu-upll = v d(u,k,(0)) (10)
so that |u-w| = d(u,k,(0)) and hence (6) and (9) are

equivalent,

Proposition 1. Let u and Uy be the minimizers of (7)
and (8) respectively. Then (10) holds with 4 independent of
h.

Proof. It is enough to note that:

(1) 3a>0VyekO0) ay =al|v|?

(11) 3 M>0 Vy,veV a(yy,vy) =< M|yl el
and that the Euler equations of (7) and (8) are

(1i1) a(u,¥) = (£,¥) V ¥ ¢ K(0)

(iv)  a(up,vp) = (£,¥y) ¥V vy € Ku(0).

Then the (well-known) argument goes 1like this: for any
Eh € Kh(0) we have

afu-up]? = (use(i))
< a(u-up,u-up) = (add and subtract Uy)
= a(u-yp,u-T,) + a(u-yp, Vu-up) = (use (iii), (iv))
= a(u-yp,u-u) < (use (ii))
=M [u-up| Ju-By|
so that, for any ﬁh in Kp(0) we have
lu-unl = M/a fu-Gyl

which implies (10) with v = M/a. =



We have assumed so far that the forcing vector £ is a fixed
quantity. Hence, we essentially .considered one single, spe-
cific continuous solution u. However, if we want our theory
to hold for all possible right-hand sides £, we must require
that (9) (or equivalently  (6)) holds for all possible solu-
tions u. That is, we must require that (9) holds for any u

in V. We need now a further notation:
D = (q’q = div y, for some vy in V).

In other words, Dp is the space of the divergences of vectors
belonging to V.

Proposition 2. Condition (9) holds for every u e¢ K(0) if
and only if the following condition holds.
For all q € Dy and for all u e K(q) }
(11)
inf fu-wp s e inf  Ju-wy|
YheKp(q) YheVh

with ¢ 1independent of h.

Proof. (11) implies (9) by simply taking q = 0. Assume
now (9) to hold; take a g~ 0 and a u in K(q). Since q € Dy
we have q = div wy for some wp in Vy. Set ug =u - w, and
write v, ¢ Kh(q) as v, = xho + wp with xho € Ky (0)

inf |u-wy] = inf ly - w0 - w] =
YheKp(q) v, 0Ky (0)
= inf lug-upll = (use (9)) =
w0 €Ky, (0)
scinf  Juo-wp| =cinf  fup + wy - vy
YheVh YheVh
=cinf  [u-wpl .

YheVh
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The above result simply expresses the fact that K(q) and
Ky, (q) are simple translations of K(0) and KLh(0) by a common
vector (here: wy). This clearly does not change the quality
of the approximation. Now comes a slightly more sophisticated
result.

Theorem 1. Condition (11) is equivalent to

YV q €Dy 3wy e Kylq) lunll = cllal (12)
¢ independent of gq, whp and h.

Before starting the proof, we note that a basic result in

partial differential equations ensures that the "continuous"
version of (12) always holds true, namely

VqeD3weK(Q) lel = v lal (13)
7 independent of q and w
(with D = (q|q e L2(Q), fq = 0); note that Dy c D). We

refer for instance to Ladyzhenskaya [2] or Temam [3] for a
proof of (13).

Proof of Theorem 1. We assume first that (11) holds, and
we prove (12). For this, let q ¢ Dy, and let w ¢ K(q) be
such that |lu| <+ [q]. Such a w surely exists due to (13).

Take now wy ¢ Kuh(q) such that

lw-wpl = inf  [u-wf .
YheKp(q)

From (11) we have
lu-wpll <= ¢ inf [u-wy| =< clu] (use v,=0)
YheVh
and therefore
lunll = lu-upll + el = (2+c) el = (+e) v faf.
We have proved that (11) implies (12). Assume now that

(12) holds true. For any q ¢ Dy and for any u ¢ K(q) let
W, € Vy be such that

lu - ¥l = inf  Ju - wpf . (14)

VheVn
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Unfortunately Wy ¢ Knp(q) in general. Set now q = q-div W, =
div u - div %, € _Dy. Since the div operator is continuous
from V into L2 (Q) we have

Ia] = e1 u-Fl. (c1 is actually=[3) (15)

Take now wy, € Ky(g) such that

lenll = ealldll. (16)

This is possible due to (12). Note that div(wy+#,) = @ +
div %, = q.

