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Einstein’s Field Equations

Our goal is to present a brief motivation for Einstein’s field equations of gravity (hereafter
“Einstein’s equation”). This is an equation that relates the metric of spacetime to a source
consisting of, among other things, mass and energy. The philosophy of General Relativity
is that “mass tells spacetime how to be curved, and this curvature of spacetime tells matter
how to move”. This is similiar to Newtonian ideas about gravity, in that the gravitational
field is the direct result of its source mass. A key difference is that Einstein’s gravity is a
relativistic theory and Newton’s is not.

We will first briefly discuss the metric, tensors, and index notation. Index notation is an
alternative way of writing vectors. Moreover, index notation allows us to write down objects
called tensors, of which vectors are a special case. As a simple example of index notation,
consider the 4-momentum vector [E/c, px, py, pz]; we denote such an object as pν , where the
index used, ν, is a Greek letter. The Greek index is a variable which denotes the components
of the four vector. Therefore, pν represents four numbers, one number for each possibility
of ν {t, x, y, z} ≡ {0, 1, 2, 3}. For example, if ν = 0, then pν = p0 = E/c denotes the 0
component of the four-vector. In order to reproduce 4-vector dot products we introduce
superscripts which are also used for indices. For example, pν is another way of denoting the
four-momentum, but it will have a slighty different meaning. We define,

p0 = p0 px = −px py = −py pz = −pz .

These definitions apply only in the case of special relativity; they are modified in the case of
curved spacetimes in general relativity. Now, we adopt the following convention whenever
an upper index is repeated with a lower index in a product. We implicity assume that the
index is to be summed over. For example,

pνpν =
∑

ν

pνpν

= p0p0 + pxpx + pypy + pzpz

= p0p0 − pxpx − pypy − pzpz

= p2
0 − p2

x − p2
y − p2

z = E2/c2 − ~p · ~p

This is referred to as the “Einstein sum convention”. Summing over the indices here resulted
in a Lorentz invariant!

We have discussed index notation with regard to vectors, and now suppose we have an
object with more than one index, such as Tµν . This actually represents 16 numbers, because
there are (4 possibilities for µ) × (4 possibilities for ν). An object like this is called a
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“second rank tensor” because it has two indices. Likewise, vectors are referred to as “first
rank tensors”, because they have only one index. (Scalars are “zero rank tensors”). So Tµν

can be viewed as a matrix

Tµν =


Ttt Ttx Tty Ttz

Txt Txx Txy Txz

Tyt Tyx Tyy Tyz

Tzt Tzx Tzy Tzz

 .

We will not discuss tensors in any detail. However, we simply note that, just as four-
vectors have a transformation law under Lorentz boosts, tensors also have a transformation
law (involving a factor of the Lorentz matrix for each rank). Just as we defined pµ in terms
of pµ, we can similarly define objects such as, Tµ

ν , T µ
ν , and T µν in terms of Tµν .

A second rank tensor of particular importance is the metric. The metric is an object
which tells us how to measure intervals. For example, in three dimensional Euclidean space,
how do we calculate the distance between two nearby points? If we work in Cartesian
coordinates, then the distance is given by

ds2 = dx2 + dy2 + dz2 =
(

dx dy dz
)  1 0 0

0 1 0
0 0 1

  dx
dy
dz


The right hand side is written in terms of matrix multiplication, with a row vector times a
square matrix times a column vector. This is convenient, because we can interpret the square
matrix as the metric. Now consider computing this same distance in spherical coordinates.

ds2 = dr2 + r2dθ2 + r2 sin2 θdφ2 =
(

dr dθ dφ
)  1 0 0

0 r2 0
0 0 r2 sin2 θ

  dr
dθ
dφ


Notice, that in two different coordinate systems, the general form of the equation that gives
ds2 is the same, i.e., they both can be written as

ds2 = gµνdxµdxν ,

where µ and ν are each summed over {0, 1, 2, 3}. In effect, the metric gµν determines how to
measure intervals. We have also learned that the spacetime interval, c2dτ 2, is independent
of Lorentz frame. Thus, one can use a metric to determine the invariant spacetime interval:

c2dτ 2 = c2dt2 − dx2 − dy2 − dz2 =
(

cdt dx dy dz
) 

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1




cdt
dx
dy
dz


The metric diag(1,−1,−1,−1) is called the “Minkowski metric”, to distinguish it from other
metrics like diag(1,−1,−r2,−r2 sin2 θ) (which is also the metric of flat spacetime, expressed
in spherical polar coordinates).
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The spacetime ordinarily used in special relativity is the Minkowski metric and is, by
definition, flat. By contrast, spacetimes in the presence of matter are referred to as “curved”
and are described by metric tensors with quite different properties. In curved spacetimes
Euclid’s fifth postulate is violated, i.e., initially straight parallel lines can intersect.

