One-axis hysteresis motor driven magnetically suspended reaction sphere

Lei Zhou⁎, Mohammad Imani Nejad, David L. Trumper

Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

ARTICLE INFO

Article history:
Received 17 August 2016
Revised 16 December 2016
Accepted 16 January 2017

Keywords:
Magnetic suspension
Bearingless motor
Hysteresis motor
Reaction wheel

ABSTRACT

This paper presents the design, modeling, control, and experimental results for a one-axis magnetically suspended reaction sphere (1D-MSRS) driven by a hysteresis motor. The goal of this work is twofold: (a) to conduct a preliminary study for magnetically suspended reaction sphere for three-axis spacecraft attitude control, and (b) study the potential of hysteresis motors for the reaction wheel/sphere drives. The 1D-MSRS uses a hysteresis motor with a spherical rotor made of solid steel. The rotor sphere is magnetically suspended in all translational directions, and is driven about the vertical axis by a bearingless hysteresis motor. We present the modeling and control of the magnetic suspension of the bearingless motor in the 1D-MSRS, and the hysteresis motor dynamics are analyzed by a hysteresis motor equivalent circuit model. The 1D-MSRS system has experimentally demonstrated a starting torque of 8.9 mN m under 0.7 A peak sinusoidal excitation current. With this excitation the sphere can run up to 12,000 rpm synchronously in the presence of air drag. This study demonstrates that the hysteresis motor has strong potential for use in high-speed, low-vibration reaction wheels.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In the flight control of spacecrafts, rotational maneuvering requires an external torque, which is often provided by reaction wheels. To achieve attitude control in all degrees of freedom (DOFs), a minimum of three reaction wheels are typically needed in the system. By accelerating the appropriate wheels, the system can generate a zero-mean torque about any axis to the spacecraft, and the generated momentum can be stored as well [1]. These wheels can also be used for vibration compensation and for orientation control of solar arrays [2].

As an alternative to reaction wheels, the idea of using a single magnetically suspended reaction sphere (MSRS) for spacecraft attitude control has been investigated by a number of researchers [3–8]. The vision here is that a sphere can be independently accelerated about any axis by a three-dimensional spherical motor, making the attitude of the spacecraft in all axes controllable by a single device. This torque independence can eliminate the gyroscopic coupling as occurs with multiple reaction wheels with fixed rotation axes. In addition, the magnetic suspension eliminates the mechanical friction in the bearings, which relieves the control difficulties due to Coulomb friction when the wheel/sphere speed is crossing zero. The magnetic bearing can also allow the device to operate without lubrication and thus extend the lifetime of the device. Furthermore, by replacing several reaction wheel assemblies with one single device, mass and volume reduction may be achieved.

Although the idea of a MSRS is not new, it remains a challenging problem due to the difficulties of spherical motor design, magnetic suspension, and the combination of the two technologies. One recent MSRS design uses a permanent magnet synchronous motor (PMSM)-based reaction sphere [9]. This design uses tilted magnets on the rotor sphere surface, which enables simpler angular position sensing and control. However, the complexity of the rotor structure may make this design difficult to be used in small satellites, and the strength of the bonded rotor may limit its maximum rotational speed.

Other literature relevant to the MSRS design includes studies on spherical motors for robotics applications [10–14]. Various motor drive principles, such as induction motors, permanent magnet motors, reluctance motors, etc., have been explored for the spherical motor design. Among these references, most designs targeting robot wrist applications have a limited motion range. One recent work presents an induction type spherical motor design for mobile robot application [14], which does not have an angle limit and has demonstrated speed and position control capability.

Among many motor principles, the hysteresis motor is receiving increasing attention in the past decade due to its advantages
of simple structure, vibration-free operation, and self-starting capability. The rotor of a hysteresis motor can be made out of a single piece of hard and strong steel, which allows the rotor to have very small imbalance. This feature also makes the rotor able to sustain large centrifugal force, which makes the hysteresis motor attractive for high-speed applications. These advantages of hysteresis motors provide the motivation for our study of their use in reaction wheel/sphere applications.

As a first step, we focus this study on the design of a magnetically suspended reaction sphere with one-axis hysteresis drive (1D-MSRS). The hysteresis motor in the 1D-MSRS is modeled using an equivalent circuit model developed in [15,16]. A control method to suppress the hunting of the motor is presented and tested. The potential of hysteresis motors for reaction wheel applications is also discussed.

This paper is organized as follows. Section 2 presents an introduction to the 1D-MSRS hardware. Section 3 introduces the design and control for the vertical suspension of the reaction sphere. Section 4 describes the bearingless motor subsystem used for the lateral directional suspension of the sphere. Section 5 introduces the hysteresis motor for the 1D-MSRS. Section 6 discusses the comparison between the 1D-MSRS and a commercial reaction wheel. Conclusion and suggestions for future work are given in Section 7.