Hence
inf lu-vipl = fu - (p+%,) | = (triangle ineq).
VheKp(q)
< flu - Gyl + lun] = (use (16))
< Ju - @yl + c2fgl = (use (15))
< fu - Byf + egeq lu - wyf =

(l+cgeq) flu ¥y = (use (14))

(l+cgey)  inf  u -
YheVp |

An equivalent formulation of (12) is the following inf-sup
condition

Jq div
inf sup —_— > >0 (17)
qeDy  ¥heVn  [lvnl 4l

with B 1independent of h.

Let us see for instance that (12) implies (17). Let q be an
element of Dy. From (12) we have that there exists a wp
with div w, = q and [wy] = ¢ [qf. Multialying this last
inequality by |lq| we obtain =~ Jup| [lqfl = cfqf?.” Now |q? =
fq? =fq div wy,. Therefore, [wy| lla = ¢ J q div w,. This can
be written as : :
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f q div wy

1
>— . (18)
lall s ¢

Summarizing we have: for any q ¢ Dy, there exists a ¥h € Vy
such that (18) holds. This clearly implies (17) with B8 =1/c.
The opposite implication (17) = (12) is also true but the
proof is a little more technical. Since we are not going to
use the form (17) here, we omit the proof, see for instance
Brezzi [4].

A more interesting equivalent formulation of (12) is given
by the following proposition.

Proposition 3. Condition (12) is equivalent to

N

VueV3u; e Vy such that

(1) J div(u-u;) ¢ =0 V¥ qeDy,
> (19)
(11)  ugl =< [yl

with ¢ 1independent of u, uy and h,

Proof. Assume first that (12) holds and prove (19). For
this, let u ¢ V be given and let § be the Lz-projection of
div u onto Dy; hence g €Dy, and f(div u-q)q=0V qe Dy, and

Ial = laiv ul = 3]y] (20)
Using (12) &e can find a ug ¢ Kp(q) with
lurl = <[3l. (21)

Now since wuy ¢ Ky(q) we have that (19;i) is satisfied,
and using (20), (21) we have that (19;ii) is also satisfied.

Assume now that (19) is satisfied and prove(l2). For every
q € Dy we have (using (13)) that there exists a w ¢ K(q) with

ful =+ fqf . (22)

Using now (19) with u = w we obtain a w1 such that
J (q-div wy)6q =0 V 8q ¢ Dy
which implies div w7 = q and hence wy ¢ Ky(q). Moreover by

21
(19;ii) we have |lwy| = ¢ {u| which together with (22) gives
lurll = ¢ v llall. Therefore (12) is proved by taking w, = wy. ®
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Let us now comment on our formulations of the inf-sup con-
dition. Condition (6) is really what we want: this condition
implies an optimal error bound. If we want to satisfy it for
every possible right hand side £ we must satisfy it for every
u in V. If we want that our method is uniformly effective
for A » + » we are naturally led to require (9) for every u e
K(0). The formulation (11) is just an intermediate step to
reach the powerful formulation (12). Actually, if we know
that the inf-sup condition is satisfied and if we want to use
this fact for proving other results, the form (12) 1is highly
recommended: it is simple, it is easy to manipulate and it
contains all the information. On the other hand, if we want
to prove that our discretization satisfies the inf-sup condi-
tion then the form (19) (also known as "Fortin’s trick") is
the more easy way in almost all cases. We shall use (19) in
the next section.

Since we observed that (12) is a convenient form, 1let wus
express it in words and consider the interesting case q very
small.

The form (12) says: it is not forbidden to have "large"
vectors (i.e., [w| is 1large) with small divergence in the
vector space Vi, as long as there are enough "small" vectors
with small divergence.

