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Abstract 

 
Empirical studies find that stock returns are predictable both cross-sectionally and over time. 

Broadly speaking, this dissertation investigates whether the empirical patterns in stock returns 

are consistent with an efficient capital market. The paper consists of two essays. In the first 

essay, I investigate the ability of firms’ book-to-market ratios to predict returns, which has been 

documented extensively in cross-sectional tests. To help understand the source of this 

predictability, I examine the time-series relations among expected return, risk, and book-to-

market. Consistent with rational pricing, book-to-market captures significant time-variation in 

risk, but provides no incremental information about expected returns. In the second essay, I 

explore the effects of estimation risk, or investor uncertainty about the parameters of the 

cashflow process, on the behavior of prices and returns. I show that, with estimation risk, the 

observable properties of prices and returns can differ significantly from the properties perceived 

by rational investors. As a consequence, estimation risk can generate return predictability in 

ways that resemble irrational pricing. Simulation evidence suggests the effects of estimation 

risk can be economically significant. 

 



 
 

 

v

 
 
 
 

Table of Contents 

 
Chapter 1 Introduction .…………………………………………………………………… 1 
 

Chapter 2 The Time-Series Relations among Expected Return, Risk, and Book- 
 to-Market …………………………….………………………………………… 3 
 
 2.1. Distinguishing between Characteristics and Risk ……………………………… 8 

 2.2. Data and Descriptive Statistics ………………………………………………… 13 

 2.3. The Predictability of Portfolio Returns  ………………………………………… 18 

 2.4. Expected Returns, Characteristics, and Risk: Empirical Results …….………… 25 

 2.5. Summary and Conclusions  ……………..……………………………………… 40 
 

Chapter 3 Estimation Risk, Market Efficiency, and the Predictability of Returns  …..…… 43 
 
 3.1. The Model ……………………………………………………………………… 49 

 3.2. Capital Market Equilibrium …………….……………………………………… 53 

 3.3. The Time-Series Properties of Prices and Returns …….…………………….… 58 

 3.4. The Cross-Section of Expected Returns ……..………………………………… 67 

 3.5. Informative Priors, Steady State, and Simulations ………..…………………… 73 

 3.6. Summary and Conclusions  ……..……………………………………………… 89 
 

References …………………………………………………………………………………… 93 
 

Appendix A ………………………………………………………………………………….. 98 
 

Appendix B ………………………………………………………………………………….. 104 
 



 
 

 

vi 

 
 
 
 

List of Table s 

 
Chapter 2 
 
Table 2.1 Summary statistics for industry, size, and book-to-market portfolios  ….……… 15 

Table 2.2 Summary statistics for factors .………………………………………………… 18 

Table 2.3 Predictability of industry returns .……………………………………………… 21 

Table 2.4 Predictability of size and book-to-market portfolio returns  …………………… 24 

Table 2.5 Unconditional three-factor regressions: Industry portfolios  …………………… 27 

Table 2.6 Conditional three-factor regressions: Industry portfolios ……………………… 29 

Table 2.7 Unconditional three-factor regressions: Size and book-to-market portfolios ..… 32  

Table 2.8 Conditional three-factor regressions: Size and book-to-market portfolios  ..…… 35 

Table 2.9 Three-factor regressions with industry-neutral HML: Industry portfolios  …..… 39 
 
 
Chapter 3 
 
Table 3.1 Predictability in steady state …………………………………………………… 87 
 
 



 
 

 

vii 

 
 
 
 

List of Figures 

 
Chapter 3 
 
Figure 3.1 Equilibrium price of the risky asset …………………………………………… 61 
 
 



 
 

 

1

On the Predictability of Stock Returns: Theory and Evidence 
 

Chapter 1 
Introduction 

 

 Over the past 20 years, we have accumulated much evidence that stock returns are 

predictable.  At the aggregate level, Fama and Schwert (1977), Keim and Stambaugh (1986), 

Fama and French (1989), and Kothari and Shanken (1997) show that interest rates, the yield 

spread between low- and high-grade debt, aggregate dividend yield, and aggregate book-to-

market predict time-variation in expected returns.  Further, LeRoy and Porter (1981) and Shiller 

(1981) argue that the volatility of stock prices is too high to be explained by a model with 

constant discount rates, providing indirect evidence that expected returns change over time.  At 

the firm level, Fama and French (1992) conclude that size and book-to-market together explain 

much of the cross-sectional variation in average returns.  Jegadeesh and Titman (1993) also 

show that past returns contain additional information about expected returns.  In sum, there 

seems little doubt that expected stock returns vary both cross-sectionally and over time.1 

 The interpretation of predictability, however, is more contentious.  The empirical patterns 

in returns are potentially consistent with either market efficiency or irrational mispricing.  In 

general terms, market efficiency implies that prices ‘fully reflect all available information.’  To 

formalize this idea for empirical testing, Fama (1976) distinguishes between the probability 

distribution of returns perceived by ‘the market,’ based on whatever information investors view 

as relevant, and the true distribution of returns conditional on all information.  The market is 

said to be informationally efficient if these distributions are the same.  As an obvious 

consequence, market efficiency implies that investors correctly anticipate any cross-sectional or 

time-variation in true expected returns.  While Fama’s definition ignores potentially important 

issues like heterogeneous beliefs, it provides a useful framework for thinking about a broad set 

                                                 
1 Clearly, this list of empirical papers and predictive variables is not meant to be exhaustive, and a 

considerable amount of subsequent research extends, confirms, and critiques these findings.  See Fama 
(1991) for a more complete survey of the evidence. 
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of asset-pricing questions. 

 This paper contains two essays which, broadly speaking, attempt to understand whether the 

empirical results are consistent with an efficient capital market.  In the first essay, I investigate 

the ability of ‘book-to-market’ ratios to predict returns.  An extensive literature shows that the 

ratio of a firm’s book value to market value of equity – in short, book-to-market – explains 

significant cross-sectional variation in expected returns.  The intuition is that book value in the 

numerator controls for the size of the firm (the size of expected cashflows), while market value 

in the denominator captures information about discount rates.  Both efficient-market and 

mispricing stories have been offered to explain the evidence.  In this paper, I examine the time-

series relations among expected return, risk, and book-to-market to help understand the source 

of the predictability.  As discussed in Chapter 2, the time-series analysis can help distinguish 

between the rational- and irrational-pricing stories. 

In the second essay, I investigate the impact of ‘estimation risk’ on the behavior of asset 

prices.  In the finance literature, estimation risk refers to investor uncertainty about the 

parameters of the return or cashflow process.  In other words, estimation risk exists whenever 

investors do not have perfect information about some important feature of the economy.  

Although it represents purely subjective uncertainty, estimation risk can have important 

consequences for asset pricing because it affects investment decisions.  In Chapter 3, I present a 

simple model of capital market equilibrium, and explore the consequences of estimation risk for 

return predictability and tests of market efficiency.  I also present simulation evidence to give an 

indication of the economic significance of the results.  Again, the fundamental goal is to 

understand whether estimation risk might help explain the time-series and cross-sectional 

evidence described above. 
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On the Predictability of Stock Returns: Theory and Evidence 
 

Chapter 2 
The time -series relations among expected return, 

risk, and book-to-market 
 

Empirical research consistently finds a positive cross-sectional relation between average 

stock returns and the ratio of a firm’s book equity to market equity (B/M).  Stattman (1980) and 

Rosenberg, Reid, and Lanstein (1985) document the association between expected returns and 

B/M, which remains significant after controlling for beta, size, and other firm characteristics 

(Fama and French, 1992).  The explanatory power of B/M does not appear to be driven entirely 

by data snooping or survival biases; it is found in stock markets outside the United States 

(Chan, Hamao, and Lakonishok, 1991; Haugen and Baker, 1996) and in samples drawn from 

sources other than Compustat (Davis, 1994).  As a whole, the evidence provides considerable 

support for the cross-sectional explanatory power of B/M. 

 At least two explanations have been offered for the empirical evidence.  According to 

asset-pricing theory, B/M must proxy for a risk factor in returns.  The significance of B/M in 

competition with beta contradicts the capital asset pricing model (CAPM) of Sharpe (1964), 

Lintner (1965), and Black (1972), or more precisely, the mean-variance efficiency of the market 

proxy.  However, the evidence might be consistent with the intertemporal models of Merton 

(1973) and Breeden (1979).  In these models, the market return does not completely capture the 

relevant risk in the economy, and additional factors are required to explain expected returns.  If 

a multifactor model accurately describes stock returns, and B/M is cross-sectionally correlated 

with the factor loadings, then the premium on B/M simply reflects compensation for risk. 

 A positive relation between B/M and risk is expected for several reasons.  Chan and Chen 

(1991) and Fama and French (1993) suggest that a distinct ‘distress factor’ explains common 

variation in stock returns.  Poorly performing, or distressed, firms are likely to have high B/M.  

These firms are especially sensitive to economic conditions, and their returns might be driven 
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by many of the same macroeconomic factors (such as variation over time in bankruptcy costs 

and access to credit markets).  In addition, following the arguments of Ball (1978) and Berk 

(1995), B/M might proxy for risk because of the inverse relation between market value and 

discount rates.  Holding book value constant in the numerator, a firm’s B/M ratio increases as 

expected return, and consequently risk, increases. 

 Alternatively, B/M might provide information about security mispricing.  The mispricing 

view takes the perspective of a contrarian investor.  A firm with poor stock price performance 

tends to be underpriced and have a low market value relative to book value.  As a result, high 

B/M predicts high future returns as the underpricing is eliminated.  Lakonishok, Shleifer, and 

Vishny (1994) offer a rationale for the association between past performance and mispricing.  

They argue that investors naively extrapolate past growth when evaluating a firm’s prospects.  

For example, investors tend to be overly pessimistic about a firm which has had low or negative 

earnings.  On average, future earnings exceed the market’s expectation, and the stock does 

abnormally well.  Thus, the mispricing argument says that B/M captures biases in investor 

expectations. 

 Fama and French (1993) provide evidence of a relation between B/M and risk.  Using the 

time-series approach of Black, Jensen, and Scholes (1972), they examine a multifactor model 

consisting of market, size, and book-to-market factors, where the size and book-to-market 

factors are stock portfolios constructed to mimic underlying risk factors in returns.  If the model 

explains cross-sectional variation in average returns, the intercepts will be zero when excess 

returns are regressed on the three factors.  Fama and French find, as predicted by the risk-based 

view, that the model does a good job explaining average returns for portfolios sorted by size, 

B/M, earnings-price ratios, and other characteristics.  Further, they document a strong 

association between a stock’s B/M ratio and its loading on the book-to-market factor. 

 More recently, Daniel and Titman (1997) argue in favor of a characteristics-based model, 

consistent with the mispricing view.  They suggest that the three-factor model does not directly 
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explain average returns.  Instead, the model appears to explain average returns only because the 

factor loadings are correlated with firms’ characteristics (size and B/M).  To disentangle the 

explanatory power of the factor loadings from that of the characteristics, Daniel and Titman 

construct test portfolios by sorting stocks first on B/M ratios and then on factor loadings.  This 

sorting procedure creates independent variation in the two variables.  Consistent with the 

mispricing story, Daniel and Titman find a stronger relation between expected returns and B/M 

than between expected returns and factor loadings.  Daniel and Titman conclude that firm 

characteristics, in particular B/M, and not covariances determine expected stock returns. 

 In this essay, I provide further evidence on the risk- and characteristics-based stories.  In 

contrast to Fama and French (1993) and Daniel and Titman (1997), I focus on the time-series 

relations among expected return, risk, and B/M.  Specifically, I ask whether a portfolio’s B/M 

ratio predicts time-variation in its expected return, and test whether changes in expected return 

can be explained by changes in risk.  Recently, Kothari and Shanken (1997) and Pontiff and 

Schall (1998) find that B/M forecasts stock returns at the aggregate level, but the predictive 

ability of B/M for individual stocks or portfolios has not been explored. 

The time-series analysis is a natural alternative to cross-sectional regressions.  An 

attractive feature of the time-series regressions is that they focus on changes in expected returns, 

not on average returns.  The mispricing story suggests that a stock’s expected return will vary 

over time with B/M, but it says little about average returns if mispricing is temporary.  Cross-

sectional regressions, however, can pick up a relation between average returns and B/M.  The 

time-series regressions also highlight the interaction between B/M and risk, as measured by 

time-variation in market betas and the loadings on the Fama and French (1993) size and book-

to-market factors.  Further, I can directly test whether the three-factor model explains time-

varying expected returns better than the characteristics-based model.  These results should help 

distinguish between the risk and mispricing stories. 