Finally, we note that gµν with raised indices is just the matrix inverse of gµν . In any
spacetime, the metric is used to lower indices and the inverse matrix to raise them. Thus,
pµ = gµαpα and pµ = gµαpα where the index α in each case is summed over {0, 1, 2, 3}.

The theory of relativity was partially motivated by the frame-invariant form of Maxwell’s
equations under a Lorentz transformation. For this reason, we say that electromagnetism is a
relativistic theory. What is the relativistic theory of gravity? Newton’s theory is determined
by an equation similar to Gauss’ law in E&M. One sees the similarity between Newton’s
theory and Gauss’s Law by noting that both involve fields that that fall off as r−2. Newton’s
theory can be expressed as

∇ · g = −4πGρm

where g is the gravitational field and ρm is the mass density. Equivalently, Newton’s law
of gravity can be expressed in terms of the gravitational potential in the form of Poisson’s
equation

∇2φ = 4πGρm ,

where φ is the gravitational potential defined so that g = −∇φ.

Unfortunately, Newton’s theory is not relativistic. Among other things, the fact that the
gravitational field is completely determined by a single equation that has no time derivatives
implies “action at a distance”, i.e., instantaneous knowledge by a test mass of the location of
the source mass, without regard to propagation time delays at the speed of light. Of course,
Maxwell’s equations also include Poisson’s equation, and yet they transform correctly in the
context of special relativity. However, Newton’s theory of gravity has no other equations
analogous to the time-dependent Ampere’s law and Faraday’s law. This might motivate a
simple suggestion to generate a relativistic theory of gravity. For example, we might try to
add three more equations to give the same form as Maxwell’s equation’s, with the following
substitutions in Maxwell’s equations

E → g B → Bm ρ → ρm j → jm ε0 → − 1

4πG

However, this does not actually work since charge density and mass density do not have the
same Lorentz transformation properties. Remember, mass which is equivalent to energy is
not a Lorentz scalar, but charge is a Lorentz scalar.

Then, how does one construct a relativistic theory of gravity? A helpful starting point
is Einstein’s Principle of Equivalence (1911) which states that it is not possible via local
observations to distinguish between a uniform gravitational field g, and a frame undergoing
uniform acceleration a = −g. Thus, the apparent gravity seems to depend on the choice of
reference frame. For example, if you are in an elevator in free fall or orbiting the Earth in
the Space Shuttle, you observe everything to be weightless. It is as if the gravitational field
is zero. Likewise, if one were in a totally isolated rocket that was undergoing a constant
acceleration of 9.8 m s−2, then inside the rocket it would seem as if there were a gravitational
field present of g = 9.8 m s−2. In both cases, we see that the inferred field depends on the
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choice of frame. In fact, it seems as though one can always choose a frame in which the
gravitational field vanishes. Note, however, that there are peculiarities with these frames.
The freely-falling elevator frame, if extended a great distance (e.g., to the other side of the
earth), would not be everywhere free-fall. In the case of the accelerating rocket, the frame
is non-inertial.

In General Relativity, we go beyond considering only inertial frames. So this suggests we
want a theory, in which the equations take on the same form after any coordinate transfor-
mation. Equations that have this property are called “generally covariant”. It follows from
the equivalence principle that if a material object has no forces other than gravity acting
on it, the path the object follows is independent of the nature of the object. So Einstein’s
conjecture was that gravity is the result of spacetime curvature. In turn, the curvature and
geometry of spacetime are all determined by the metric of spacetime. Hence, we want to
postulate an equation that relates the metric to a source of mass/energy.