Namely, consider that we have an approximation uj to the
solution u. Convergence is measured by the mnorm |[u-ugf.
Assume that q = div u is very small and div ujy is too large
(we recall that div uy is multiplied by X and any error will
have a very large effect on the solution). Hence we want to
add a vector, say W, to uj in order to more closely satisfy
the required (small) wvalue on the divergence. The addition
of wy, to uy should give a vector with smaller divergence and
closer to (or at least not farther away from) u.

In other words, if the only wj vector with small diver-
gence we can add to uy is a "large" vector then the error
Ju-uzl will increase and we encounter convergence
difficulties. On the other hand, if (12) does hold (that 1is
if the kernel Ku(0) is large enough) then we can find a
"small" wp (with also a small divergence) to correct the
vector ujy to obtain a new approximation uy-wp which is still
close to u but has a much smaller divergence.

1f we consider our condition (12) as "K,(0) must be large
enough" we can better understand the so-called "locking" phe-
nomenon. We have seen that, basically, locking corresponds to
Kh(0) = (0} or, more generally K, (0) very small. Hence,
locking corresponds in general to a strong violation of (12).
We should also point out that the absence of locking (i.e.,
K (0) = {0)) does not imply that we obtain an accurate
solution (that is, it does not imply that Ku(0) is large



- 14 -

enohgh).

Let us end this section with a brief summary. We have
observed (in (6)) that we want the error |u-up| to be of the
same order as d(u,Vy), uniformly in A + + «». This took us to
consider the two limit problems (7) and (8) and require again
(6) with u and uy now the solutions of the limit problems. We
found (6) to be equivalent to (9). Since we want our argument
to hold for every righthand side £, we require (9) to hold for
every u in K(0). Then we proved that this was equivalent to
(11), that (11) was equivalent to (12) and that (12) was equi-
valent to the inf-sup condition (17). Finally, we gave as a
last equivalent formulation (19), the so-called "Fortin'’s
trick®. Now we can (reasonably) ask: what are the finite
element spaces such that (19) (hence (17), (12), ---, (6)) 1is
satisfied? Unfortunately, not many and , in general, not the
space that we would like to use. Under minor assumptions on
the triangulation, Scott and Vogelius [S] proved that (17) is
satisfied when V, is the space of piecewise polynomials of
degree k = 4. If we want to use lower-order methods, it seems
that we must do something special when dealing with the term
A f (div v)zdx in the functional. This is done in the
next section.

4. Mixed Interpolation with Projection

There are various approaches for reducing the bad influ-
ence of a term 1like Xf(div 2)2 in our functional. For the
sake of simplicity, we shall just analyze one family of such
methods. The general idea for the whole family consists of

(1) choosing a new finite element space Qp (usually made
of functions that are discontinuous across the ele-
ments) and

(2) substitute in place of Af(div 2)2 the "weaker" term
2 [ (R(aiv ¥))2

where P is, by definition, the Lz—projection operator on

Qh. This means that for a given ¢ ¢ LZ(O) the projection Pgp
is defined as the unique element p = Pp in Q, such that

J (-9)q=0 Vgqeq. (23)
Note that, if Q consists of discontinuous basis functions
the projection (23) can be computed element by element. Let

us consider the continuous and the discrete problem and try to
deduce an error estimate.
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Coﬁtinuous problem; find u ¢ V such that

a(u,v) + A [ divu divy = [ fev VveV., (24)
Discrete problem: find uy ¢ Vj such that
a(gh,gh) + A f(P div w,) (P div w}) =
f Eevy Vv, eV, (25)

Recall that the bilinear form a(u,v), defined in (4) satisfies
(i) of Proposition 1. Also,

(i) alwp? < alwp, wp) + A [PDy,|2? .
Let now uy be an element of V, to be chosen later on "close to
u”. In order to simplify the formulae, we shall also write
here D instead of div, we shall set w,: = ur - y and recall
that P being a projection operator,

J(PX)(Pg)ax = [ x P ax  V x, ¢ ¢ L2(Q).