The empirical tests initially examine B/M’s predictive ability without attempting to control 
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for changes in risk.  I find that a portfolio’s B/M ratio tracks economically and statistically 

significant variation in its expected return.  An increase in B/M equal to twice its time-series 

standard deviation forecasts a 4.6% (annualized) increase in expected return for the typical 

industry portfolio, 8.2% for the typical size portfolio, and 9.3% for the typical book-to-market 

portfolio.  The average coefficient on B/M across all portfolios, 0.99, is approximately double 

the cross-sectional slope, 0.50, found by Fama and French (1992, p. 439).  B/M explains, 

however, only a small fraction of portfolio returns, generally less than 2% of total volatility. 

 Return predictability indicates that either risk or mispricing changes over time.  Of course, 

we cannot distinguish between these explanations without some model of risk.  Following 

Daniel and Titman (1997), I examine B/M’s explanatory power in competition with the Fama 

and French (1993) three-factor model.  The multifactor regressions employ the conditional 

asset-pricing methodology of Shanken (1990), which allows both expected returns and factor 

loadings to vary over time with B/M.  In these regressions, time-variation in the intercepts 

measures the predictive ability of B/M that cannot be explained by changes in risk.  The 

mispricing view suggests that the intercepts will be positively related to B/M; the risk-based 

view implies that changes in the factor loadings will eliminate B/M’s explanatory power, 

assuming the Fama and French factors are adequate proxies for priced risk in the economy. 

 Empirically, the factors absorb much of the volatility of portfolio returns, which permits 

relatively powerful tests of the competing stories.  I find that B/M explains significant time-

variation in risk, but does not provide incremental information about expected return.  In 

general, the loadings on the size and book-to-market factors vary positively with a portfolio’s 

B/M ratio, and statistical tests strongly reject the hypothesis of constant risk.  The results for 

market betas are more difficult to characterize:  across different portfolios, B/M predicts both 

significant increases and significant decreases in beta.  Overall, B/M contains substantial 

information about the riskiness of stock portfolios. 

 In contrast, the intercepts of the three-factor model do not vary over time with B/M.  For 
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the industry portfolios, the average coefficient on B/M (that  is, variation in the intercept) has 

the opposite sign predicted by the overreaction hypothesis and is not significantly different from 

zero.  Across the 13 portfolios, eight coefficients are negative and none is significantly positive 

at conventional levels.  The results are similar for size and book-to-market portfolios:  the 

average coefficients are indistinguishable from zero, and roughly half are negative.  

Importantly, the inferences from the multifactor regressions are not driven by low power.  For 

all three sets of portfolios, statistical tests can reject economically large coefficients on B/M.  In 

short, the three-factor model measures risk sufficiently well to explain time-variation in 

expected returns.2 

 As an aside, I find that the book-to-market factor, HML, explains common variation in 

returns that is unrelated to its industry composition.  Daniel and Titman (1997) argue that HML 

does not proxy for a distinct risk factor, but explains return covariation only because similar 

types of firms become mispriced at the same time.  For example, a bank with high B/M will 

covary positively with HML simply because the factor is weighted towards underpriced 

financial firms.  The time-series regressions provide evidence to the contrary.  As an alternative 

to HML, I estimate the regressions with an ‘industry-neutral’ book-to-market factor.  This factor 

is constructed by sorting stocks on their industry-adjusted B/M ratios, defined as the firm’s B/M 

minus the industry average, so the factor should never be weighted towards particular 

industries.  The results using the industry-neutral factor are similar to those with HML.  Thus, 

HML’s explanatory power does not appear to be driven by industry factors in returns. 

 The remainder of the essay is organized as follows.  Section 2.1 introduces the time-series 

regressions.  Section 2.2 describes the data to be used in the empirical tests.  Section 2.3 

estimates the simple relation between expected returns and B/M, and Section 2.4 tests whether 

                                                 
2 I also replicate the empirical tests using size in place of B/M, with similar results.  There is some 

evidence that size and expected returns are negatively related in time series.  In conditional three-factor 
regressions, size captures significant time-variation in risk, but does not contain additional information 
about expected returns.  Details  are available on request.  I thank Ken French for suggesting these tests. 
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the predictive ability of B/M can be explained by changes in risk, as measured by the Fama and 

French (1993) three-factor model.  Section 2.5 summarizes the evidence and concludes. 

 

2.1. Distinguishing between characteristics and risk 

 Book-to-market explains cross-sectional variation in average returns after controlling for 

beta.  Fama and French (1993) provide evidence that B/M relates to common risk factors in 

returns.  In contrast, Daniel and Titman (1997) argue that the Fama and French factors appear to 

be priced only because the loadings are correlated with firm characteristics, like B/M.  This 

section introduces the time-series methodology used in the current paper and discusses, more 

generally, asset-pricing tests of the risk and mispricing stories. 

 

2.1.1. Time-series methodology 

 The empirical tests initially examine the simple relation between expected returns and 

B/M.  The explanations that have been offered for the cross-sectional evidence also suggest that 

expected returns will vary over time with B/M.  According to the risk-based view, B/M should 

capture information about changes in risk, and consequently, expected return.  The mispricing 

view says that B/M is related to biases in investor expectations, and will contain information 

about under- and overpricing.  Thus, both explanations predict a positive slope coefficient in the 

regression 

 Ri(t) = γi0 + γi1 B/Mi(t-1) + ei(t), (2.1) 

where Ri is the portfolio’s excess return and B/Mi is its lagged book-to-market ratio.  Note that 

eq. (2.1) specifies a separate time-series regression for each portfolio, with no constraint on the 

coefficients across different portfolios.  The regressions focus only on the time-series relation 

between expected returns and B/M, and do not pick up any cross-sectional relation. 

 Eq. (2.1) makes no attempt to understand the source of time-varying expected returns.  

According to traditional asset-pricing theory, a positive slope in eq. (2.1) must be driven by an 
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association between B/M and risk.  It follows that the predictive power of B/M should be 

eliminated if the regressions control adequately for changes in risk.  The characteristics-based 

story, on the other hand, suggests that B/M will capture information about expected returns that 

is unrelated to risk.  To help distinguish between the two explanations, I examine the predictive 

power of B/M in competition with the Fama and French (1993) three-factor model. 

 The multifactor regressions employ the conditional time-series methodology of Shanken 

(1990).  Roughly speaking, these regressions combine the three-factor model with the simple 

regressions above.  Fama and French estimate the unconditional model 

 Ri(t) = ai + bi RM(t) + si SMB(t) + hi HML(t) + e i(t), (2.2) 

where RM is the excess market return, SMB (small minus big) is the size factor, and HML (high 

minus low) is the book-to-market factor.  Unconditional, here, refers to the implicit assumption 

that the coefficients of the model are constant over time.  If this assumption is not satisfied, the 

estimates from eq. (2.2) can be misleading.  The unconditional intercepts and factor loadings 

could be close to zero, but might vary considerably over time. 

 The conditional regressions allow both expected returns and factor loadings to vary with 

B/M.  Suppose, for simplicity, that the coefficients of the three-factor model are linearly related 

to the firm’s B/M ratio, or 

 ait = ai0 + ai1B/Mi(t-1), bit = bi0 + bi1B/Mi(t-1),   

 sit = si0 + si1B/Mi(t-1), hit = hi0 + hi1B/Mi(t-1). (2.3)    

Substituting these equations into the unconditional regression yields a conditional version of the 

three-factor model: 

 Ri = ai0 + ai1B/Mi + (bi0 + bi1B/Mi)*RM +     

 (si0 + si1B/Mi)*SMB + (hi0 + hi1B/Mi)*HML + ei, (2.4) 

where the time subscripts have been dropped to reduce clutter.  Multiplying the factors through 

gives the regression equation for each portfolio.  Thus, the conditional regressions contain not 
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only an intercept and the three factors, but also four interactive terms with the portfolio’s lagged 

B/M.3 

 Basically, eq. (2.4) breaks the predictive power of B/M into risk and non-risk components.  

The coefficient ai1, the interactive term with the intercept, measures the predictive ability of 

B/M that is incremental to its association with risk in the three-factor model.  A non-zero 

coefficient says that changes in the factor loadings, captured by the coefficients bi1, si1, and hi1, 

do not fully explain the time-series relation between B/M and expected return.  Thus, rational 

asset-pricing theory predicts that ai1 will be zero for all stocks, assuming that the factors are 

adequate proxies for priced risk.  The mispricing, or characteristics-based, view implies that 

B/M will forecast returns after controlling for risk and, consequently, ai1 should be positive. 

 

2.1.2. Discussion 

 The conditional regressions directly test whether the three-factor model or the 

characteristic -based model better explains changes in expected returns.  To interpret the 

regressions as a test of rational pricing, we must assume, of course, that the Fama and French 

factors capture priced risk in the economy.  This assumption could be violated in two important 

ways (see Roll, 1977).  First, an equilibrium multifactor model might describe stock returns, but 

the Fama and French factors are not adequate proxies for the unknown risks.  In this case, B/M 

can predict time-variation in expected returns missed by the three-factor model if it relates to 

the true factor loadings.  Fortunately, this problem will not be a concern for the current paper 

because the three-factor model will, in fact, explain the predictability associated with B/M. 

 Unfortunately, the assumption can also be violated in the opposite way:  mispricing might 

explain deviations from the CAPM, but the size and book-to-market factors happen to absorb 

                                                 
3 Similar regressions appear in previous studies.  Fama and French (1997) estimate regressions in 

which only the factor loadings on HML vary with B/M.  He et al. (1996) estimate a model in the spirit of 
eq. (2.4), but they constrain the intercepts and book-to-market coefficients to be the same across 
portfolios.  Given previous cross-sectional evidence, the B/M coefficient will be non-zero in the absence 
of time-varying expected returns. 
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the predictive power of B/M.  This possibility is a concern particularly because the factors are 

empirically motivated.  Daniel and Titman (1997), for example, argue that the construction of 

HML, which is designed to mimic an underlying risk factor in returns related to B/M, could 

induce ‘spurious’ correlation between a portfolio’s B/M ratio and its factor loading.  HML is 

weighted, by design, towards firms with high B/M.  If similar types of firms become mispriced 

at the same time, then we should expect that a firm will covary more strongly with HML when 

its B/M is high.  As a result, apparent changes in risk might help explain B/M’s predictive 

ability even under the mispricing story. 

In defense of the time-series regressions, it seems unlikely that changes in the factor 

loadings would completely absorb mispricing associated with B/M.  More importantly, Daniel 

and Titman’s argument cannot fully account for the relation between B/M and risk.  The 

argument suggests that the loadings on HML will tend to vary with B/M, but it does not say 

anything about the loadings on the market and size factors.  We will see below, however, that 

B/M captures significant time variation in market betas and the loadings on SMB.  Further, I 

provide evidence in Section 2.4 that the time-series relation between B/M and the factor 

loadings on HML is not driven by changes in the industry composition of the factor.  I estimate 

the conditional regressions with an ‘industry neutral’ factor, which prevents HML from 

becoming weighted towards particular industries.  When this factor is used in place of HML, we 

will continue to see a strong time-series relation between B/M and the factor loadings. 

 Finally, it is useful to note that many industries have large unconditional factor loadings on 

HML, which suggests that HML does not simply capture mispricing in returns.  Intuitively, 

Daniel and Titman’s argument suggests that a given stock will sometimes vary positively and 

sometimes negatively with HML.  Depending on the type of firms that are currently under- and 

overpriced, HML will be related to constantly changing micro- and macroeconomic factors.  

For example, HML will be sensitive to interest rate and inflation risk when it is weighted 

towards underpriced financial firms, but will be negatively related to these risks when financial 
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firms are overpriced.  Corresponding to the changes in HML, a stock will tend to covary 

positively with HML when similar firms are underpriced, but negatively when similar firms are 

overpriced.  Over time, however, a firm’s average factor loading on HML should be close to 

zero under the mispricing story, unless firms are persistently under- and overpriced (which 

seems unreasonable). 

This intuition can be formalized.  Suppose that temporary overreaction explains deviations 

from the CAPM, and that HML, because of its construction, absorbs this mispricing (ignore the 

size factor for simplicity).  To be more specific, assume that the proxy for the market portfolio, 

M, is not mean-variance efficient conditional on firms’ B/M ratios.  However, HML is 

constructed to explain the deviations from the CAPM, and RM and HML together span the 

conditional tangency portfolio.  Appendix A proves that, in the time-series regression 

 Ri(t) = ai + bi RM(t) + hi HML(t) + ei(t), (2.5) 

the unconditional factor loading on HML, hi, will equal zero if assets are correctly priced on 

average over time.4  This result reflects the idea that temporary mispricing should not explain 

unconditional deviations from the CAPM.  As noted above, however, many industries have 

large unconditional loadings on both SMB and HML, which therefore suggests that the factors 

do not simply capture mispricing in returns. 