We will no longer talk about gravitational fields; however, the metric plays a role analo-
gous to that of the gravitational potential. Recall in electromagnetism, Maxwell’s equations
relate the electric and magnetic fields to source charge and currents. Likewise, Einstein’s
equation will relate the metric to its matter/energy source. So there is some similarity
between Maxwell’s equations and Einstein’s equation though, as we shall see, the latter is
inherently a tensor equation rather than a vector equation.

We want to exploit the similarities between electromagnetism and gravity just a bit more.
In particular, we note that charge conservation can be directly extracted from Maxwell’s
equations. To show this, start by taking the time derivative, ∂

∂t
, of Gauss’s Law

∂

∂t
(∇ · E) =

∂

∂t
(4πρ)

∇·∂E

∂t
= 4π

∂ρ

∂t

and take the divergence, ∇·, of Ampere’s Law

∇·(∇×B) = ∇·(4π
c

j +
1

c

∂E

∂t
)

0 =
4π

c
∇ · j +

1

c
∇·∂E

∂t

If we now combine these two results we find

0 =
4π

c

[
∇ · j +

∂ρ

∂t

]
∇ · j +

∂ρ

∂t
= 0

This final equation expresses conservation of charge. In index notation, it takes the following
simple form ∂jµ/∂xµ = 0, where the 4-vector current density is defined as {cρ; jx; jy; jz}. This
conservation equation manifestly takes on the same form in all Lorentz frames since both jµ

and xµ transform as 4-vectors.
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We want Einstein’s equation to have an analogous feature. What acts as a source in
Einstein’s equation? A first guess might be the mass density ρm. However, as mentioned
above, mass is not a relativistic invariant, as is charge. How does mass density fit into a
relativistic structure? We know from special relativity that mass density should be replaced
with mass/energy density. However, we also learned from special relativity that pure energy
in one frame transforms to energy and momentum in another frame. Consideration of energy
and momentum densities as well as energy and momentum fluxes leads naturally to the
energy-momentum tensor, T µν . The tensor nature arises due to the fact that flows of vector
quantities require two directions for complete specification. For example, there can be a
flow of the x̂ component of momentum in the ŷ direction, corresponding to T xy. In all, the
components of the stress-energy-momentum tensor contain T 00 = energy density; cT 0i =
energy flux across a surface with a normal in the î direction; T i0/c = momentum density;
and T ij = momentum î flux across a surface whose normal is in the ĵ direction. (Here the
indices i and j run over only the 3 spatial components.)

Let’s think about T µν a bit more. Since it contains various densities and “currents” of
momentum and energy, we expect that it probably obeys an equation analogous to that for
charge conservation. This suggests a somewhat unconventional notation for the stress-energy
tensor T νµ = [T ν0, T νx, T νy, T νz] = [cρν , jνx, jνy, jνz]. Here we have identified the energy and
momentum fluxes as “current densities”, jν ≡ T νi and energy and momentum densities as
ρν ≡ T ν0. Since each component is separately conserved, this implies a grand conservation
law:

∂T ν0

∂t
+∇ · jν = 0

∂T µν

∂xµ
≡ ∂µT

µν = 0

For Einstein’s equation to have a similar feature, it must be constructed such that ∇µT
µν

automatically vanishes, where ∇µ is called the covariant derivative. For our purposes, all
we need to know is that the covariant derivative is General Relativity’s generalization of the
partial derivative ∂µ.

As implied above, we expect Einstein’s equation to relate the metric tensor to T µν . We
anticipate an equation of the form

O[gµν ] = κTµν

where the operator, O that we chose operates on gµν to yield a constant κ, and the metric
itself has been used to lower the indices on the stress-energy tensor: Tµν = gαµgβνT

αβ. O
will then automatically satisfy ∇µOµν = 0. Choosing the operator to satisfy that condition
insures that energy and momentum are conserved. Furthermore, κ is a constant to be
determined by the condition that Einstein’s theory in the limit of small mass densities must
agree with Newton’s law of gravity. It turns out, we can make the following choices

O[gµν ] = Rµν −
1

2
gµνR κ =

8πG

c4

where Rµν is the Ricci tensor defined in detail below. These results lead to Einstein’s field
equations which are summarized next.
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Einstein Field Equations Summary of Definitions