Now we have:
a(¥h,wy) = a(ur-u,,¥wp) = (26)

= a(ur-u,wy) + a(u-u,,w,) =
=1+ a(u,wy) - a(up,¥y) = (use (24)(25))
= I + ffewy - AfDu Dwy - (Jfewy - A[PDu, PDwy) =
= I + A[[(PDu-Du)Dwy, - [PDu Dwy + [PDuy PDwy] =
= I+ II + A[-[PDu Dwy, + [PDuy, PDuwy] =
= I + II + A[f(PDuj-PDu)Dw}, + [(PDuy,-PDuj)PDwy] =
= I + II + Af(PDur-PDu)Dwy - A [PDwp?

with obvious notations for I and II. From (i’) and (26) we
have (moving the last term to the left-hand side)

allupl? = aCup, wp) + AlPDw[? = 1 + TI (27)
+ A [(PDuy - PDu)Dwp = I + II + III.

.Let us analyze the three terms on the right-hand side: we can
easily bound I and using (ii) of Proposition 1 we have
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I = a(ur-u,up) =< Mu-ur| fupl. (28)
In order to make I small we must choose uj close to u: no
surprise! The term II measures the error in the projection

II = X f(PDu-Du)Dwy = [(P-I)p Dwy =
< [@-Dp| |un] (p:=abw) . (29)

In order to make II small we have to choose P close to the
identity, or, in other words, Q, large enough. Somehow here
we pay for substituting for the original term [(div w)? the
term [(P div gh)z. This is also very reasonable. The third
term, however, can introduce major difficulties,

III = X [(PDur - PDu)Dwy,. (30)

If A is very large, then PDu will be very small (recall that
ADu is bounded). Hence we need PDuy to be also very small,
with uy; close to u as needed in the estimate of I. 1In the

limit for A+= we need an approximation uy of u with P div uy =
0 (now div u = 0). More generally, if we want III to be small
uniformly in A, we cannot accept that f(PDgI-PDg)Dyh is some
O(hk): we need that it is exactly zero. So this is the

condition: we myst find uj such that

J(PDuy-PDu)Dyy, = 0 V wp € Vp.

This can be written as

[(Dur-Du)PDyy, = 0 ¥V y € W,. (31)

For every uj satisfying (31) we will obtain using (27) to
(31)

lun-u] = eCfu-ug) + l-2Ip[> - (32)

where as usual p = ADu = X div u.

We propose to keep the inf-sup condition in the form (31)
(32): that is, for every uy satisfying (31) we obtain the
bound (32). It is clear that in practice this means: we must
be able to build (or to show that it exists) an "interpola-
tion" of u that satisfies (31) and is close to u. Note that
this, in particular, strongly excludes "locking" behavior.
Consider for simplicity the limiting case in which div u = 0.
We need that the set
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Kp(0) = (wplyy € Vg, P div vy, = 0) (33)

is large enough, so that in K,(0) we can find a uj close to u.
If Kn(0) = {0} (or if it contains only a few elements) this
is clearly not possible (unless the true solution u is itself
zero). -

Let us comment further on this formulation. First of
all, note that we can always take P = identity. This in gen-
eral is not convenient, but it is clearly allowed. The choice
P = identity brings us back to the original formulation of
Section 1. Therefore, we have proved in particular that if u
and up are the solutions of (4) and (5) respectively, then for
any uy € V,, satisfying

[ div(u-up)div vy, =0  V y, e ¥y (34)
we have
lu-unl = efu-ug| (35)

with ¢ independent of u, QI and h.

It can also be interesting to compare this result with
(19) of Section 1. Basically there we had that if (19) holds,
then we have optimal error bounds. Condition (19) essentially
required that for any u in ¥V we can find a uyy in Vy
satisfying (34) and |uy]| = c [ufl. Here we just say that u
being the true solution, for any uj satisfying (34) we have
(35) which in itself is not an optimal error bound but can
become such in applications. Finally we remark that the
implication (34) = (35) is not a condition: it is a theorem
that holds for every choice of V.