 In summary, the multifactor regressions test whether the three-factor model or the 

characteristic -based model explains time-variation in expected returns.  The interpretation of the 

regressions, like the results for any asset-pricing test, is limited by our need to use a proxy for 

the unobservable model.  Nevertheless, the regressions should help us understand whether the 

risk or mispricing story is a better description of asset prices. 

 

                                                 
4 The result also requires that time-variation in bi and hi is uncorrelated with the factors’ expected 

returns.  This assumption seems reasonable since I am interested in the factor loadings changing over 
time with firm-specific variables, like B/M, not with macroeconomic variables (the appendix provides a 
numerical example).  It is also consistent with the empirical evidence presented in Section 2.4. 
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2.2. Data and descriptive statistics 

 The empirical analysis focuses on industry portfolios.  These portfolios should exhibit 

cross-sectional variation in expected returns and risk, so the tests can examine a diverse group 

of portfolios.  Industry portfolios are believed a priori to provide variation in expected returns 

and factor loadings, while sorting by other criteria is often motivated by previous empirical 

evidence.  Hence, industry portfolios are less susceptible to the data-snooping issues discussed 

by Lo and MacKinlay (1990). 

 As a robustness check, I also examine portfolios sorted by size and B/M.  In cross-sectional 

studies, different sets of portfolios often produce vastly different estimates of risk premia.  Of 

course, the time-series regressions in this paper might also be sensitive to the way portfolios are 

formed.  Size portfolios have the advantage that they control for changes in market value, which 

has been shown to be associated with risk and expected returns, yet should be relatively stable 

over time.  The book-to-market portfolios allow us to examine how the expected returns and 

risk of distressed, or high-B/M, firms change over time. 

 The portfolios are formed monthly from May 1964 through December 1994, for a time 

series of 368 observations.  The industry and size portfolios consist of all NYSE, Amex, and 

Nasdaq stocks on the Center for Research in Security Prices (CRSP) tapes, while the book-to-

market portfolios consist of the subset of stocks with Compustat data.  Stocks are sorted into 13 

industry portfolios based on two-digit Standard Industrial Classification (SIC) codes as reported 

by CRSP.  For the most part, the industries consist of consecutive two-digit codes, although 

some exceptions were made when deemed appropriate.5  The size portfolios are formed based 

on the market value of equity in the previous month, with breakpoints determined by NYSE 

deciles.  To reduce the fraction of market value in any single portfolio, the largest two portfolios 

are further divided based on the 85th and 95th percentiles of NYSE stocks, for a total of 12 

portfolios.  Finally, the book-to-market portfolios are formed based on the ratio of book equity 

                                                 
5 Details available on request. 
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in the previous fiscal year to market equity in the previous month.  Again, the breakpoints for 

these portfolios are determined by NYSE deciles.  The lowest and highest deciles are further 

divided using the 5th and 95th percentiles of NYSE stocks, for a total of 12 portfolios. 

For all three sets of portfolios, value-weighted returns are calculated using all stocks with 

CRSP data, and value-weighted B/M ratios are calculated from the subset of stocks with 

Compustat data.6  To ensure that the explanatory power of B/M is predictive, I do not assume 

that book data become known until five months after the end of the fiscal year.  Also, to reduce 

the effect of potential selection biases in the way Compustat adds firms to the database (see the 

discussion by Kothari, Shanken, and Sloan, 1995), a firm must have three years of data before it 

is included in any calculation requiring book data.  The time-series regressions use excess 

returns, calculated as returns minus the one-month T-bill rate, and the natural logarithm of B/M. 

Table 2.1 reports summary statistics for the portfolios.  The average monthly returns for 

the industry portfolios range from 0.83% for utilities and telecommunications firms to 1.28% 

for the service industry (which includes entertainment, recreation, and services), for an 

annualized spread of 6.1%.  Coincidentally, these industries also have the lowest (3.67%) and 

highest (6.78%) standard deviations, respectively.  The size and book-to-market portfolios also 

exhibit wide variation in average returns and volatility.  Average returns for the size portfolios 

vary from 0.80% for the largest stocks to 1.24% for the smallest stocks, and the standard 

deviations of returns decrease monotonically with size, from 6.68% to 4.17%.  Average returns 

for the book-to-market portfolios range from 0.76% for the second decile through 1.46% for the 

stocks with the highest B/M.  Interestingly, the standard deviation of returns are U-shaped; they 

decrease monotonically with B/M until the sixth decile, which has a standard deviation of 

4.42%, and increase thereafter, to 6.86% for portfolio 10b. 

 The statistics for B/M, like those for returns, reveal considerable cross-sectional 

                                                 
6 The stocks included in the calculation of B/M are a subset of those included in the calculation of 

returns, and we can interpret the estimate of B/M as a proxy for the entire portfolio.  The inferences in 
this paper are unchanged when portfolio returns are based only on those stocks with Compustat data. 



 

Table 2.1 
Summary statistics for industry, size, and book-to-market portfolios 

Each month from May 1964 through December 1994, value-weighted portfolios are formed monthly from all NYSE, Amex, and Nasdaq stocks on 
CRSP.  Firms must also have Compustat data for the book-to-market portfolios.  Book-to-market (B/M) is calculated as the ratio of book equity in 
the previous fiscal year to market equity in the previous month for all stocks with Compustat data.  The industry portfolios are based on two-digit 
SIC codes.  The size portfolios are based on the market value of equity in the previous month, with breakpoints determined by NYSE deciles; 
portfolios 9 and 10 are further divided using the 85 and 95 percentiles of NYSE stocks.  The book-to-market portfolios are based on B/M in the 
previous month, with breakpoints determined by NYSE deciles; portfolios 1 and 10 are further divided using the 5 and 95 percentiles of NYS63E 
stocks. 

 Return (%)  Book-to-market  Number of firms 

Portfolio Mean Std. dev. Mean Std. dev. Autocorr. Adj. R2 a May 1964 Dec. 1994 

Panel A: Industry portfolios 
Nat. resources 0.84 5.69 0.57 0.14 0.97 0.28 90 360 
Construction 0.86 5.45 0.78 0.26 0.99 0.69 237 409 
Food, tobacco 1.21 4.57 0.51 0.18 0.99 0.36 106 134 
Consumer products 1.05 6.02 0.75 0.36 0.99 0.81 108 257 
Logging, paper 0.98 5.35 0.54 0.15 0.98 0.54 74 190 
Chemicals 0.96 4.78 0.40 0.13 0.99 0.28 102 392 
Petroleum 1.08 5.23 0.74 0.20 0.98 0.38 30 32 
Machinery, equipment 0.88 5.35 0.42 0.13 0.99 0.40 290 1,222 
Transportation 0.87 5.39 0.82 0.27 0.98 0.71 162 260 
Utilities, telecom. 0.83 3.67 0.77 0.25 0.99 0.57 122 384 
Trade 1.04 5.65 0.49 0.18 0.98 0.55 167 785 
Financial 0.95 4.75 0.75 0.19 0.97 0.68 117 1,747 
Services and other 1.28 6.78 0.47 0.20 0.98 0.55 61 981 

 
Panel B: Size portfolios 
Smallest 1.24 6.68 1.03 0.41 0.98 0.88 409 3,338 
2 1.16 6.17 0.90 0.32 0.97 0.79 175 932 
3 1.15 6.08 0.85 0.30 0.97 0.77 154 634 
4 1.16 5.91 0.84 0.31 0.97 0.80 149 463 15 

 



 

Table 2.1. Continued. 
 

 Return (%)  Book-to-market  Number of firms 

Portfolio Mean Std. dev. Mean Std. dev. Autocorr. Adj. R2 a May 1964 Dec. 1994 

5 1.21 5.70 0.76 0.26 0.96 0.80 136 426 
6 1.22 5.41 0.72 0.23 0.97 0.88 130 333 
7 1.07 5.19 0.68 0.19 0.97 0.88 132 310 
8 1.09 5.13 0.67 0.19 0.98 0.86 130 274 
9a 1.02 4.89 0.67 0.18 0.97 0.78 62 122 
9b 0.97 4.71 0.66 0.20 0.97 0.78 64 111 
10a 0.88 4.50 0.62 0.17 0.98 0.70 63 109 
Largest 0.80 4.17 0.51 0.15 0.99 0.41 62 109 

 
Panel C: Book-to-market portfolios 
Lowest 0.98 5.69 0.15 0.05 0.97 0.59 21 559 
1b 0.83 5.15 0.24 0.07 0.97 0.64 19 328 
2 0.76 5.04 0.34 0.10 0.97 0.82 40 493 
3 0.79 4.78 0.46 0.14 0.98 0.93 39 470 
4 0.83 4.63 0.57 0.18 0.98 0.94 39 469 
5 0.82 4.47 0.67 0.21 0.98 0.94 42 492 
6 0.98 4.42 0.78 0.24 0.98 0.94 40 467 
7 1.17 4.54 0.89 0.28 0.98 0.94 42 461 
8 1.25 4.72 1.04 0.32 0.98 0.95 43 460 
9 1.43 5.20 1.28 0.40 0.98 0.96 43 574 
10a 1.46 6.12 1.65 0.53 0.97 0.93 24 378 
Highest 1.46 6.86 2.66 0.95 0.96 0.84 25 482 

  
a Adjusted R2 from regressing the portfolio’s B/M ratio on the value-weighted B/M ratio of all stocks that meet both CRSP and Compustat data 
requirements. 
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differences in portfolio characteristics.  Average B/M doubles from 0.40 for chemical firms to 

0.82 for the transportation industry.  A similar spread is shown for size portfolios, with B/M 

ranging from 0.51 for the largest stocks to 1.03 for the smallest stocks.  The book-to-market 

portfolios, of course, have the greatest cross-sectional variation, with average B/M ranging from 

0.15 for the low-B/M portfolio to 2.66 for the high-B/M portfolio.  The standard deviations over 

time are also reasonably high, reflecting the volatility of stock returns.  The time-series standard 

deviation of B/M is, on average, 0.20 for the industries, 0.24 for the size portfolios, and 0.29 for 

the book-to-market portfolios.  Variation in B/M will be necessary for the time-series 

regressions to have power distinguishing between the competing hypotheses. 

 Table 2.2 reports summary statistics for the Fama and French (1993) factors, which are 

described fully in Appendix A.  The market factor, RM, is the excess return on the CRSP value-

weighted index, and the size and book-to-market factors, SMB and HML, are zero-investment 

portfolios designed to mimic underlying risk factors in returns.  The average monthly return of 

RM is 0.39%, of SMB is 0.30%, and of HML is 0.38%.  The risk premium for each factor is 

measured by its mean return, so these averages imply positive compensation for bearing factor 

risk.  As noted by Fama and French, the procedure used to construct SMB and HML appears to 

successfully control each factor for the influence of the other, as demonstrated by the low 

correlation between the factors, equal to -0.06.  Also, SMB is positively correlated with RM 

(correlation of 0.36), while HML is negatively correlated with RM (-0.35).  Thus, the returns on 

the size and B/M factors are not independent of the market return, reflecting the fact that their 

construction did not control for differences in the betas of the underlying stocks. 

 The CAPM and most empirical studies examine the relation between simple-regression 

market betas and expected returns.  To enhance comparison with cross-sectional studies, I use 

size and B/M factors that are orthogonal to RM.  These factors, SMBO and HMLO, are 

constructed by adding the intercepts to the residuals when SMB and HML are regressed on a 

constant and the excess market return.  From regression analysis (e.g., Johnston, 1984, p. 238),
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Table 2.2 
Summary statistics for factors 

The factors are calculated monthly from May 1964 through December 1994.  RM is the return on the 
CRSP value-weighted index minus the one-month T-bill rate.  SMB is the return on a portfolio of 
small stocks minus the return on a portfolio of big stocks.  HML is the return on portfolio of high-
B/M stocks minus the return on a portfolio of low-B/M stocks.  SMBO and HMLO are 
orthogonalized versions of SMB and HML, constructed by adding the intercepts to the residuals in 
regressions of SMB and HML on a constant and RM.  All returns are reported in percent. 