Rαβ −
1

2
gαβR =

8πG

c4
Tαβ ,

or, alternatively

Gαβ =
8πG

c4
Tαβ ,

where

• Gαβ is the “Einstein tensor” (not to be confused with G, the universal gravitational
constant),

• gαβ is the “metric tensor”,

• Tαβ is the “stress-energy” or “energy-momentum tensor” involving terms in rest mass
and kinetic energy, as well as pressure,

• R, the “curvature scalar” of spacetime, is given by R = gαβRαβ, a contraction of the
“Ricci tensor” with the metric,

• Rαγ, in turn, is the Ricci tensor, defined by Rαγ = Rλ
αβγδ

β
λ = Rλ

αλγ, a contraction of
the “Riemann curvature tensor” with a 4-dimensional Kronecker delta function (with
only 1′s along the diagonal).

Riemann Curvature Tensor

Rω
βγλ =

∂Γω
βλ

∂xγ
−

∂Γω
βγ

∂xλ
+ Γω

γσΓσ
βλ − Γω

λσΓσ
βγ ,

where the Γα
βγ are the “Christoffel symbols” (also known as the connection coefficients),

defined as

Γα
βγ =

gασ

2

[
∂gσβ

∂xγ
+

∂gσγ

∂xβ
− ∂gβγ

∂xσ

]
.

Notes
1. All indices run over the 4 spacetime coordinates (0 = time, 1, 2, 3 = space).
2. Repeated upper and lower indices imply a summation over that index.
3. Rαβ and Gαβ contain 16 elements, 10 of which are independent; Rαβγλ contains 256
elements, only 20 of which are independent.
4. The dimensions of Rαβ and Gαβ are generically (length)−2.

Thus, Einstein’s equation actually represents a set of 10 (4 × 4 − 6) coupled, second
order, partial, non-linear differential equations that relate gµν to the stress-energy-momentum
tensor (i.e., the “source” term). This is analogous to Poisson’s equation in which a second
order differential equation relates the gravitational potential to mass density.

The Schwarzschild Metric Solution
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After taking into account the various symmetries associated with a static, non-rotating,
spherically symmetric mass distribution, we can write the metric in the region exterior to
the mass as

ds2 = gαβdxαdxβ = e2Φ(cdt)2 − e2Λdr2 − r2dθ2 − r2 sin2 θdφ2

where Φ and Λ are functions of r only, and are written in this exponential form for conve-
nience. Here, the coordinates are {x0, x1, x2, x3} ≡ {ct, r, θ, φ}. The metric tensor, gαβ, is
then given by 

e2Φ 0 0 0
0 −e2Λ 0 0
0 0 −r2 0
0 0 0 −r2 sin2 θ

 ,

Steps to determine e2Φ and e2Λ

1. Plug gαβ into the equations for the Christoffel symbols, Γα
βγ. (These involve first-order

derivatives). For the Schwarzschild metric, there are only 9 non-zero Christoffel symbols .
2. The resulting Γα

βγ are then inserted into the expression for the Riemann curvature tensor
(this operation produces second derivatives). The Riemann tensor contains only 6 non-
vanishing independent elements for this particular problem.
3. The Riemann curvature tensor, Rλ

αβγ, is then contracted with a 4-dimensional Kronecker

delta function δβ
λ to yield the Ricci tensor Rαγ.

4. After computing the curvature scalar and forming the complete Einstein tensor, only
diagonal elements remain; two of these provide the information needed to find e2Φ and e2Λ

G00 =
1

r2
e2Φ d

dr
[r(1− e−2Λ)] ,

G11 = − 1

r2
e2Λ(1− e−2Λ) +

2

r

dΦ

dr
.

5. Since the energy-momentum tensor is zero outside the mass distribution, G00 = 0 and
G11 = 0, are simple differential equations from which we find (see Problem Set 10)

e2Φ = e−2Λ =

(
1− 2GM

c2r

)
.

Now, we actually carry out the steps of plugging in our inferred form for the metric into
Einstein’s equation to derive the differential equations for Φ and Λ. Recall

ds2 = e2Φdt2 − e2Λdr2 − r2dθ2 − r2 sin2 θdφ2 .