2. 1D-MSRS hardware overview

The 1D-MSRS demonstrates a hysteresis motor with a spherical rotor made of solid steel, and the rotor is magnetically suspended in all translational directions. Fig. 1 shows a CAD model of the 1D-MSRS, and the photographs of the device are presented in Fig. 2. The rotor in the 1D-MSRS is a solid sphere of hardened D2 steel. Four eddy current sensors are placed around the rotor to measure the sphere’s position in three translational DOFs. These sensors are arranged 45° from the vertical axis, and are separated by 90° in the azimuthal coordinate. The rotor sphere is magnetically levitated in the vertical direction by a reluctance actuator placed at its north pole. A stator is arranged around the sphere’s equator line, serving both for levitating the sphere in the horizontal plane and for torque generation about the vertical-axis by means of a bearingless motor configuration. A reflective optical tachometer is used for the sphere’s speed detection by sensing a black mark on the sphere.

2.1. Rotor

The rotor of the 1D-MSRS is a 54 mm diameter solid sphere of D2 steel. Although materials with larger hysteresis loops exist, we selected D2 steel for the rotor in the 1D-MSRS for the proof of our design due to its ready availability. D2 steel is a high carbon, high chromium tool steel, which makes it a deep hardening, highly wear resistant and magnetically semi-hard alloy. This allows the D2 steel to be used for the rotor of a hysteresis motor. The rotor material chemical, physical, and magnetic properties are shown in Table 1, and Fig. 3 shows the B–H curve of D2 steel measured under varying excitation amplitude at a frequency of 20 Hz. The hysteresis data measurement equipment is introduced in detail in [17].

2.2. Stator

The rotary motor and lateral suspension function are implemented with coils on a stator with 24 slots and a length of 10 mm.
Table 1
Rotor material properties.

<table>
<thead>
<tr>
<th>Rotor material name</th>
<th>D2 steel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical composition</td>
<td>C: 1.5%, Co: 1%, Cr: 11–15%</td>
</tr>
<tr>
<td>Density</td>
<td>7.7×10^3 kg/m3</td>
</tr>
<tr>
<td>Specific electrical resistance</td>
<td>0.12 μΩm</td>
</tr>
<tr>
<td>Remanence</td>
<td>0.85–0.90 T</td>
</tr>
<tr>
<td>Coercivity</td>
<td>1.2–2.3 kA/m</td>
</tr>
</tbody>
</table>

Fig. 3. Measured B–H loop for a D2 steel ring under varying magnetic field amplitude at 20 Hz.

The stator is constructed by stacking 12 layers of magnetic laminations. In order to reach a compact design, the multiple-winding type bearingless motor is used. This design enables the stator to work as a magnetic bearing and generate a revolving magnetic field simultaneously. The details of the bearingless motor and its modeling and control are presented in Section 4.

2.3. System connection

Fig. 4 shows a hardware connection diagram of the 1D-MSRS. The real-time controller is running at a sampling and control rate of 5 kHz. The signals from the eddy current sensors are collected by the controller through 4 channels of A/D converters. The digital pulses from the optical tachometer are acquired by the digital input channel of the controller, and are transformed into a speed measurement in software. Based on these measurements, the controller computes the control signals at the current sample instant, and sends the signals into seven D/A converters. Seven linear power amplifiers with analog current control loops are used to amplify the control signals and then energize the motor windings and the vertical suspension actuator coil.

The 1D-MSRS consists of three subsystems. They are: (1) a single DOF magnetic suspension system for the sphere’s vertical suspension, (2) a bearingless motor system for the sphere’s lateral suspension, and (3) a hysteresis motor for driving the sphere about the vertical axis. In the design and analysis of the 1D-MSRS, these three subsystems are considered to be decoupled, that is, the interactions between the subsystems are treated as disturbances. In the following sections, the design, modeling, control and test results of each subsystem are introduced.

3. Vertical suspension of reaction sphere

This section briefly introduces the vertical direction magnetic suspension of the sphere. Fig. 5 shows a photograph of the sphere being magnetically levitated in the vertical direction by a reluc-
Bearingless motor

In the 1D-MSRS, the magnetic suspension of the rotor sphere in the lateral directions is achieved by a bearingless motor. The bearingless motor has two sets of windings arranged on a single stator. By correctly configuring and controlling the currents in these windings, the machine can generate radial forces for the rotor’s lateral suspension as well as a rotational magnetic field for spinning the rotor. Readers are referred to [18] for more details on bearingless motors. In the stator of the 1D-MSRS, two sets of three-phase windings, 4-pole and 2-pole, are used, where the 4-pole windings are the motor windings, and the 2-pole windings are the suspension control windings. Table 2 presents the design parameters of the bearingless motor in the 1D-MSRS.