     Correlation 

Factor Mean Std. dev. Autocorr. RM SMB HML SMBO HMLO 

RM 0.39 4.45 0.06 1.00 0.36 -0.35 0.00 0.00 
SMB 0.30 2.91 0.19  1.00 -0.06 0.93 0.07 
HML 0.38 3.00 0.14   1.00 0.07 0.94 
SMBO 0.21 2.71 0.06    1.00 0.07 
HMLO 0.47 2.81 0.14     1.00 

 
 
 

the coefficients in the three-factor model will be unaffected by the change in variables, except 

that market betas will now be the simple-regression betas of the CAPM.  Table 2.2 shows that 

the average return on the book-to-market factor increases from 0.38% to 0.47%, but the return 

on the size factor decreases from 0.30% to 0.21%.  The correlation between the size and book-

to-market factors, 0.07, remains close to zero. 

 

2.3. The predictability of portfolio returns  

 This section investigates the simple time-series relation between expected returns and B/M.  

The simple regressions help evaluate the economic importance of B/M, without regard to 

changes in risk or mispricing, and provide a convenient benchmark for the conditional three-

factor model.  In addition, the analysis complements recent studies which find that B/M 

forecasts aggregate stock returns (Kothari and Shanken, 1997; Pontiff and Schall, 1998). 

 As discussed above, the risk and mispricing views both suggest that B/M will predict 

portfolio returns.  For each portfolio, I estimate the time-series regression 

 Ri(t) = γi0 + γi1 B/Mi(t-1) + ei(t), (2.6) 
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where Ri is the portfolio’s excess return and B/Mi is the natural log of its lagged book-to-market 

ratio.  The slope coefficient in this regression is expected to be positive. 

 Several complications arise in estimating eq. (2.6).  First, the appropriate definition of B/M 

is unclear.  Cross-sectional studies suggest that a portfolio’s B/M relative to other firms could 

be important.  Thus, B/Mi(t-1) might be defined as either the portfolio’s actual B/M ratio or its 

B/M ratio minus an aggregate index.  The latter varies primarily with market-adjusted stock 

returns, and would be a better measure if common variation in B/M is unrelated to mispricing.7  

Asset-pricing theory provides little guidance.  The conclusions in this paper are not sensitive to 

the definition of B/M, and for simplicity I report only results for raw B/M.  Also, to ease the 

interpretation of the results, B/M is measured as deviations from its time-series mean for the 

remainder of the paper.  As a consequence, when B/Mi equals zero in the regressions, B/M is 

actually at its long-run average for the portfolio. 

 Second, Stambaugh (1999) shows that contemporaneous correlation between returns and 

B/M will bias upward the slope coefficient in eq. (2.6).  Suppose that B/M follows the AR(1) 

process 

 B/Mi(t) = ci + pi B/Mi(t-1) + ui(t). (2.7) 

The bias in the estimate of γi1 is approximately 

 E i1 i1[ $ ]γ γ−  ≈ [cov(ei, ui) / var(ui)] ⋅ [-(1+3pi) / T], (2.8) 

where T is the length of the time series.  The residuals in eqs. (2.6) and (2.7), ei and ui, are 

negatively related because a positive stock return decreases the portfolio’s B/M.  Also, Table 

2.1 shows that B/M is highly persistent over time, with autocorrelations ranging from 0.96 to 

0.99 at the first lag.  Together, the correlation between ei and ui and the persistence in B/M 

                                                 
7 Kothari and Shanken (1997) and Pontiff and Schall (1998) show that aggregate B/M predicts market 

returns during the period 1926 through 1992, which could reflect aggregate mispricing.  Their results for 
the period 1963 through 1992 are much weaker.  For the current paper, preliminary tests indicate that 
aggregate B/M has little power to forecast the market, size, and book-to-market factors. 
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impart a strong upward bias in the estimate of γi1.  In a related context, for market returns 

regressed on aggregate B/M, Kothari and Shanken (1997) bootstrap the distribution of the slope 

and find that Stambaugh’s formula is empirically valid.  The tests below adjust for this bias. 

 

2.3.1. Industry portfolios 

 Table 2.3 reports results for the industry portfolios.  The evidence provides some support 

for a positive association between expected returns and lagged B/M, but the high volatility of 

stock returns reduces the power of the tests.  The bias-adjusted slopes range from -0.53 for food 

and tobacco firms to 1.75 for the natural resources industry, and 10 of the 13 coefficients are 

greater than zero.  The average estimate is positive, 0.58, although it is only about one standard 

error, 0.62, from zero (the standard error reflects cross-sectional correlation in the estimates).  

Stronger evidence of predictive ability is provided by the χ2 test of the slope coefficients.  This 

test rejects at the 5% level the hypothesis that B/M does not capture any varia tion in expected 

returns. 

 The average coefficient, 0.58, is similar to the cross-sectional slope, 0.50, estimated by 

Fama and French (1992).  Economically, the average coefficient is reasonably large.  Consider, 

for example, the effect that a change in B/M equal to two standard deviations would have on 

expected returns.  For the average industry portfolio, the time-series standard deviation of B/M 

is 0.33.  An increase in B/M twice this large maps into a 0.38% change (0.66 × 0.58) in 

expected return for the typical portfolio, or 4.67% annually.  On the other hand, the predictive 

power of B/M is low as measured by the adjusted R2s.  Lagged B/M explains at most 1% of the 

total variation in portfolio returns.  This result is consistent with previous studies at the market 

level, which generally find that pre-determined variables explain only a small fraction of 

monthly returns (e.g., Fama and French, 1989). 

 In addition to the ordinary least squares (OLS) estimates just described, Table 2.3 reports 

seemingly unrelated regression (SUR) estimates of the equations.  OLS treats the regression for 



 

Table 2.3 
Predictability of industry returns 

Ri(t) = γi0 + γi1 B/Mi(t-1) + ei(t) 

The industry portfolios are described in Table 2.1.  Ri is the portfolio’s monthly excess return (in percent) and B/Mi is the natural log of the 
portfolio’s book-to-market ratio at the end of the previous month.  The table reports both ordinary least squares (OLS) and seemingly unrelated 
regression (SUR) estimates of the slope coefficients.  The OLS bias-adjusted slopes correct for small-sample biases using eq. 2.8 in the text.  The 
bias correction for the SURs, as well as the covariance matrix of the bias-adjusted estimates, is obtained from bootstrap simulations. 
 

 OLS  SUR 

Portfolio γi1 Bias-adj γi1 Std. err. Adj. R2  γi1 Std. err. Bias-adj γi1 Std. err. 

Nat. resources 2.56* 1.75 1.19 0.01  0.67 0.69 0.07 0.77 
Construction 1.10 0.15 0.83 0.00  0.13 0.29 -0.30 0.44 
Food, tobacco 0.35 -0.53 0.64 0.00  0.50 0.31 0.17 0.43 
Consumer products 0.88 -0.06 0.72 0.00  0.71* 0.31 0.33 0.45 
Logging, paper 2.07 1.20 1.07 0.01  0.20 0.43 -0.30 0.55 
Chemicals 1.01 0.09 0.78 0.00  0.06 0.35 -0.41 0.51 
Petroleum 2.33* 1.46 1.00 0.01  1.56* 0.67 0.96 0.80 
Mach., equipment 0.77 -0.19 0.80 0.00  -0.25 0.31 -0.69 0.50 
Transportation 1.19 0.37 0.80 0.00  0.41 0.35 -0.02 0.47 
Utilities, telecom.  1.06 0.40 0.57 0.01  1.11 0.36 0.77 0.52 
Trade 1.69 0.97 0.88 0.01  0.70 0.37 0.35 0.45 
Financial 1.93* 1.18 0.96 0.01  1.14* 0.42 0.74 0.47 
Services, other 1.69 0.79 0.93 0.01  0.86* 0.36 0.51 0.46 

Average 1.43* 0.58    0.60*  0.17  
(std. err.) (0.62) (0.62)    (0.20)  (0.23)  
χ2 a 18.44 26.42*    22.48*  9.83  
(p-value) (0.142) (0.015)    (0.048)  (0.707)  

 
a χ2 = c′  Σ

-1 c, where c is the vector of coefficient estimates and Σ is the estimate of the covariance matrix of c.  Under the null that all coefficients are zero, 
this statistic is asymptotically distributed as χ2 (d.f. 13). 
* Denotes coefficients that are greater than two standard errors from zero or χ2 statistics with a p-value less than 0.050. 21 
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each portfolio separately, and ignores interactions among the equations.  The residuals across 

portfolios are correlated, however, because industries’ excess returns are driven by many of the 

same macroeconomic factors.  SUR uses this information to estimate the system of equations 

more efficiently (Zellner, 1962).  Although SUR requires an estimate of the residual covariance 

matrix, the efficiency gain is likely to be large because (1) the error terms are highly correlated 

across portfolios (see Greene, 1993, p. 489), and (2) the dimension of the covariance matrix 

(13×13) is small relative to the length of the time series (368 months).  Indeed, Table 2.3 shows 

that the average standard deviation of the SUR slopes is 0.40, compared with 0.86 for OLS.  

While the standard deviations are estimated with error, the large decrease suggests that SUR is 

substantially more efficient. 

 It was noted above that OLS slope estimates are biased upward.  I am not aware of any 

research that explores the bias in SUR estimates, and there is little reason to believe that it is 

identical to that of OLS.  Without an analytical estimate, I rely on bootstrap simulations to 

assess the sampling distribution of the SUR slopes.  The simulation procedure, described in 

Appendix A, randomly generates time series of returns and B/M, imposing the restriction that 

expected returns and B/M are unrelated.  Since the true coefficient in the simulation equals zero, 

the mean of the distribution represents the bias in SUR estimates.  Further, the standard 

deviation of the distribution provides an estimate of the SUR standard error.8 

 Table 2.3 shows that the bias-adjusted SUR estimates tend to be smaller than their OLS 

counterparts.  The coefficients range from -0.69 for the machinery and equipment industry to 

0.96 for petroleum firms, and eight of the 13 estimates are positive.  The average coefficient on 

B/M, 0.17, is positive, although it is under one standard error, 0.23, from zero.  In addition, the 

χ2 statistic cannot reject the hypothesis that all slope coefficients are zero.  The simulations 

                                                 
8 I also simulate the distribution of the OLS slope estimates and find that the analytical estimate of the 

bias is reasonably accurate.  The average bias from the simulations is 0.92 compared with 0.85 from eq. 
(2.8).  The standard errors from the simulation, however, tend to be larger than the OLS estimates.  For 
example, the standard deviation of the average coefficient is 0.76, compared with the OLS standard error 
of 0.62. 
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indicate that the average bias in the SUR estimates, 0.43, is about half the bias in the OLS 

regressions, 0.85.  The magnitude remains significant, however, and the average SUR 

coefficient decreases by two-thirds, from 0.60 to 0.17, after correcting for bias. 

In sum, the evidence in Table 2.3 is consistent with a positive relation between B/M and 

expected returns, but B/M explains, at most, a small fraction of returns.  After adjusting for bias 

in the regressions, only the χ2 statistic for the OLS slope coefficients is significant at 

conventional levels.  We will see below that the power of the tests is much greater in the 

conditional three-factor regressions, because the factors absorb much of the volatility of returns.  

In addition, the size and book-to-market portfolios reveal a considerably stronger relation 

between B/M and future returns. 

As a final observation, it is useful to keep in mind that the regressions cannot reject 

economically meaningful coefficients on B/M.  A typical confidence interval around the 

average estimate, for either OLS or SUR, would include reasonably large coefficients.  

Moreover, low explanatory power does not imply that B/M is necessarily unimportant.  For 

example, Kandel and Stambaugh (1996) show that predictive variables with low explanatory 

power can have a large impact on asset allocation decisions.  I suspect a similar result would 

hold at the portfolio level:  the optimal portfolio held by a risk-averse, Bayesian investor is 

probably sensitive to predictive variables which have low statistical significance. 

 

2.3.2. Size and book-to-market portfolios 

 Table 2.4 shows results for the size and book-to-market portfolios.  For simplicity, I report 

only the SUR estimates, along with the bias-adjusted estimates, since the evidence above 

indicates that SUR increases the precision of the slope estimates.  The table shows that B/M 

predicts statistically reliable variation in returns for both the size and book-to-market portfolios.  

After correcting for bias, four coefficients for the size portfolios and nine coefficients for the 

book-to-market portfolios are more than two standard errors above zero.  All 12 estimates are



 

Table 2.4 
Predictability of returns: Size and book-to-market portfolios 

Ri(t) = γi0 + γi1 B/Mi(t-1) + ei(t) 

The size and book-to-market portfolios are described in Table 2.1.  Ri is the portfolio’s monthly excess return (in percent) and B/Mi is the natural log 
of the portfolio’s book-to-market ratio at the end of the previous month.  The table reports seemingly unrelated regression (SUR) estimates of the 
slope coefficients, together with bias-adjusted slope estimates.  The bias correction for the SURs, as well as the covariance matrix of the bias-
adjusted estimates, is obtained from bootstrap simulations. 
 