Step one

Start by computing the Christoffel symbols. We’ll make a slight change in notation for
brevity, from now on when a comma appears next to an index in a tensor it indicates a
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derivative. For example, gαβ,γ ≡ ∂gαβ

∂xγ , and likewise gαβ,γν ≡ ∂2gαβ

∂xγ∂xν .

Γα
µν =

gασ

2

[
∂gσµ

∂xν
+

∂gσν

∂xµ
− ∂gµν

∂xσ

]
In all there are 4× 4× 4/2 = 32 independent elements of the Christoffel symbol. We’ll work
out the values of some of the elements of the Christoffel symbol as examples, and then just
list the results for the rest of them. One more bit of notation: whenever we use an index
such as {t, r, φ, θ}, we mean one of those 4 specific components; however, if we use any other
Greek letter we are referring to an arbitrary component that is possibly being summed over.

Let’s start by working out Γt
tr

Γt
tr =

gtσ

2

[
∂gσt

∂r
+

∂gσr

∂t
− ∂gtr

∂xσ

]
First, we notice that none of the metric depends on time, t, nor on the angle φ. Hence, terms
like, ∂gσr

∂t
, vanish. So consider only derivatives with respect to r or θ. Next, note that the

metric is diagonal, so elements off the diagonal are all zero, such as gtr = gtθ = grφ = 0, etc.
So looking at our expression for Γt

tr, we see that only one of the three derivatives might be
non-zero, and that is ∂gσt

∂r
. This derivative is only non-zero when σ is t, otherwise it is an

off-diagonal element of the metric. Also

∂gtt

∂r
=

∂(e2Φ)

∂r
= 2e2Φ∂Φ

∂r

So now, we need to know the value of gtt. How do we find the value of the metric when the
indices are raised? In other words, we want to know gαβ, but this is just the inverse of gαβ.
Hence, gαβ is given by 

e−2Φ 0 0 0
0 −e−2Λ 0 0
0 0 −r−2 0
0 0 0 −r−2 sin−2 θ

 ,

So gtt = e−2Φ, and hence Γt
tr = ∂Φ

∂r
= ∂rΦ

Next, let’s work out a trickier example, Γθ
φφ

Γθ
φφ =

gθσ

2

[
∂gσφ

∂φ
+

∂gσφ

∂φ
− ∂gφφ

∂xσ

]
=

gθσ

2

[
2∂gσφ

∂φ
− ∂gφφ

∂xσ

]
Now remember the metric is diagonal, and notice the prefactor of gθσ, so we only get a
non-zero result when σ is θ, so we have

Γθ
φφ = −gθθ

2

∂gφφ

∂θ
= −r−2

2
(2r2 sin θ cos θ) = − sin θ cos θ

Many of the other elements of the Christoffel symbol work out to be zero. We’ll show one
example of this. Consider Γθ

tt

Γθ
tt =

gθσ

2

[
∂gσt

∂t
+

∂gσt

∂t
− ∂gtt

∂xσ

]
= −gθθ

2

∂gtt

∂θ
= 0
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Also, recall that Φ and Λ depend only on r and not on t, θ, and φ. Thus ∂gtt

∂θ
= 0, which

implies Γθ
tt = 0. Working out all the possible elements of the Christoffel symbol is quite

a tedious exercise, and thus we simply state the results after all the algebra is done. For
brevity, we will use the notation of ∂r, which stands for ∂

∂r
. Only 9 of the elements work out

to be non-zero and they are

Γt
tr = ∂rΦ Γr

tt = e2(Φ−Λ)∂rΦ Γr
rr = ∂rΛ

Γr
θθ = −re−2Λ Γr

φφ = −r sin2 θe−2Λ Γθ
rθ = 1

r

Γθ
φφ = − sin θ cos θ Γφ

rφ = 1
r

Γφ
θφ = cot θ

Step two

Now we need to compute the Riemann curvature tensor, which is given in terms of the
Christoffel symbols

Rσ
µβν = Γσ

µν,β − Γσ
µβ,ν + Γσ

βτΓ
τ
µν − Γσ

ντΓ
τ
µβ ,

(note the commas, indicating derivatives, in the first two terms). Now, if one works out
what Rσ