Fig. 7 shows a block diagram of the bearingless motor control system in the 1D-MSRS. By exciting the motor windings (the 4-pole windings) with symmetrical three-phase currents, a revolving magnetic field is generated to rotate the sphere. The radial displacements of the rotor in the stationary frame are measured by the eddy current sensors to provide feedback for suspension control. Two independent PID controllers are designed for the magnetic suspension in x- and y-direction in the stationary frame, and the control effort signals u_x and u_y are transformed to the rotational three-phase coordinates by means of Park and Clarke transformations [18]. These transformed control signals are then fed into the current control power amplifiers to energize the suspension control windings (the 2-pole windings). The controlling magnetic field generated by the suspension windings, together with the motor fields, produces the radial suspension forces on the rotor sphere. As is shown in Fig. 7, in a bearingless motor system, the control inputs are the currents in the 2-pole windings in the stationary frame u_x and u_y, while the output signals of system are the radial displacements of the rotor in stationary x- and y-directions.

4.1. Lateral suspension system modeling and identification

To stabilize the lateral suspension of the reaction sphere, a dynamic model of the bearingless motor system needs to be established and identified for control design purposes. In this section, the modeling and testing of the suspension characteristics of the bearingless motor in the 1D-MSRS are discussed. These characteristics are also shared by other cylindrical rotor AC bearingless motors.

In a bearingless motor system, the suspension forces are generated by the interaction between the motor magnetic field and the suspension control magnetic field. A bearingless motor can be viewed as a flux-steering device, where the magnetic fluxes generated by the motor windings are steered by the controlling fluxes in a rotating frame to generate the radial suspension control forces. (See [19] for an introduction to the principles for flux-steering magnetic designs.) As a result, the radial suspension system dynamics in a bearingless motor are highly dependent on the current level in the motor windings. A limiting example is that if there is no current in the motor windings, no suspension forces can be produced.
In this study, we derived an analytical model for the lateral suspension of the reaction sphere in the bearingless motor system under the assumption that reluctance forces dominate the suspension forces. Under this assumption, the influence of the rotor fluxes on the magnetic suspension is neglected. This assumption is reasonable for the motor in the 1D-MSRS, because in this motor the stator fluxes are approximately 10 times larger than the rotor fluxes. The detailed derivations of these results are presented in [20] and [21]. By linearizing the dynamic equation of the rotor in the model, a transfer function model from the equivalent two-phase suspension winding current in the stationary frame (signal $u_s(t)$ in Fig. 7) to the rotor’s x-directional radial displacement (signal $x(t)$ in Fig. 7) can be found as

$$X(s) = \frac{K_i}{U_s(s)} [N/m],$$

where m is the mass of the rotor sphere, and K_i and K_l are the negative stiffness and the force constant of the bearingless motor suspension system, respectively. Note that the sign in front of K_l is negative. This negative stiffness is associated with the open-loop plant instability, such that the rotor is unstable at the stator center bore when the system is in open-loop. The constants K_i and K_l can be calculated as [20]

$$K_i = \frac{3 \mu_0 R N_2^2}{g_0^2} I_m^2 [N/m],$$

$$K_l = \frac{\sqrt{3} \mu_0 R N_1 N_2}{g_0} I_m [N/A],$$

where I_m is the zero-to-peak current amplitude of the AC current in the 4-pole motor windings, N_1 and N_2 are the numbers of turns per phase per pole of the 4-pole and 2-pole windings, respectively, g_0 is the nominal air gap length, R is the radius of the rotor sphere, l is the stator height in the axial direction, and μ_0 is the permeability of free space.

It can be seen from (1)-(3) that the system dynamics of a bearingless motor depend on the motor winding current amplitude I_m. This observation can be verified by measuring the frequency response of the lateral suspension system in the 1D-MSRS under different motor winding current amplitudes. The measured plant Bode plots of the reaction sphere lateral suspension system are depicted in Fig. 8. Note that this plant measurement was taken while under closed-loop control, since the open-loop system is unstable. From Fig. 8 we conclude that the system dynamics are getting faster as the excitation amplitude I_m increases, consistent with the increase of K_l with I_m in (2).

Fig. 7. Bearingless motor control block diagram.

Fig. 8. Experimentally measured Bode plot response for x-direction sphere suspension with varying motor winding current amplitudes (zero-to-peak).

Fig. 9. Break frequency of plant with varying motor winding current amplitude.