Let us now comment on the more useful cases P » identity,
to see what benefit is reached. Consider for the sake of sim-
plicity the limiting case A = + », so that div u = 0. We have
seen that the aim is to find a uj satisfying P div uy = 0. 1If
P is the identity operator, such uy can be difficult to find.
This will be the case if Q is too large. However, as we
reduce the space Q, the condition P div uy = 0 becomes less
and less difficult to enforce: for instance if Q is made of
piecewise constants then we have only to require that div uj
has 2zero mean value on each element, which gives a much wider
choice for uj. Hence we have more possibilities of finding a
uy that is close to u. Using the notation (33) it is easy to
observe that K,(0) becomes larger as the space Qp becomes
smaller.
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Let us consider, as an example, how to deal with (31) in
some practical 2-D cases. For instance we can consider Vp to
consist of piecewise biquadratic polynomials (usually called
Q2) and P to be the projection on the space of linear func-
tions (usually called P1): we are then using the QW - P
scheme. Given u smooth we must find an interpolation uj sucn
that, for each element e,

J (div uy-div u)q = 0 (36)
e

for all q polynomials of degree < 1 in e. To define uy we
must prescribe the values of each component at the nine ele-
ment nodes (vertices, midpoints and center). We start with
the vertices V1,V2,V3,V, and require

gI(Vj) = g(Vj) (8 conditions). (37)

Then we adjust the values at the midpoints Mj,...,M in
such a way that

I(Q-QI)°Q df = f(g-gl)-L d? = 0 (8 conditions) (38)
L: L:
J J
for every edge Li,...,L4, withn = normal vector and 7 =

tangential wvector. Note that (38) in particular implies, for
every constant q

[ div(u-y1) q = q [(u-ug)en df = 0. (39)
e de

We are left to use the 2 degrees of freedom at the element
center node. We choose these in such a way that

J div(u-up)x; = [ div(u-up)xp = 0 . (40)
e e

Note now that easily (39) and (40) imply (36). Note also
that uy, constructed element by element through (37), (38),
(40) will be continuous from element to element (we need this
continuity). Finally, note that clearly if u is a (vector)
polynomial of degree =< 2 on e we obtain uy = u and this
ensures optimal bounds for "g-gI“. We also observe that it is
not so easy to require in addition to (40) the condition
f div(u-uy)x1x9 = 0, that is, to use a bilinear variation
instead of a linear variation on pressure. We cannot give up
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easily conditions (37), (38) because of the continuity
requirements (that is, the values prescribed for u; on one
edge -must depend only on the values of u on that edge). Once
we used (37), (38) we employed already 16 degrees of freedom
and the 2 degrees freedom left are just sufficient to obtain
(40), while (39) is automatically satisfied (because of (38)).
However, a possibility might be to define ur by blocks of
elements instead of using the element by element construction
(see e.g., Johnson-Pitkdranta [6]).

The same arguments used for the Q2 - P; element can be
employed for the P2* - P; element on triangles, where P2* is
the space of piecewise quadratics augmented with the cubic
bubble functions. We fix the three vertices first, then the
midpoints in order to preserve the mean value of the normal
components: this takes care of q = constant as in (39). Then
we are left with the two bubble functions that we can use as
in (40).

Incidentally we have also proved the convergence of the
P9 -Pg element for triangles and of the ered - Pg element for
quadrilaterals(where ered is the B-node element): we do not
use the two bubble functions and the two conditions (40) .

There are also less easy cases; for instance, the Taylor-
Hood element, for which it is possible to have (34) (hence
optimal error bounds) but the construction is complicated (see
Bercovier-Pironneau [7] and Verfurth [8]). The Q; - Py
element is also a major source of difficulties and cannot be
treated completely by our simplified analysis, see for example

(61, (91].

Remark. We only considered two-dimensional examples. However
the same approach 1is wused for three-dimensional cases.
Roughly: using one degree of freedom per face we can deal with
a constant q. Then we use the bubble functions to deal with
a linear q (if necessary). We still must use vertices and
edges to ensure the continuity of wuj, unless we work with
nonconforming trial functionms.