µβν is in terms of the metric, it can be shown to have a number of symmetries.
These symmetries can be used to show there are only 20 independent components. In the
end, we actually want to find the Ricci tensor Rµν = Rα

µαν . Now using the definition of
the Riemann curvature tensor and the results for the Christoffel symbol, we carry out the
tedious computations similiar to computing the Christoffel symbol. Here we simply list the
independent non-vanishing components

Rt
rtr = ∂rΦ∂rΛ− ∂r

2Φ− (∂rΦ)2;

Rt
θtθ = −re−2Λ∂rΦ;

Rt
φtφ = −re−2Λ sin2 θ∂rΦ;

Rr
θrθ = re−2Λ∂rΛ;

Rr
φrφ = re−2Λ(∂rΛ) sin2 θ;

Rθ
φθφ = (1− e−2Λ) sin2 θ

This means we’ll only need to work out a subset of the Riemann curvature elements. The
subset of {Rt

µtν , R
r
µrν , R

θ
µθν , R

φ
µφν}.

Now, we compute the non-vanishing components of the Ricci tensor. The first example
is

Rtt = Rt
ttt + Rr

trt + Rθ
tθt + Rφ

tφt

= 0 + grrgttR
t
rtr + gθθgttR

t
θtθ + gφφgttR

t
φtφ

= e2(Φ−Λ)(−∂rΦ ∂rΛ + ∂2
rφ + (∂rΦ)2 + 2r−1∂rΦ)

A similar calculation for the other elements of Rαβ, shows that all the off-diagonal elements
are zero. The complete set of diagonal Ricci tensor elements for the Schwarzschild metric
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works out to be

Rtt = e2(Φ−Λ)(−∂rΦ ∂rΛ + ∂2
rφ + (∂rΦ)2 + 2r−1∂rΦ)

Rrr = ∂Φ ∂rΛ− ∂2
rΦ− (∂rΦ)2 + 2r−1∂rΛ;

Rθθ = −e−2Λ [1 + r(∂rΦ− ∂rΛ)] + 1

Rφφ = sin2 θ{−e2Λ [1 + r(∂rΦ− ∂rΛ)] + 1}

Lastly, we need to calculate the scalar curvature R = gµνRµν

R = gttRtt + grrRrr + gθθRθθ + gφφRφφ

R = 2e−2Λ

{
−∂rΦ ∂rΛ + ∂2

rΦ + (∂rφ)2 +
2

r
(∂rΦ− ∂rΛ) +

1

r2

}
+

2

r2

Finally, we calculate the Einstein tensor, Gµν = Rµν − 1
2
gµνR

Gtt =
2

r
e2(Φ−Λ)∂rΛ−

1

r2
e2(Φ−Λ) +

1

r2
e2Φ

Grr =
2

r
∂rΦ− 1

r2
e2Λ +

1

r2

Gθθ = r2e−2Λ

[
∂2

rΦ + (∂rΦ)2 +
1

r
(∂rΦ− ∂rΛ)− ∂rΦ∂rΛ

]
Gφφ = sin2 θr2e−2Λ

[
∂2

rΦ + (∂rΦ)2 +
1

r
(∂rΦ− ∂rΛ)− ∂rΦ∂rΛ

]

For the case of the Schwarzschild metric, in the space outside the spherically symmetric
mass distribution the stress-energy-momentum tensor Tµν vanishes, and therefore the Ein-
stein equation reduces to Gµν = 0. Hence, each of the four elements listed above vanishes.
The first two of these simple differential equations (see bottom of page 7) are sufficient to
find Λ and Φ, and hence complete the Schwarzschild metric:

c2dτ 2 =

(
1− 2GM

c2r

)
c2dt2 − dr2(

1− 2GM
c2r

) − r2dθ2 − r2 sin2 θdφ2

From this metric we will derive a number of the famous effects of General Relativity that
you may have heard about. These include the gravitational red shift, bending of light, the
advance of the perihelion of Mercury’s orbit, and the Shapiro time delay.

For a more serious introduction to General Relativity, the interested reader is directed
to such texts as:
“Gravitation and Cosmology”, by Steven Weinberg (Wiley)
“Gravitation”, by Charles Misner, Kip Thorne, and John Archibald Wheeler (Freeman)
“A First Course in General Relativity”, by Bernard Schutz
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