Fig. 9 shows the break frequency of the measured bearingless motor plant Bode plots in Fig. 8 and the modeled break frequency given by (1)-(3). Good match between the modeled and the experimental measured data supports the transfer function model of bearingless motors given in (1)-(3).
4.2. Lateral suspension control design

When a bearingless motor is used for reaction wheel/sphere applications, its motor winding current amplitude needs to vary according to the torque requirements. This fact requires the lateral suspension controllers for the 1D-MSRS to take care of this system dynamics variation and still be able to stabilize the magnetic suspension control under all excitation conditions.

The loop-shaping method is used to design the lateral suspension controllers for the 1D-MSRS based on the plant dynamic model. Since the plant system dynamics of the bearingless motor are varying with the motor winding current amplitude I_m, we use I_m as a gain-scheduling parameter. Lead-lag form PID controllers are used for the lateral suspension control, and the controller gains are designed to vary according to the parameter I_m. The design goal is to maintain a constant phase margin and therefore keep the loop robustly stable.

Fig. 10 shows the measured loop-return-ratio Bode plot of the x-directional suspension control of the reaction sphere. With the gain-scheduling controller design, the control loop has a cross-over frequency which varies with the motor current amplitude, and an approximately fixed phase margin of about 40°. Under 0.2 A excitation current, the loop has a crossover frequency of 170 rad/s. With 0.7 A excitation, the crossover frequency is 620 rad/s. With this approach, the radial position of the sphere is successfully regulated at the center of the stator under varying motor current amplitude.

5. Hysteresis motor for reaction sphere

The 1D-MSRS hysteresis motor operates using the magnetic hysteresis effect of its rotor material. Since the magnetization produced in the ferromagnetic material lags behind the magnetizing force, a torque is generated due to the rotor and stator field interaction. In addition, eddy currents in the rotor also produce torque when the motor is operating asynchronously [22]. Loosely speaking, a hysteresis motor can be described as a combination of a weak permanent magnet motor and a solid rotor induction motor.

Fig. 11 shows a typical hysteresis motor torque–speed curve, where the solid line shows the ideal hysteresis motor torque–speed relationship, and the dash line shows a practical torque–speed curve with the eddy current effect included. It can be seen that the ideal hysteresis motor demonstrates constant hysteresis torque T_{hyst} during asynchronous operation, where the motor speed ω_m does not equal the stator base speed ω_b. When the rotor is con-

5.1. Motor hardware and experimental results

The motor drive in the 1D-MSRS is tested under different motor winding current levels. Fig. 12 shows the start-up speed curves of the 1D-MSRS. In these tests, the motor windings are excited with constant frequency three-phase currents of different amplitudes. It can be seen that all curves lock into the synchronous speed of 30 Hz (1800 rpm) after acceleration. Data shows that under 0.7 A excitation current, the sphere reaches the synchronous speed of 30 Hz (1800 rpm) within 6 s, with an associated starting torque of 8.9×10^{-3} Nm. The maximum achievable speed for the 1D-MSRS is also tested. When the motor is excited with 0.7 A current amplitude and when it is running in the lab in the presence of air drag, the sphere can run up to 200 Hz (12,000 rpm) synchronous speed. This motor speed limit is potentially much higher when the sphere is running in vacuum.
5.2. Motor model in the 1D-MSRS

In order to study the physics of the hysteresis motor in the 1D-MSRS and also to provide a simulation tool for future design, a model of the hysteresis motor derived from the fundamental electromagnetics is used to study the motor dynamics of the 1D-MSRS. Modeling of the hysteresis motor is challenging due to the nonlinearity of hysteresis material properties. Through the years, several different models have been developed to calculate the hysteresis motor torque. Ref. [23] studies the hysteresis motor by comparing it to the permanent magnet motors, and a hysteresis motor model using analogy to induction motor was proposed in [24]. Although simple and easy to parameterize, these models are not derived from the fundamental electromagnetics and do not provide physical insights. A parallelogram-shaped simplification for the hysteresis loop has been proposed in [25], and an equivalent circuit model for the hysteresis motor based on this assumption was introduced. An alternative hysteresis motor equivalent circuit model based on an elliptical hysteresis loop assumption was proposed in [15], where only the fundamental harmonics of the motor fields are considered. Modeling hysteresis motors with the eddy current effects considered has been also being studied in [16, 26-28]. Similarly, in these references the elliptical hysteresis model is used in the analysis.