Let us finally discuss how we can obtain estimates on the
error in the pressure, that is on |[ADu - APDu,|. Using the
formulation of this section we obtain only

Aleowy |12 < eflu-yg] + [ce-Dpl)2 (41)
where w, is always wujy - uy. This error bound is not good

egough because the left-hand side is multiplied by A and not
Ac,
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In order to obtain a better error bound on the pressures
we can proceed as follows. Assume always that uy satisfies
(31). Then we have from (24) and (25)

A [ PDup PDw, = - a(up,vp) + (£,vp)
A [ PDuy PDyy = -a(u,vy) + (£,w) V¥ eV

+ A [ (PDu-Dw)Dy}

so that
A [ PDwp PDyy = a(up-u,vp)

+ A [ (PDu-Du) Dy, V vy € V. (42)

Assume now that our choice of spaces Vy and Qn is such that

V q e P(Dy) 3 2z ¢ Kh(q), lznll = <lql (43)

where

P(Dp) = (q] q € Qy, q = PDy, for some w, ¢ Vi)
and (according to (33))
Kpn(q) = (v,| vn € V., PDyy = q).
Then we can apply (43) to q = PDwy and have,using Yh = 2 in

(42),

A|PDup|? = aCup-u,zp) + 3 J (PDu-Du)Dzp, < M|u-up|{zn]

+ [(T-P)p| |Dzy] =

<ci(|u-upll |EDWR] + [cz-Prpll [EDwy[)
so that actually
A [|PDwp| <c Clu-uy| + [cz-BYp[). (44)

Then we can use the triangle inequality and obtain
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A|Du-PDupfl = A [Du - PDu|| + APDu - PDy;| +

+ A |PDwy|| = Dy - Pyl + A [[PDwy| (45)

(because PDu = PDuy from (31)).

Using now (45), (44) and (32) we obtain

Dy - APDu,

A

[¢z-Pypll + ol (T-PYp|| + [u-uzl)

A

(L+ep) ([ (T-PYp| + fu-ugl) (46)

which is an error bound as good as (32).

Let us now see what kind of sufficient condition can be
used in order to obtain (43). Note that (43) has a form simi-
lar to (12), and it is therefore easy to use. We shall give
now an equivalent formulation that is similar to (19) and
therefore easy to prove. Namely,

VueV3ur e Vp such that

(i)  [(Du-Du;)q =0V q ¢ P(Dy)

(11)  Jur] = e [u] (47)
with ¢ independent of u, uy and h.

The proof of the equivalence between (43) and (47) is
practically identical to the proof of the equivalence between
(12) and (19). In its turn, the construction of u; to show
that (47) holds in practical cases follows the same ideas that
we have used for the construction of a uj satisfying (31) (up
to some minor technical difficulties connected with the fact

that a general u in V can be less regular than the solution
of a smooth problem).

5. Concluding Remarks

The objective in this paper was to discuss the inf-sup
condition in its wvarious forms and show some applications.
This condition plays an important role in the development of
reliable finite elements that need to satisfy internal con-
straints, such as the incompressibility condition,

We considered here the special case of linear elasticity
problems. We would arrive at the same results when studying
the case ‘of incompressible fluids. The only difference would
be a rather philosophical issue: for incompressible fluids we
really would like to enforce the condition div u = 0 and in a
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formulation of type (2), € is a penalty parameter. On the
other hand, for linear elasticity problems ) is a physical
parameter and one would like to have estimates that hold uni-
formly for A very large and for A "not so large" (as we did in
this last section).

The situation can be quite different in other applica-
tions, like the analysis of Mindlin-Reissner plates. For
Mindlin-Reissner plates we have a more complicated operator
instead of the divergence operator (see Bathe-Brezzi for an
example of analysis of such problems [10]). However, we
believe that the ideas discussed here, as pertaining to some
reference problem -- the linear elasticity problem treated
here -- are also helpful in approaching more complex situa-
tions.
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