Size portfolios  Book-to-market portfolios 

Portfolio SUR γi1 Std. err. Bias-adj γi1 Std. err.  Portfolio SUR γi1 Std. err. Bias-adj γi1 Std. err. 

Smallest 0.07 0.33 0.00 0.28  Lowest -0.22 0.57 -0.45 0.54 
2 0.32 0.23 0.31* 0.15  1b -0.22 0.55 -0.46 0.50 
3 0.30 0.21 0.28* 0.13  2 0.57 0.55 0.31 0.45 
4 0.31 0.19 0.29 0.15  3 1.21* 0.51 0.96* 0.44 
5 0.18 0.20 0.15 0.15  4 1.32* 0.50 1.09* 0.42 
6 0.19 0.20 0.16 0.15  5 1.32* 0.51 1.06* 0.45 
7 0.38 0.22 0.34* 0.17  6 1.19* 0.52 0.93* 0.45 
8 0.45* 0.22 0.40* 0.18  7 1.80* 0.53 1.51* 0.46 
9a 0.46 0.26 0.42 0.21  8 1.85* 0.56 1.53* 0.49 
9b 0.44 0.24 0.38 0.21  9 2.09* 0.60 1.77* 0.49 
10a 0.54 0.28 0.45 0.24  10a 2.27* 0.74 1.88* 0.61 
Largest 0.18 0.33 0.03 0.39  Highest 2.52* 0.79 2.14* 0.68 

Average 0.32*  0.27*   Average 1.31*  1.02*  
(std. err.) (0.16)  (0.08)   (std. err.) (0.46)  (0.29)  
χ2 a 10.84  20.71   χ2 a 25.12*  28.21*  
(p-value) (0.543)  (0.055)   (p-value) (0.014)  (0.005)  
 
a χ2 = c′  Σ

-1 c, where c is the vector of coefficient estimates and Σ is the estimate of the covariance matrix of c.  Under the null that all coefficients are zero, 
this statistic is asymptotically distributed as χ2 (d.f. 12). 
* Denotes coefficients that are greater than two standard errors from zero or χ2 statistics with a p-value less than 0.050. 
 24 
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positive for the size portfolios, and the average coefficient, 0.27, is greater than three standard 

errors from zero.  Similarly, ten of the 12 coefficients for the book-to-market portfolios are 

positive, and the average coefficient, 1.02, is more than three standard errors above zero.  The 

estimates generally increase from the low-B/M deciles to the high-B/M deciles. 

 Interestingly, the bias in the regressions is significantly smaller for the size and book-to-

market portfolios than for the industry portfolios.  The bootstrap estimate of the bias is 0.05 for 

the size portfolios and 0.29 for the book-to-market portfolios, compared with 0.43 for the 

industries (see Table 2.3).  Also, the standard errors from the simulated distribution are less than 

the actual SUR estimates, while the opposite is true for industry portfolios.  From the bootstrap 

distribution, the standard error of the average coefficient is only 0.08 for the size portfolios and 

0.29 for the book-to-market portfolios. 

 Economically, the individual estimates and the average coefficient are quite large for the 

book-to-market portfolios.  A two-standard-deviation increase in B/M for the typical portfolio 

predicts a 0.61% monthly increase in expected return, or 7.6% annually.  The implied change in 

expected return is greater than 11% annually for the five portfolios with the highest B/M.  The 

conclusions from the OLS regressions (not reported) are qualitatively similar, but the estimates 

are less precise.  The average bias-adjusted OLS slope is 1.13 (standard error of 0.82) for the 

size portfolios and 1.30 (standard error of 0.77) for the book-to-market portfolios.  The strong 

relation between expected returns and B/M documented in Table 2.4 should provide a 

challenging test of the three-factor model. 

 

2.4. Expected returns, characteristics, and risk: Empirical results 

 The evidence above indicates the B/M predicts significant time-variation in expected 

returns.  In this section, I examine the explanatory power of B/M in competition with the Fama 

and French (1993) three-factor model.  As discussed above, the conditional regressions directly 

test whether the three-factor model or the characteristic -based model better explains changes in 
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expected returns over time. 

 Fama and French estimate the unconditional model 

 Ri(t) = ai + bi RM(t) + si SMBO(t) + hi HMLO(t) + ei(t), (2.9) 

where SMB and HML have been replaced here by the orthogonalized factors SMBO and 

HMLO (see Section 2.2).  The conditional version of the three-factor model allows the 

intercepts and factor loadings to vary linearly with lagged B/M.  Repeating eq. (2.4), the 

conditional model is specified as: 

 Ri = ai0 + ai1B/Mi + (bi0 + bi1B/Mi)*RM + 

 (si0 + si1B/Mi)*SMBO + (hi0 + hi1B/Mi)*HMLO + e i, (2.10) 

where B/M is lagged one month relative to returns and time subscripts have been dropped for 

simplicity.  Multiplying the factors through gives the equation to be estimated for each 

portfolio.  The B/M interactive term with the intercept, ai1, is analogous to the slope coefficient 

in the simple regressions above, except that the multifactor regressions control for changes in 

risk.  Consequently, ai1 measures the predictive ability of B/M that cannot be explained by the 

Fama and French three-factor model. 

 

2.4.1. Industry portfolios 

 Before continuing to the conditional model, Table 2.5 reports unconditional three-factor 

regressions for the industry portfolios.9  Consistent with the results of Fama and French (1997), 

the size and book-to-market factors explain significant co-movement in industry returns not 

captured by the market.  For both SMBO and HMLO, ten of the 13 coefficients deviate from 

zero by more than two standard errors.  In fact, nine coefficients on the size factor and eight 

coefficients on the book-to-market factor are greater than four standard errors from zero.  If the 

loadings change over time and are uncorrelated with the factors, the unconditional estimates can

                                                 
9 For these regressions, OLS and SUR are identical because the regressors are the same for all 

portfolios (Greene, 1993, p. 488). 



 

Table 2.5 
Unconditional three-factor regressions: Industry portfolios 

Ri(t) = ai + bi RM(t) + si SMBO(t) + hi HMLO(t) + ei(t) 

The industry portfolios and factors are described in Tables 2.1 and 2.2.  Ri is the portfolio’s monthly excess return (in percent).  RM is the return on 
the CRSP value-weighted index minus the one-month T-bill rate.  SMBO is the return on a portfolio of small stocks minus the return on a portfolio 
of big stocks, orthogonalized with respect to RM.  HMLO is the return on portfolio of high-B/M stocks minus the return on a portfolio of low-B/M 
stocks, again orthogonalized with respect to RM.  The table reports ordinary least squares estimates of the equations and the Gibbons, Ross, and 
Shanken (1989) F-test of the intercepts. 
 

  a  b  s  h  

Portfolio Coeff. Std. err. Coeff. Std. err. Coeff. Std. err. Coeff. Std. err. Adj R2 

Nat. resources -0.05 0.20 0.97* 0.04 0.03 0.07 -0.02 0.07 0.57 
Construction -0.23* 0.10 1.14* 0.02 0.31* 0.04 0.17* 0.03 0.89 
Food, tobacco 0.38* 0.12 0.90* 0.03 -0.12* 0.04 -0.01 0.04 0.77 
Consumer products -0.15 0.12 1.18* 0.03 0.68* 0.04 0.19* 0.04 0.86 
Logging, paper 0.01 0.11 1.11* 0.02 0.05 0.04 0.05 0.04 0.85 
Chemicals 0.21* 0.10 0.98* 0.02 -0.21* 0.04 -0.20* 0.03 0.85 
Petroleum 0.29 0.19 0.81* 0.04 -0.45* 0.07 0.12* 0.07 0.53 
Mach., equipment 0.04 0.10 1.11* 0.02 0.14* 0.04 -0.28* 0.04 0.87 
Transportation -0.24 0.12 1.08* 0.03 0.20* 0.04 0.28* 0.04 0.83 
Utilities, telecom.  -0.06 0.10 0.65* 0.02 -0.26* 0.04 0.38* 0.04 0.74 
Trade 0.03 0.14 1.13* 0.03 0.26* 0.05 0.01 0.05 0.80 
Financial -0.04 0.08 1.00* 0.02 -0.04 0.03 0.21* 0.03 0.89 
Services, other 0.16 0.11 1.38* 0.03 0.74* 0.04 -0.17* 0.04 0.90 

GRS Fa 2.63         
(p-value) (0.003)         

 
a The GRS F-statistic equals (T-N-K+1) / [N(T-K)] ⋅ a′  Σ

-1 a, where a is the vector of intercept estimates, Σ is the estimate of the covariance matrix of a, T is 
368 (months), N is 13 (portfolios), and K is 4 (independent variables).  Under the null hypothesis that all intercepts are zero, and assuming that returns are 
multivariate normal, this statistic is distributed as F (d.f. 13, 352).  
* Denotes coefficients that are greater than two standard errors from zero. 27 
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be interpreted as the average factor sensitivities of the industries.  Therefore, unless some 

industries were ‘distressed’ throughout the sample period, the significant explanatory power of 

SMBO and HMLO suggests that they proxy for more than just distress factors.  Instead, the 

mimicking portfolios appear to reflect information relevant to a broad cross section of firms (see 

also Section 2.4.3). 

 The factors, however, cannot completely explain cross-sectional variation in average 

returns.  Under the hypothesis that the three-factor model explains average returns, the 

intercepts in the time-series regressions should be zero.  Table 2.5 shows that several intercepts 

are individually significant, and the Gibbons, Ross, and Shanken (1989) F-statistic rejects at the 

1% level the restriction that all are zero.  Economically, the intercepts are generally small, but 

two deviate from zero by over 3% annually.  In sum, SMBO and HMLO proxy for pervasive 

risk factors in industry portfolios, and the three-factor model provides a reasonable, though not 

perfect, description of average returns.10 

 Table 2.6 reports SUR estimates of the conditional model.  For simplicity, I do not report 

the constant terms of the intercepts and factor loadings (ai0, bi0, si0, and hi0).  Since the 

industries’ B/M ratios are measured as deviations from their time-series means, the constant 

terms are simply estimates of the average coefficients, and they are nearly identical to the 

unconditional results in Table 2.5.  Across all parameters, the mean absolute difference between 

the constant terms and the unconditional estimates in Table 2.5 is 0.017; for the intercepts only, 

it is 0.006.  The similarity between the two sets of regressions indicates that changes in the 

loadings are largely uncorrelated with the factors. 

 The interactive terms with B/M are more interesting for our purposes.  The table shows 

that B/M captures time-variation in risk, but does not appear to directly predict expected returns.

                                                 
10 As a robustness check, I also estimate heteroskedastic-consistent standard errors and an 

asymptotically valid χ2 statistic for the hypothesis that all intercepts are zero (based on the covariance 
estimates of White, 1984; see also Shanken, 1990).  The results are not sensitive to heteroskedasticity 
adjustments. 



 

Table 2.6 
Conditional three-factor regressions: Industry portfolios 

Ri = ai0 + ai1B/Mi + (bi0 + bi1B/Mi) RM + (si0 + si1B/Mi) SMBO + (hi0 + hi1B/Mi) HMLO + ei 

The industries and factors are described in Tables 2.1 and 2.2.  Ri is the portfolio’s monthly excess return (%) and B/Mi is the natural log of its book-
to-market ratio, as a deviation from its mean.  RM is the excess return on the CRSP value-weighted index. SMBO is the return on small stocks minus 
the return on big stocks, with cov(RM, SMBO) = 0.  HMLO is the return on high-B/M stocks minus the return on low-B/M stocks, with cov(RM, 
HMLO) = 0. The table reports SUR estimates of the interactive terms, ai1, bi1, s i1, and hi1, which measure time-variation in the intercept and loadings. 
 

  a1  b1  s1  h1 

Portfolio Coeff. Std. err. Coeff. Std. err. Coeff. Std. err. Coeff. Std. err. 