In all these models mentioned above, the dynamics of the hysteresis motor, which includes both the synchronous and the asynchronous operation modes, are not encompassed. This is due to the “torque singularity” of the hysteresis motors. As shown in Fig. 11, the hysteresis motor torque at the synchronous speed can demonstrate multiple values. For a hysteresis motor, during the transition from the asynchronous mode to the synchronous operation, the rotor material particles experience minor hysteresis loops, which are difficult to model. To our knowledge, few works have studied the transient behavior for hysteresis motors. Ref. [29] studies the equivalent circuit model based on the elliptical hysteresis model for both the synchronous and asynchronous operation of the hysteresis motor, and assumes that the magnetic poles are fixed on the rotor surface once the motor reaches synchronous speed. This assumption ignores the eddy current and hysteresis losses in the rotor during synchronous operation, which means the modeled hysteresis motor has zero hysteresis and eddy current damping in synchronous operation, and demonstrates more sustained hunting than a hysteresis motor in practice. However, this model allows us to study the “worst case” hysteresis dynamics in both asynchronous and synchronous mode.

In this paper, the hysteresis motor equivalent circuit model based on the elliptical hysteresis loop assumption and considering the eddy current effect [16] was selected to calculate the motor torque in the 1D-MSRS in asynchronous operation. For the synchronous operation mode, the model proposed in [29] was used to study the “worst case” hunting behavior.

We briefly introduce the elliptical-hysteresis-loop-based equivalent circuit model for hysteresis motors with eddy current effect considered from [16] to make this paper self-contained. Readers are referred to Ref. [15, 16] for the derivation for the model from fundamental electromagnetics. In this model, symmetric three-phase current excitation is assumed. The B-H curve of the rotor material is approximated by an ellipse, which can be described by

\[B = B_m \cos \theta, \]

\[H = \frac{B_m}{\mu} \cos(\theta + \delta_m), \]

where \(B_m \) is the maximum amplitude of the flux density, and \(\delta_m \) is the lag angle between \(H \) and \(B \). The permeability of the rotor material \(\mu \) is defined as the ratio of the maximum values of \(B \) and \(H \), that is, \(\mu = B_m/H_m \), where \(H_m \) is the maximum field intensity. This model of the magnetic hysteresis is also known as complex permeability model [30]. This model considers only the fundamental harmonics for \(B \) and \(H \), and all higher order harmonics are neglected. Fig. 13 shows the measured \(B \)- and \(H \)-field data of the D2 steel and their fundamental harmonics. These data were measured under 20 Hz excitation frequency and regulating the \(B \) field amplitude to 0.8 T peak. Fig. 14 shows the \(B \)-H loop and its elliptical approximation, which is achieved by plotting the \(B \)- and \(H \)-field data in Fig. 13 in a polar coordinates.

The elliptical approximation of the hysteresis loop allows us to use a linear equivalent circuit to analyze the motor system. Fig. 15 shows the hysteresis motor equivalent circuit for the 1D-MSRS. In this model, the stator resistance and inductance are not included because for motor in the 1D-MSRS uses current-controlled amplifiers. In Fig. 15, \(s \) is the slip, which is defined as \(s = \frac{\omega_s - \omega_r}{\omega_s} \), where \(p \) is the number of pole pairs, \(\omega_r \) is the reference frequency, and \(\omega_s \) is the motor angular speed. \(I_s \) is the stator current, \(I_k \) is the apparent air-gap current, and \(I_r \) is the apparent rotor current. Notice that these apparent currents are not real currents that flow in the air-gap or in rotor. Instead, they are a part of the stator current that flows in the model circuit in Fig. 15. The values of the circuit
elements can be calculated by [16]

\[L_g = \frac{2mK_w^2N^2\mu_0I_s}{p^2\pi g_0}, \]

\[R_{lr} = \omega_b mK_w^2N^2V_r\mu \frac{\sin\delta}{\pi^2r_g^2}, \]

\[L_{lr} = \frac{mK_w^2N^2V_r\mu}{\pi^2r_g^2} \cos\delta, \]

\[R_e = \frac{6mK_w^2N^2l}{\pi r_e\sigma}. \]

Here \(\delta \) is the separation angle between the B-field and H-field in the rotor material, \(K_w \) is the winding factor, \(m \) is the number of phase, \(p \) is the number of poles, \(r_e \) is mean radius of length of the magnetic field path within rotor, \(r_g \) is the mean radius of the air gap, \(\omega_b \) is the input synchronous speed, \(N \) is the number of windings per phase, \(g_0 \) is the air-gap length, \(\mu \) is the permeability of the rotor material, \(l \) is the rotor length, \(\sigma \) is the conductivity of the rotor material, \(r_e \) is the effective rotor depth. For solid rotor hysteresis motors, it is defined as the skin depth of the rotor, which is calculated by \(r_e = \sqrt{\frac{2}{\mu_0\sigma}} \). \(V_r \) is the effective rotor volume, which can be calculated by \(V_r = 2\pi r_e l \).

The apparent current values can be solved from the equivalent circuit model shown in Fig. 15. The motor electrical torque can then be calculated by [16]

\[T_e = \frac{m}{2} l \int_s I_s I_g \sin\delta. \]

The rotor speed can be found from the mechanical dynamic equation for the rotor as

\[J \frac{d\omega_r}{dt} = T_e - A(\omega_r)|\omega_r|, \]

where \(A \) is the coefficient of the air drag torque, and \(J \) is the rotor inertia.

Recall that the angle \(\delta \) is the spatial separation angle between the B-field and H-field in the rotor material, which cannot exceed the lag angle of the rotor material hysteresis loop \(\delta_m \). Therefore the angle \(\delta \) satisfies the constraint

\[-\delta_m < \delta < \delta_m. \]

where \(\delta_m \) is the hysteresis loop lag angle given in Eq. (4). When the hysteresis motor is operating in asynchronous mode, the lag angle is equal to its maximum, which is \(\delta_m \).

When the rotor’s mechanical speed reaches the vicinity of synchronous speed, the rotor magnetic pole aligns with the rotor mechanical angle. Under the assumption of the magnetic poles of the rotor are not moving with respect to the rotor material after the motor reaches synchrony, the angle \(\delta \) can be updated by the dynamic equation

\[\frac{d\delta}{dt} = \frac{\omega_b - \omega_r}{p}. \]

(12)

Introducing Eqs. (11) and (12) in the hysteresis motor equivalent circuit model allows the model to describe the motor behavior in both synchronous and asynchronous operation. As was discussed in [29], when the motor slip is large, the constraint in (11) is activated, and the angle \(\delta \) always equal to \(\delta_m \). This models the constant B- and H-field separation angle in the hysteresis material when the motor is in asynchronous operation. When the rotor speed is close to the synchronous speed, (12) is activated to describe the dynamics of angle \(\delta \), which models the hunting behavior of the hysteresis motor.

Numerical simulations of the hysteresis motor in the 1D-MSRS were conducted by solving the equivalent circuit model and using (5)–(12). Fig. 16 shows the simulated and experimentally measured motor starting speed data plotted together, and Fig. 17 shows the zoomed-in speed data around the synchronous speed. It can be seen that the simulation and the experimental data align well in the accelerating transient. However, when the motor reaches synchronous speed, the simulated speed data demonstrates a less damped speed hunting behavior than the experimental measured speed data. This observation is consistent with our expectations that with the assumption that the magnetization is fixed on the rotor once the motor gets into synchronized operation, the modeled speed will demonstrate more oscillation because the hysteresis and eddy current damping are not modeled.
Table 3

<table>
<thead>
<tr>
<th>Material</th>
<th>(\mu_r)</th>
<th>(\delta) [deg]</th>
<th>Hysteresis torque at 0.7 A excitation [mNm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>D2 steel</td>
<td>350</td>
<td>35</td>
<td>4.15</td>
</tr>
<tr>
<td>AlNiCo ((H_r = 11.1 \text{ kA/m}))</td>
<td>60</td>
<td>42</td>
<td>14.9</td>
</tr>
<tr>
<td>AlNiCo ((H_r = 15.9 \text{ kA/m}))</td>
<td>45</td>
<td>48</td>
<td>16.2</td>
</tr>
</tbody>
</table>

5.3. Speculation on performance with other rotor materials

Although only one kind of rotor material, D2 steel, has been tested in the 1D-MSRS hardware, the model of the hysteresis motor presented in the previous section allows us to estimate the motor performance with other rotor materials. Table 3 presents the complex permeability values of two different kinds of semi-hard AlNiCo magnetic materials [31], which are commonly used in hysteresis motor rotors, along with predicted resulting hysteresis torque.

5.4. Hysteresis motor speed control

When a hysteresis motor is operating, a speed fluctuation slightly above and below the reference speed can be observed when the motor speed reaches synchronous speed, as is seen in Fig. 17. This motor dynamics is known as hunting [32]. It is undesirable when a hysteresis motor is used in a reaction wheel or a reaction sphere, as it will introduce vibrations to the spacecraft via the associated oscillatory torque.

To suppress the motor hunting, a feedback loop on the sphere’s rotational speed can be designed and implemented for the 1D-MSRS. Fig. 18 shows a block diagram of the speed control loop. The sphere speed \(\omega_s \) is measured by an optical tachometer. The input signal to the controller is the speed error \(e_\omega \) between the desired synchronous speed \(\omega_b \) and the measured speed \(\omega_s \). The control effort signal is defined as the zero-to-peak amplitude of the three-phase excitation current signal \(I_m \). In this analysis let us call it \(u \), denoting the control effort. Note that in this system the value of \(u \) is non-negative, and it cannot go below 0.2 A in order to maintain the lateral suspension of the sphere. Also note that in this control system a positive control effort provides decelerating torque when \(e_\omega \) is negative.