Nat. resources -0.13 0.62 -0.01 0.12 -0.28 0.23 -0.22 0.20 
Construction -0.36 0.24 -0.16* 0.05 0.05 0.09 0.14 0.09 
Food, tobacco -0.12 0.26 0.02 0.05 0.23* 0.09 0.40* 0.09 
Consumer products 0.03 0.23 -0.17* 0.04 0.12 0.08 0.27* 0.07 
Logging, paper -0.28 0.38 -0.06 0.07 -0.11 0.14 0.34* 0.13 
Chemicals -0.30 0.28 -0.05 0.06 0.06 0.10 0.28* 0.10 
Petroleum 0.62 0.54 -0.05 0.12 -0.32 0.20 -0.16 0.19 
Mach., equipment -0.72* 0.22 0.03 0.05 0.18* 0.08 0.29* 0.08 
Transportation 0.07 0.30 -0.24* 0.07 0.00 0.12 0.02 0.10 
Utilities, telecom.  0.33 0.26 0.01 0.06 0.12 0.10 0.04 0.09 
Trade -0.05 0.32 -0.02 0.07 0.27* 0.12 0.55* 0.10 
Financial 0.43 0.31 0.07 0.07 -0.17 0.12 -0.33* 0.11 
Services, other -0.08 0.27 0.00 0.05 0.23* 0.10 0.35* 0.08 

Average -0.04 -0.05* 0.03 0.15* 
(std. err.) (0.09) (0.02) (0.03) (0.03) 

χ2  
a 14.27 38.94* 24.72* 95.76* 

(p-value) (0.355) (0.000) (0.025) (0.000) 
 
a χ2 = c′  Σ

-1 c, where c is the vector of coefficient estimates and Σ is the estimate of the covariance matrix of c.  Under the null that all coefficients are zero, 
this statistic is asymptotically distributed as χ2 (d.f. 13). 
* Denotes coefficients that are greater than two standard errors from zero or χ2 statistics with a p-value less than 0.050. 29 
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The χ2 statistics easily reject the hypotheses that B/M is unrelated to the loadings on RM, 

SMBO, and HMLO.  The B/M interactive terms with RM, SMBO, and HMLO are over two 

standard errors from zero for 3 portfolios, 4 portfolios, and 8 portfolios, respectively.  B/M 

tends to be positively related to the loadings on the size and book-to-market factors (financial 

firms are the exception), but negatively related to market betas.  Interpreting increases in B/M 

as evidence of distress, it appears that market risk becomes relatively less important for 

distressed industries.  While somewhat surprising, a similar result has been documented 

previously for firms near bankruptcy (e.g., McEnally and Todd, 1993). 

 In contrast, there is no evidence that B/M explains economically or statistically significant 

variation in the intercepts.  None of the interactive terms with the intercepts is significantly 

positive, eight of the 13 estimates are negative, and the average coefficient, -0.04, is 

insignificantly different from zero (standard error of 0.09).11  In fact, the only significant 

coefficient is actually negative (for the machinery and equipment industry), which is 

inconsistent with the overreaction story.  In addition, the χ2 statistic cannot reject the hypothesis 

that all coefficients on B/M are zero, with a p-value of 0.355.  Thus, variation in risk appears to 

explain any association between B/M and expected returns. 

 Importantly, the lack of statistical significance is not driven by low power.  The standard 

error of the average coefficient is relatively low, 0.09, and allows rejection of economically 

significant slopes.  For example, suppose that the actual coefficient is two standard errors above 

the sample estimate, or 0.13.  This coefficient maps into less than a 0.09% change in the 

monthly intercept when B/M varies by 0.66, twice its standard deviation for the typical 

portfolio.  The OLS estimates (not reported) of the conditional regressions support these 

                                                 
11 There is no mechanical reason that the average coefficient is zero.  Conditional asset-pricing tests 

typically use the same conditioning variables for all portfolios, and some linear combination of the 
coefficients must be zero.  However, no linear constraint is imposed on the coefficients here because B/M 
differs across portfolios.  For example, aggregate B/M explains, on average, half of the variation in an 
industry’s B/M ratio.  In fact, when B/M is measured net of an aggregate index, the average correlation 
across portfolios is necessarily close to zero. 
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conclusions.  Individually, the B/M coefficients are not significant, with an average estimate 

equal to -0.07 (standard error of 0.11), and the χ2 statistic does not reject the joint restriction 

that all are zero (p-value of 0.370).  The evidence is inconsistent with the argument that B/M 

proxies for mispricing in stock returns. 

 We saw earlier that the slope estimate is biased upward in a simple regression of returns on 

lagged B/M.  The B/M term in the three-factor regression is likely to be biased upward as well, 

which would strengthen the conclusions above.  An ad hoc estimate of the bias can be obtained 

by substituting the residuals from the three-factor regressions for the simple -regression error 

terms in eq. (2.8).  The average bias estimated this way, 0.17, is much smaller than the bias in 

the simple regressions, 0.85.  Bootstrap simulations like those described in Section 4 produce a 

similar estimate, 0.18. 

 

2.4.2. Size and book-to-market portfolios 

 Tables 2.7 and 2.8 report similar findings for the size and book-to-market portfolios.  In the 

unconditional regressions in Table 2.7, SMBO and HMLO capture significant co-movement in 

stock returns.  For the size portfolios, the loadings on all factors are greatest for the smallest 

portfolios and decrease almost monotonically with size.  They range from 0.91 to 1.22 on the 

market factor, -0.31 to 1.39 on SMBO, and -0.08 to 0.30 on HMLO.  For the book-to-market 

portfolios, the loadings on SMBO and HMLO increase almost monotonically from the lowest to 

the highest deciles.  The coefficients vary widely across portfolios.  The cross-sectional spread 

is -0.09 to 0.87 for the loadings on SMBO and -0.77 to 0.97 for the loadings on HMLO.  Market 

betas are generally close to one, ranging from 0.91 to 1.13, but are highest for the extreme 

portfolios (portfolios 1a and 10b).  Consistent with the evidence in Fama and French (1993), the 

multivariate F-statistic rejects the asset-pricing restriction that all intercepts are zero.  However, 

the deviations from zero are small (with the exception of low-B/M portfolio), and the three-

factor model provides a fairly accurate description of average stock returns. 



 

Table 2.7 
Unconditional three-factor regressions: Size and book-to-market portfolios 

Ri(t) = ai + bi RM(t) + si SMBO(t) + hi HMLO(t) + ei(t) 

The portfolios and factors are described in Tables 2.1 and 2.2.  Ri is the portfolio’s monthly excess return (in percent).  RM is the return on the CRSP 
value-weighted index minus the one-month T-bill rate.  SMBO is the return on a portfolio of small stocks minus the return on a portfolio of big 
stocks, orthogonalized with respect to RM.  HMLO is the return on portfolio of high-B/M stocks minus the return on a portfolio of low-B/M stocks, 
again orthogonalized with respect to RM.  The table reports ordinary least squares estimates of the equations and the Gibbons, Ross, and Shanken 
(1989) F-test of the intercepts. 
 

  a  b  s  h  

Portfolio Coeff. Std. err. Coeff. Std. err. Coeff. Std. err. Coeff. Std. err. Adj R2 

Panel A: Size portfolios 
Smallest -0.15 0.09 1.16* 0.02 1.39* 0.03 0.30* 0.03 0.93 
2 -0.13* 0.05 1.19* 0.01 1.09* 0.02 0.19* 0.02 0.97 
3 -0.11* 0.04 1.22* 0.01 0.96* 0.02 0.15* 0.01 0.98 
4 -0.05 0.05 1.21* 0.01 0.84* 0.02 0.12* 0.02 0.98 
5 0.03 0.05 1.19* 0.01 0.74* 0.02 0.11* 0.02 0.98 
6 0.09 0.05 1.15* 0.01 0.59* 0.02 0.11* 0.02 0.97 
7 -0.01 0.05 1.12* 0.01 0.43* 0.02 0.10* 0.02 0.97 
8 0.02 0.05 1.12* 0.01 0.27* 0.02 0.13* 0.02 0.97 
9a 0.01 0.06 1.07* 0.01 0.09* 0.02 0.14* 0.02 0.95 
9b -0.01 0.05 1.04* 0.01 0.05* 0.02 0.11* 0.02 0.96 
10a 0.00 0.05 0.99* 0.01 -0.12* 0.02 0.03 0.02 0.96 
Largest 0.04 0.04 0.91* 0.01 -0.31* 0.01 -0.08* 0.01 0.97 

GRS Fa 2.43         
(p-value) (0.005)         

 
(Table 2.7 continued on next page) 
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Table 2.7. Continued. 
 

  a  b  s  h  

Portfolio Coeff. Std. err. Coeff. Std. err. Coeff. Std. err. Coeff. Std. err. Adj R2 

Panel B: Book-to-market portfolios 
Lowest 0.40* 0.09 1.12* 0.02 -0.02 0.03 -0.77* 0.03 0.91 
1a 0.11 0.09 1.07* 0.02 -0.09* 0.03 -0.42* 0.03 0.90 
2 -0.04 0.07 1.09* 0.01 -0.07* 0.02 -0.25* 0.02 0.94 
3 -0.06 0.07 1.03* 0.02 -0.06* 0.03 -0.10* 0.02 0.92 
4 -0.10 0.08 0.99* 0.02 -0.04 0.03 0.09* 0.03 0.90 
5 -0.14 0.08 0.95* 0.02 -0.01 0.03 0.19* 0.03 0.89 
6 -0.05 0.08 0.91* 0.02 -0.06* 0.03 0.39* 0.03 0.90 
7 0.08 0.07 0.93* 0.02 -0.01* 0.03 0.48* 0.03 0.91 
8 0.06 0.07 0.93* 0.02 0.10* 0.03 0.65* 0.03 0.91 
9 0.14 0.08 1.01* 0.02 0.25* 0.03 0.71* 0.03 0.92 
10a 0.02 0.12 1.12* 0.03 0.52* 0.04 0.81* 0.04 0.87 
Highest -0.12 0.15 1.13* 0.03 0.87* 0.06 0.97* 0.05 0.82 
GRS Fa 2.24         
(p-value) (0.010)         

 
a The GRS F-statistic equals (T-N-K+1) / [N(T-K)] ⋅ a′  Σ

-1 a, where a is the vector of intercept estimates, Σ is the estimate of the covariance matrix of a, T is 
368 (months), N is 12 (portfolios), and K is 4 (independent variables).  Under the null hypothesis that all intercepts are zero, and assuming that returns are 
multivariate normal, this statistic is distributed as F (d.f. 12, 353).  
* Denotes coefficients that are greater than two standard errors from zero. 
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 The conditional three-factor regressions are more important for the current paper.  Table 

2.8 reports SUR estimates for the conditional model, in which intercepts and factor loadings 

vary linearly with lagged B/M.  As before, the constant terms in the regressions are similar to 

the unconditional coefficients in Table 2.7, and I report only the interactive terms with B/M. 

 The evidence supports the conclusion that B/M captures significant variation in risk, but 

has little power to directly predict expected returns.  For both sets of portfolios, the χ2 statistics 

strongly reject, at the 0.001 level, the hypothesis that B/M is unrelated to the factor loadings.  

B/M displays a consistently positive relation to the loadings on the size and book-to-market 

factors.  For the 24 portfolios shown in Table 2.8, 15 of the interactive terms with SMBO are 

greater than two standard errors above zero, and only one is significantly negative.  Similarly, 

16 of the coefficients on HMLO are significantly positive, and only one is significantly 

negative.  The relation between B/M and markets betas is mixed.  An increase in B/M predicts 

smaller betas for ten portfolios and larger betas for eight portfolios.  Together with Table 2.6, 

the conditional regressions provide considerable evidence that B/M explains variation in risk. 

 Changes in risk absorb nearly all of B/M’s predictive ability.  The interactive terms with 

the intercepts are generally small and statistically insignificant.  The average coefficient for the 

size portfolios is 0.00 (standard error of 0.05) and for the book-to-market portfolios is 0.03 

(standard error of 0.07).  Neither estimate is statistically different from zero, and we can reject 

economically significant coefficients.  For example, true coefficients of 0.10 and 0.17 are two 

standard errors above the averages reported in Table 2.8.  These coefficients map into 0.06% 

and 0.10% changes in monthly expected returns, respectively, when B/M varies by twice its 

standard error for the typical portfolio.  The findings are striking given the significant 

explanatory power of B/M in simple regressions (see Table 2.4).  By controlling for changes in 

risk, the average slopes on B/M decrease from 0.27 to 0.00 for the size portfolios and 1.02 to 

0.03 for the book-to-market portfolios.  B/M does not appear to have incremental explanatory 

power in predicting returns. 



 

Table 2.8 
Conditional three-factor regressions: Size and book-to-market portfolios 

Ri = ai0 + ai1B/Mi + (bi0 + bi1B/Mi) RM + (si0 + si1B/Mi) SMBO + (hi0 + hi1B/Mi) HMLO + ei 

The portfolios and factors are described in Tables 2.1 and 2.2.  Ri is the portfolio’s monthly excess return (in percent) and B/Mi is the natural log of 
the portfolio’s book-to-market ratio, measured as a deviation from its time-series mean.  RM is the excess return on the CRSP value-weighted index.  
SMBO is the return on a portfolio of small stocks minus the return on a portfolio of big stocks, orthogonalized with respect to RM.  HMLO is the 
return on portfolio of high-B/M stocks minus the return on a portfolio of low-B/M stocks, again orthogonalized with respect to RM.  The table 
reports SUR estimates of the interactive terms, ai1, bi1, si1, and hi1, which measure time-variation in the intercepts and factor loadings. 
 

  a1  b1  s1  h1 

Portfolio Coeff. Std. err. Coeff. Std. err. Coeff. Std. err. Coeff. Std. err. 