When the reaction sphere is accelerating, it is desired that the motor can catch up with the reference speed, or the synchronous speed, as fast as possible. In optimal control, the minimum time problem with the presence of constraints for control effort can be solved, and the result shows that a bang-bang controller is the best mechanism for achieving minimum speed rise time [33]. For the 1D-MSRS, this requires the motor to operate in open-loop with the maximum allowed excitation amplitude, which enables the motor to accelerate with its maximum ability.

In order to add active damping to the system to suppress the hunting, a lead filter is used as the speed controller when the hunting is happening. Define the maximum available control effort as \(u_{\text{max}} \). The speed control law of the 1D-MSRS can be written as

\[
u = \begin{cases}
 u_{\text{max}} & \text{if } e_\omega > \Delta \text{ or } e_\omega < -\Delta, \\
 u_{\text{PD}} & \text{if } -\Delta \leq e_\omega \leq \Delta.
\end{cases}
\]

(13)

where \(\Delta \) is a constant positive number that sets the threshold of the controller change.

The parameters of the PD controller are determined by the characteristics of the hunting dynamics. For the 1D-MSRS hardware, the motor hunting is at a frequency of 3.9 rad/s. Targeting at damping out this oscillation, the PD compensator for the reaction sphere’s speed regulation is designed as

\[
u_{\text{PD}}(s) = \frac{3.5 \times 0.4 \times s + 1}{0.04 \times s^3 + 1}.
\]

(14)

The speed controller given in Eqs. (13) and (14) was implemented for the 1D-MSRS. Fig. 19 shows a comparison between the experimental measured open-loop transient speed data and the
closed-loop controlled speed control effort data. The open-loop data was measured with $I_m = 0.35$ A, and the maximum allowed control effort was set to be 0.5 A. It can be seen from Fig. 19 that the closed-loop speed has much less oscillation when the speed enters synchrony. This verifies that the designed speed control scheme can effectively suppress the motor hunting. The corresponding motor winding current signals are presented in Fig. 20. With closed-loop control, the motor current peak value reduces to 0.2 A when the reaction sphere is operating in steady state, which allows less energy loss at steady state operation. Experiments show that when operating in steady state at 1800 rpm, the power consumption of the 1D-MSRS, including both rotation and lateral magnetic suspension (not including magnetic suspension in the vertical direction), is 3.44 W. This includes 0.52 W windage power loss, 2.84 W stator copper loss, and 0.08 W for other miscellaneous power losses. Note that when the hysteresis motor in the 1D-MSRS is operating synchronously, the magnetization of the rotor is fixed with respect to the rotor surface, and therefore there is no eddy current loss or hysteresis loss in the rotor at steady state.

6. Discussion

A comparison between the test results of the 1D-MSRS and the specifications of a commercial reaction wheel assembly for typical small satellites is performed, as is shown in Table 4. Here the MicroWheel 200 (MW200) Reaction Wheel from Microsat Systems Canada Inc. [34] is chosen as a benchmark, which has a similar size to the 1D-MSRS prototype.

Data in Table 4 shows that the torque capacity of 1D-MSRS is smaller than that of the MW200 reaction wheel. The reason, to our understanding, is threefold. First, hysteretic motors are not winning in their torque ability compared with their permanent magnet motor counterparts. Second, D2 steel is not the best rotor material for hysteresis motors. The simulation results presented in Section 5.3 show that larger torque capability can be achieved if the rotor has a better hysteresis property. Third, in the design of the 1D-MSRS, the effective surface area on the rotor for torque production is small, since the stator height is relatively small.

In Table 4, comparing with MW200 reaction wheel, the 1D-MSRS has a larger angular momentum capacity since it can run up to a higher synchronous rotational speed. We believe that the sphere can reach a higher synchronous speed when running in vacuum, where the air drag can be eliminated as well. In addition, the 1D-MSRS demonstrates lower power consumption when operating in steady state. This is a direct result of magnetic suspension which eliminates mechanical friction. This comparison demonstrates a good potential of hysteresis motors for the development of high speed, low vibration reaction wheels/spheres, especially when they are assisted with magnetic suspension.

Another potential advantage of the 1D-MSRS over permanent magnet motor driven reaction wheels with mechanical bearings is that it may be easier to achieve smaller rotor imbalance. The reason is twofold. First, the rotor of a hysteresis motor can be made out of solid steel, while the rotor for a permanent magnet motor usually requires a multi-part assembly. It is usually easier to make a solid rotor to achieve small imbalance. Second, when the motor is operating at high speed, the magnetic suspension can eliminate imbalance and allowing the rotor to spin about its inertial axis. Therefore with a hysteresis motor driven actuator supported by magnetic bearings, the vibrations emitted by the reaction wheel that degrade the performance of precision instruments in space may be reduced.

7. Conclusion and future work

The design and development of a hysteresis motor driven magnetically suspended one-axis reaction sphere is presented in this paper. Magnetic suspension, bearingless drive and hysteresis motor principles are used in the design of the 1D-MSRS. An analytical dynamic model of the bearingless motor suspension system is derived and used for the suspension control design. An equivalent circuit model for hysteresis motors is used to analyze the motor dynamics of the 1D-MSRS, and a speed control loop is built for the system to suppress hunting. The 1D-MSRS can run up to 200 Hz (12,000 rpm) in the presence of air drag, and a starting torque of 8.9 mNm is generated with 0.7 A excitation current amplitude. This study demonstrates that the hysteresis motor has a good potential for reaction wheel/sphere applications.

Future work should consider the design and development of a three-axes magnetically suspended reaction sphere (3D-MSRS). Several discussions of the possible motor concepts and possible magnetic pole configuration designs for a 3D-MSRS are presented in [21]. However, we have not yet discovered a good motor configuration for the 3D-MSRS driven by hysteresis motor. We hope that this work on the 1D-MSRS can inspire promising future designs.

In addition, the performance of the 1D-MSRS demonstrates that the hysteresis motor has the potential for high speed, low vibration in reaction wheel applications. Future work should consider hysteresis motor driven single-axis reaction wheel designs that optimizing the power efficiency and device volume. Many important aspects for space actuators, such as cooling, back-up bearings, assistive device for magnetic bearing during launching should also be studied in future efforts.

<table>
<thead>
<tr>
<th>Specification</th>
<th>MSCI MW200 [34]</th>
<th>1D-MSRS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>100 × 90 × 90 mm</td>
<td>120 × 120 × 110 mm</td>
</tr>
<tr>
<td>Mass</td>
<td>1.0 kg (assembly for one wheel)</td>
<td>0.63 kg (rotor) + 0.42 kg (Stator + vertical suspension actuator)</td>
</tr>
<tr>
<td>Torque capacity</td>
<td>26 mNm</td>
<td>8.9 mNm under 0.7 A excitation</td>
</tr>
<tr>
<td>Angular momentum capacity</td>
<td>0.18 Nm</td>
<td>0.23 Nm (synchronously at 150 Hz/9000 rpm)</td>
</tr>
<tr>
<td>Motor power consumption</td>
<td>0 rpm: 3.0 W; 1800 rpm: 5.5 W;</td>
<td>Operating in steady state at 1800 rpm: 3.44 W</td>
</tr>
</tbody>
</table>
Acknowledgments

We thank National Instruments for contributing the real-time controller. We thank Professor Wolfgang Gruber at JKU, Linz for the valuable discussions, and thank Dietmar Andessner at JKU, Linz for his help with the hysteresis measurements.

This work is supported by the MIT Lincoln Laboratory via the Advanced Concepts Committee. We also thank Frederick Knight and Andrew Stimac of Lincoln Laboratory for their assistance with this project.

References

Lei Zhou received the B.S. degree from the Tsinghua University, China, in control and instrumentation technology in 2012, and received M.S. degree from the Massachusetts Institute of Technology (MIT) in mechanical engineering in 2014. She is currently working toward the Ph.D. degree at the Department of Mechanical Engineering at MIT. Her research interests include dynamic systems, control, and precision mechatronics.

Mohammad Imani Nejad received the Ph.D. degree in Mechanical Engineering from the Massachusetts Institute of Technology (MIT), Cambridge, USA, in 2013. Since then, he has been with IMANII, Inc., Boston, USA, where he is currently the Senior Director of Technology and R&D.

David L. Trumper joined the Massachusetts Institute of Technology (MIT) Department of Mechanical Engineering in August 1993, and holds the rank of Professor. He received the B.S., M.S., and Ph.D. degrees from MIT in Electrical Engineering and Computer Science, in 1980, 1984, and 1990, respectively. Following the Bachelor’s degree, Professor Trumper worked two years for the Hewlett-Packard Co. After finishing the Master’s degree, he worked for two years for the Waters Chromatography Division of Millipore. Upon completing the Ph.D. degree, for three years he was an Assistant Professor in the Electrical Engineering Department at the University of North Carolina at Charlotte, working within the precision engineering group. Professor Trumper’s research centers on the design of precision mechatronic systems, with a focus on the design of novel mechanisms, actuators, sensors, and control systems. He has conducted research in topics including precision motion control, high-performance manufacturing equipment, novel measurement instruments, biomedical and bioinstrumentation devices, and high-precision magnetic suspensions and bearings. He is a member of the IEEE, ASME, and ASPE (past-President).