Panel A: Size portfolios 
Smallest -0.10 0.24 -0.10* 0.04 -0.08 0.09 0.17* 0.07 
2 0.09 0.15 -0.10* 0.03 0.05 0.05 0.25* 0.04 
3 0.09 0.12 -0.06* 0.02 0.07 0.04 0.17* 0.04 
4 0.06 0.12 -0.06* 0.02 0.11* 0.04 0.22* 0.04 
5 -0.09 0.12 -0.09* 0.02 0.08* 0.04 0.21* 0.04 
6 -0.10 0.13 -0.05* 0.02 0.19* 0.05 0.17* 0.04 
7 -0.01 0.15 0.02 0.03 0.33* 0.05 0.16* 0.04 
8 0.03 0.14 0.09* 0.03 0.19* 0.05 0.18* 0.04 
9a -0.16 0.17 0.10* 0.03 0.23* 0.06 0.18* 0.05 
9b 0.07 0.15 0.08* 0.03 0.14* 0.05 0.07 0.05 
10a 0.18 0.15 0.09* 0.03 0.07 0.06 -0.06 0.06 
Largest -0.07 0.08 -0.08* 0.02 -0.21* 0.03 -0.02 0.03 

Average 0.00 -0.01 0.10* 0.14* 
(std. err.) (0.05) (0.01) (0.02) (0.01) 

χ2 a 7.67 78.67* 81.49* 126.28* 
(p-value) (0.810) (0.000) (0.000) (0.000) 

 
(Table 2.8 continued on next page) 35 

 



 

Table 2.8. Continued. 
 

  a1  b1  s1  h1 

Portfolio Coeff. Std. err. Coeff. Std. err. Coeff. Std. err. Coeff. Std. err. 

Panel B: Book-to-market portfolios 
Lowest -0.70* 0.25 0.21* 0.05 0.24* 0.09 -0.18* 0.09 
1b -0.79* 0.27 0.10 0.06 -0.01 0.10 0.17 0.09 
2 -0.04 0.23 -0.03 0.05 0.21* 0.08 0.05 0.07 
3 0.67* 0.24 -0.08 0.04 0.06 0.09 0.09 0.07 
4 0.43 0.25 -0.11* 0.05 0.19* 0.09 0.19* 0.08 
5 0.24 0.25 -0.13* 0.05 0.30* 0.09 0.25* 0.08 
6 -0.07 0.25 -0.13* 0.05 0.05 0.09 0.43* 0.07 
7 0.35 0.25 0.00 0.04 0.12 0.09 0.32* 0.07 
8 0.17 0.25 -0.07 0.05 0.18* 0.09 0.33* 0.07 
9 0.34 0.26 0.13* 0.05 0.35* 0.10 -0.02 0.08 
10a 0.05 0.39 0.18* 0.07 0.33* 0.14 0.27* 0.11 
Highest -0.26 0.43 0.16* 0.08 0.68* 0.16 0.51* 0.12 

Average 0.03 0.02 0.23* 0.20* 
(std. err.) (0.07) (0.01) (0.03) (0.02) 

χ2 a 24.32* 42.08* 103.26* 146.74* 
(p-value) (0.018) (0.000) (0.000) (0.000) 

 
a χ2 = c′  Σ

-1 c, where c is the vector of coefficient estimates and Σ is the estimate of the covariance matrix of c.  Under the null that all coefficients are zero, 
this statistic is asymptotically distributed as χ2 (d.f. 12). 
* Denotes coefficients that are greater than two standard errors from zero or χ2 statistics with a p-value less than 0.050. 
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 Individually, the estimates for the size portfolios are small, and the χ2 statistic cannot reject 

the hypothesis that all coefficients are zero, with a p-value of 0.810.  The results for the book-

to-market portfolios, however, provide some evidence of predictability:  two coefficients are 

significantly negative (-0.70 and -0.79 for portfolios 1a and 1b) and one is significantly positive 

(0.67 for the portfolio 3).  I discount the significance of the negative coefficients since they are 

inconsistent with both the efficient-market and overreaction stories.  Also, the positive 

coefficient is the maximum estimate observed after searching over many coefficients, which 

provides an upward-biased estimate of the true maximum.12  Overall, the picture that emerges 

from Tables 2.6 and 2.8 is that B/M contains substantial information about the riskiness of stock 

portfolios, but does not directly predict expected returns.  There is virtually no support for the 

overreaction hypothesis. 

 

2.4.3. Industry-neutral HML 

 Daniel and Titman (1997) argue that HML does not proxy for a separate risk factor in 

returns, but explains return covariation only because similar types of firms become mispriced at 

the same time.  Their argument suggests that an industry’s B/M ratio and its loading on HML 

will be related even under the mispricing story.  By construction, HML invests in stocks with 

high B/M ratios.  When an industry’s B/M increases, HML becomes weighted toward firms in 

that industry and will, therefore, tend to covary more strongly with the industry return.  In this 

case, time-varying factor loadings on HML might help explain mispricing related to B/M.  To 

check whether the results for industry portfolios are driven by changes in the industry 

composition of HML, I replicate the three-factor regressions using an ‘industry-neutral’ book-

to-market factor. 

                                                 
12 Bonferroni confidence intervals provide a straightforward way to incorporate searching into 

statistical significance.  Viewed in isolation, the estimate for decile 3 has a one-sided p-value of 0.002.  
Recognizing that the estimate is the maximum over 37 total portfolios, the Bonferroni upper bound on the 
p-value is 0.002 × 37, or 0.083.  See Johnson and Wichern (1982, p. 197). 
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 As detailed in Appendix A, HML equals the return on a portfolio of high-B/M stocks 

minus the return on a portfolio of low-B/M stocks.  I construct an industry-neutral factor, HML-

N, in exactly the same way, except that stocks are sorted by their industry-adjusted B/M ratios, 

defined as the firm’s B/M ratio minus the value-weighted average for all firms in their industry.  

The industries are defined for this purpose using the same classifications as the industry 

portfolios.  By construction, then, the adjusted B/M ratios for firms in each industry are 

distributed around zero, so every industry should be represented approximately equally in the 

high- and low-B/M portfolios used to obtain HML-N.13 

Empirically, the sorting procedure does not dramatically alter the book-to-market factor.  

HML-N has an average monthly return of 0.44% and a standard deviation of 2.42%, compared 

with 0.38% and 3.00%, respectively, for HML.  The correlation between the two book-to-

market factors, 0.87, is fairly high, which suggests that much of the variation in HML is 

unrelated to industry factors.  In fact, part of the difference between HML and HML-N is 

caused by the difference in their market betas.  The market beta of HML-N equals -0.03, 

significantly closer to zero than the -0.23 beta of HML.  I also note that the sorting procedure 

affects SMB, since the size factor controls for differences in stocks’ B/M ratios.  The new size 

factor, which I continue to call SMB, has a mean return of 0.24% and a standard deviation of 

2.64%, compared with 0.30% and 2.91% for Fama and French’s (1993) size factor.  The two 

size factors are almost perfectly correlated, with a sample correlation of 0.99.  As before, I 

orthogonalize these factors with respect to the market return for the three-factor regressions. 

Table 2.9 reports conditional regressions for the industry portfolios.  For simplicity, the 

table reports only the coefficient estimates because the standard errors are close to those in 

Tables 2.5 and 2.6 (most differ by less than 0.01).  The results are surprisingly similar to the 

findings for the Fama and French factors.  Like HML, HML-N explains significant co-

                                                 
13 As an alternative, I also divided the industry-adjusted B/M ratios by the standard deviation across 

firms in the industry.  This modification does not affect the qualitative results. 



 

Table 2.9 
Three-factor regressions with industry-neutral HML: Industry portfolios 

Ri = ai0 + ai1B/Mi + (bi0 + bi1B/Mi) RM + (si0 + si1B/Mi) SMBO + (hi0 + hi1B/Mi) HML-N + ei
 

The industries are described in Table 2.1. Ri is the portfolio’s monthly excess return (%) and B/Mi is the natural log of its book-to-market ratio, as a 
deviation from its mean. RM is the excess return on the CRSP value-weighted index. SMBO is a portfolio of small stocks minus big stocks. HML-N 
is a portfolio of high-B/M stocks minus low-B/M stocks. HML-N is constructed by sorting stocks based on their industry-adjusted B/M ratios (the 
firm’s B/M ratio minus its industry average). The table reports SUR estimates, and the standard errors are similar to Tables 2.5 and 2.6. 
 

  Intercept  RM  SMBO  HML-N 

Portfolio a0 a1 b0 b1 s0 s1 h0 h1 

Nat. resources -0.06 -0.19 0.98* 0.00 0.00 -0.28 0.05 -0.39 
Construction -0.27* -0.42 1.15* -0.15* 0.24* -0.01 0.32* 0.15 
Food, tobacco 0.38* -0.06 0.90* 0.02 -0.10* 0.29* -0.13* 0.29* 
Consumer products -0.16 -0.02 1.20* -0.12* 0.67* 0.12 0.18* 0.26* 
Logging, paper -0.02 -0.32 1.12* -0.04 0.01 -0.17 0.11* 0.41* 
Chemicals 0.20* -0.23 0.99* -0.05 -0.19* 0.06 -0.22* 0.20 
Petroleum 0.32 0.71 0.81* -0.05 -0.50* -0.36 0.10 -0.36 
Mach., equipment -0.01 -0.70* 1.13* 0.03 0.15* 0.13 -0.23* 0.38* 
Transportation -0.24* -0.01 1.12* -0.21* 0.14* 0.07 0.39* -0.04 
Utilities, telecom.  0.00 0.33 0.65* -0.01 -0.27* 0.19 0.24* 0.08 
Trade 0.01 -0.07 1.14* 0.02 0.26* 0.29* -0.06 0.53* 
Financial -0.01 0.38 0.99* 0.07 -0.02 -0.12 0.18* -0.34* 
Services, other 0.16 -0.07 1.37* 0.04 0.78* 0.23* -0.27* 0.41* 

Average 0.02 -0.05 1.04* -0.03* 0.09* 0.03 0.05* 0.12* 
(std. err.) (0.02) (0.08) (0.01) (0.02) (0.01) (0.03) (0.01) (0.03) 

χ2 a 36.42* 13.52 59841.86* 30.37* 727.70* 23.76* 288.46* 77.23* 
(p-value) (0.001) (0.408) (0.000) (0.004) (0.000) (0.033) (0.000) (0.000) 

 
a χ2 = c′  Σ

-1 c, where c is the vector of coefficient estimates and Σ is the estimate of the covariance matrix of c.  Under the null that all coefficients are zero, 
this statistic is asymptotically distributed as χ2 (d.f. 13). 
* Denotes coefficients that are greater than two standard errors from zero or χ2 statistics with a p-value less than 0.050. 39 
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movement in returns:  ten of the 13 unconditional factor loadings are greater than two standard 

errors from zero, and the χ2 statistic strongly rejects the hypothesis that all are zero.  In addition, 

B/M captures significant time-variation in the factor loadings.  Focusing on HML-N, seven of 

the 13 interactive terms are more than two standard errors from zero, and both the average 

coefficient (0.12, standard error of 0.03) and the χ2 statistic (p-value less than 0.001) reject the 

hypothesis of constant risk.  Again, B/M does not predict returns after controlling for changes in 

risk.  None of the interactive terms with the intercept, ai1, is significantly positive, and more 

than half of the estimates are negative.  The average coefficient is also negative, and the χ2 

statistic cannot reject that all coefficients are zero. 

These results say several interesting things about the book-to-market factor.  First, HML 

(or HML-N) appears to capture a risk factor in returns that is unrelated to industry, contrary to 

the arguments of Daniel and Titman (1997).  Neither the variation in HML, nor its covariation 

with industry returns, changes substantially when I control for changes in HML’s industry 

composition.  Second, HML appears to proxy for more than a distress factor in returns, unless 

some industries were distressed throughout the sample period.  The cross-sectional spread of the 

unconditional factor loadings on HML is large (0.66 compared with 0.73 for market betas), and 

the variation across individual stocks is undoubtedly greater.  Thus, HML contains information 

about a broad cross section of firms regardless of whether they are currently distressed.  Finally, 

changes in the industry composition of HML do not drive changes in the industry portfolios’ 

factor loadings.  B/M continues to explain significant time-variation in risk after controlling for 

changes in HML’s industry composition.  Taken as a whole, the evidence supports the argument 

that B/M relates to a priced risk factor in returns. 

 

2.5. Summary and conclusions  

 Previous studies find that B/M explains significant cross-sectional variation in average 
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returns.  That finding implies that, at a fixed point in time, B/M conveys information about the 

firm’s expected return relative to other stocks.  This essay addresses a related question:  For a 

given portfolio, does B/M contain information about the portfolio’s expected return over time?  

The time-series analysis complements research on the predictability of stock returns at the 

aggregate level, and provides an alternative to cross-sectional tests of the risk- and 

characteristic -based asset-pricing stories. 

 The main empirical tests focus on industry portfolios.  I find some evidence that an 

industry’s B/M ratio predicts changes in its expected return, but the high variance of monthly 

returns reduces the precision of the estimates.  The average, bias-adjusted coefficient on B/M, 

0.58, is similar to the cross-sectional slope, 0.50, estimated by Fama and French (1992).  The 

size and book-to-market portfolios produce more reliable evidence that B/M predicts returns.  

The results suggest that B/M tracks economically large changes in expected returns. 

 The conditional multifactor regressions indicate that B/M captures time-variation in risk, as 

measured by the Fama and French (1993) three-factor model.  B/M tends to be positively 

related to the loadings on the size and book-to-market factors, but its relation to market betas is 

more difficult to characterize.  The general impression conveyed by the conditional regressions 

is that market risk becomes relatively less important as a portfolio’s B/M ratio increases.  While 

it is beyond the scope of the current paper, understanding the economic reasons for the pattern 

of coefficients would provide additional insights into the connection between B/M and risk.  I 

simply note here that the positive association between B/M and the loadings on HML does not 

seem to be driven by industry-related variation in the book-to-market factor. 

After controlling for changes in risk, B/M contains little additional information about 

expected returns.  Time-variation in the intercepts of the three-factor model measures the 

incremental explanatory power of B/M.  For the industry portfolios, the average estimate has the 

opposite sign predicted by the overreaction story, and it is not significantly different from zero.  

Across the 13 portfolios, eight coefficients are negative and none are significantly positive at 
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conventional levels.  Results for the size and book-to-market portfolios support these 

inferences:  the average coefficients are indistinguishable from zero and roughly half the 

estimates are negative.  The evidence for these portfolios is especially striking given B/M’s 

strong predictive power when it is used alone in simple regressions.  I have also replicated the 

tests in this paper using a firm’s size in place of its B/M ratio, and find results qualitatively 

similar to those for B/M.  In short, the three-factor model appears to explain time-varying 

expected returns better than a characteristic -based model.  

 To interpret the results, it is important to remember that we can always find some factor 

model to describe expected returns under both the efficient-market and mispricing stories (see, 

e.g., Roll, 1977; Shanken, 1987).  The tests obtain economic meaning only when restrictions are 

imposed on the model.  According to asset-pricing theory, the factors should capture pervasive 

risk in the economy related to investment opportunities or consumption.  Under the mispricing 

view, it seems unlikely that the factors would explain, unconditionally, substantial covariation 

in returns.  Many industries have large unconditional loadings on both the size and book-to-

market factors, which provides some evidence that the factors proxy for priced risk in the 

economy. 

 Unfortunately, the case for rational pricing is not entirely satisfactory.  This essay has been 

concerned primarily with changes in expected returns over time, not with their average levels.  

Consistent with the results of Fama and French (1993, 1997) and Daniel and Titman (1997), I 

find that the unconditional intercepts in the three-factor model are not zero.  Thus, the model 

does not explain average returns.  Just as important, the risk factors captured by the size and 

B/M mimicking portfolios have not been identified.  The rational-pricing story will remain 

incomplete, and perhaps unconvincing, until we know more about the underlying risks. 
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On the Predictability of Stock Returns: Theory and Evidence 
 

Chapter 3 
Estimation risk, market efficiency, and the predictability 

of returns 14 
 

 The analysis in Chapter 2 adopts the traditional perspective that predictability might arise 

either from mispricing or from changes in risk.  As discussed in the introduction, market 

efficiency requires that prices ‘fully reflect all available information.’  To formalize this idea for 

empirical testing, Fama (1976) distinguishes between the probability distribution of returns 

perceived by ‘the market,’ based on whatever information investors view as relevant, and the 

true distribution of returns conditional on all information.  The market is said to be 

informationally efficient if these distributions are the same.  As an obvious consequence, market 

efficiency implies that investors correctly anticipate any cross-sectional or time-variation in true 

expected returns. 

Market efficiency is closely related to the ‘rational expectations’ property analyzed by 

Muth (1961) and Lucas (1978).  In Lucas’s model, asset prices are a function of the current 

level of output, whose behavior over time is known by investors.  Consumers make investment 

decisions based, in part, on their expectations of future prices.  Rational expectations requires 

that the pricing function implied by consumer behavior (the true pricing function) is the same as 

the pricing function on which decisions are based (the perceived pricing function).  Lucas 

shows that rational expectations can, and generally will, give rise to predictable variation in 

expected returns (see also LeRoy, 1973).  Intuitively, changes in economic conditions will lead 

to changes in the discount rate and, consequently, predictable returns.  Thus, researchers must 

judge whether the empirical patterns in returns are consistent with credible models of rational 

behavior or can be better explained by irrational mispricing. 

 In this essay, we argue that there is a third potential source of return predictability:  

                                                 
14 This essay represents joint work with Jay Shanken. 



 
 

 

44

estimation risk.  In the asset-pricing literature, estimation risk refers to investor uncertainty 

about the true parameters of the return- or cashflow-generating process.  Because investors do 

not know the true distribution, they must estimate the parameters using whatever information is 

available, which can be formally modeled using Bayesian analysis.  The parameter uncertainty 

increases the perceived risk in the economy and necessarily influences portfolio decisions.  As a 

result, estimation risk will affect equilibrium prices and expected returns.  We show that, in 

equilibrium, estimation risk can be a source of predictability in a way that differs from other 

models with rational investors. 

 The theoretical literature typically focuses on the subjective distribution perceived by 

investors.  The subjective distribution combines investors’ prior beliefs with the information 

contained in observed data.  This distribution represents investors’ best guess about future 

returns or cashflows, and is therefore relevant for investment decisions.15  Our paper emphasizes 

instead the true distributions of prices and returns which arise endogenously in equilibrium.  

The true distribution simply refers to the actual, or observable, distribution from which prices or 

returns are drawn.  Under the standard definition of market efficiency, the true and subjective 

distributions are the same.  However, that definition goes well beyond the intuitive notion that 

prices fully reflect available information, and implicitly assumes that investors know the 

parameters of the cashflow process.  In the presence of estimation risk, the two distributions 

necessarily differ since the true distribution depends on the unknown parameters.  We should 

stress that ‘true’ does not mean ‘exogenous’:  the true distribution of returns must be 

endogenous because prices clearly depend on investors’ beliefs. 

Our central result is easy to summarize:  with estimation risk, the observable properties of 

prices and returns can differ significantly from the properties perceived by rational investors.  

                                                 
15 See Zellner (1971) and Berger (1985) for a general introduction to Bayesian analysis and Bawa, 

Brown, and Klein (1979) for an application to portfolio theory.  Jobson, Korkie, and Ratti (1979), Jorion 
(1985), Kandel and Stambaugh (1996), Stambaugh (1998), and Barberis (1999) also discuss portfolio 
choice when investors must estimate expected returns. 
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For example, returns can appear predictable based on standard empirical tests even when they 

are not predictable by rational investors.  The reason is simply that empirical tests estimate the 

true properties of returns, and these properties will typically differ from those under the 

subjective distribution.  An example should help illustrate the point.  Suppose dividends are 

normally distributed and independent over time with unknown mean δ and known variance σ2 

(in our parlance, this is the true distribution).  From the investors’ perspective, the mean of the 

dividend process is random, represented by a posterior belief about δ.  However, for an 

empirical test, the process that generates actual dividends has a fixed, constant mean.  The 

sampling distribution of any statistic calculated from dividends – say, an autocorrelation 

coefficient − depends only on this true distribution.  In a similar way, the true distribution of 

returns is relevant for empirical tests even when it is unknown.  To put the idea a bit differently, 

returns can be predictable under the true distribution, when they are not predictable by 

investors, since this distribution conditions on unknown information.  We show that standard 

empirical tests, like predictive regressions and volatility tests, can in principle detect this 

predictability. 

 We develop these ideas in a simple overlapping-generations model of capital market 

equilibrium.  Investors have imperfect knowledge about an exogenous dividend process, and 

they estimate the parameters based on current and past cashflows.  For simplicity, we initially 

assume that all parameters are constant over time.  We later extend the model to incorporate 

periodic shocks to the dividend process, in which case investors never fully learn the true 

distribution.  Throughout, investors are assumed to be rational and use all available information 

when making decisions.  As long as estimates of expected cashflows diverge from the true 

values, asset prices deviate from their values in the absence of estimation risk.  However, prices 

tend to move toward these ‘fundamental’ values over time as investors update their beliefs.  

Through this process of updating, parameter uncertainty affects the predictability, volatility, and 
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cross-sectional distribution of returns. 

 The model shows that estimation risk can induce return behavior that resembles irrational 

mispricing.  In our benchmark model without estimation risk, returns are unpredictable using 

past information.  When investors must estimate the mean of the cashflow process, returns 

become predictable based on past dividends, prices, and returns.  For example, when investors 

begin with a diffuse prior over the mean of the dividend process, stock prices appear to react too 

strongly to realized dividends, and returns become negatively related to past dividends and 

prices.  In a fairly general sense, it appears that this phenomenon is inherent in a model with 

estimation risk because investors’ ‘mistakes’ eventually reverse as they learn more about the 

underlying parameters.  However, the predictability induced by estimation risk can take the 

form of either reversals or continuations (or neither), depending on investors’ prior beliefs and 

on the underlying cashflow process (we discuss these issues further in Section 3.5).  When 

investors have prior information about the dividend process, they may appear to react too 

slowly to new information, giving rise to momentum. 

Predictability in the model is fundamentally different from predictability in other models 

with rational investors, such as that of Lucas (1978).  The difference is illustrated most easily by 

considering the case of risk-neutral investors.  In a model with perfect information, excess stock 

returns must be unpredictable if investors are risk-neutral.  This does not have to be true with 

estimation risk.  We show that excess stock returns can be predictable, under the true 

distribution, even with rational, risk-neutral investors.  This predictability is consistent with 

rational expectations because investors do not know the true distribution.  Nonetheless, the 

predictability can be detected by standard empirical tests.  To reiterate our earlier point, excess 

returns remain unpredictable from the perspective of rational investors, but empirical tests 

estimate the true, not the subjective, distribution. 

 The example with risk-neutral investors shows that some basic properties of asset prices do 

not hold with estimation risk.  Most importantly, investor rationality no longer implies that 
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return surprises must be uncorrelated with any element of investors’ information set.  In fact, 

return surprises will often be correlated with past prices if investors must estimate expected 

cashflows.  The idea is simple.  Suppose that prices equal the discounted present value of 

expected future dividends, assumed to be independent and identically distributed over time, and 

assume that investors do not know the mean of the dividend process.  If a representative 

investor’s estimate at a given point in time is, say, higher than the true mean, the price of the 

stock will be inflated above its ‘fundamental’ value.  Furthermore, future dividends will be 

drawn from a true distribution with a lower mean than the market’s estimate, and investors will, 

on average, perceive a negative surprise over the subsequent period.  It follows that relatively 

high prices predict relatively low future returns. 

This story resembles the standard mispricing argument, but with some important 

differences.  Given estimation risk, the reversals are driven by completely rational behavior on 

the part of investors.  The reversals arise precisely because prices do fully reflect all available 

information at each point in time.  In fact, investors know that returns are negatively 

autocorrelated but cannot take advantage of it.  They would want to exploit this pattern by 

investing more aggressively when the market’s best estimate is less than the true mean of the 

dividend process, but of course they cannot know when this is the case.  In contrast, DeLong, 

Shleifer, Summers, and Waldmann (1990), Daniel, Hirshleifer, and Subramanyam (1998), and 

Barberis, Shleifer, and Vishny (1998) generate return predictability by assuming irrationality on 

the part of investors.  Investors misperceive the true return-generating process because of 

behavioral biases, not because they have imperfect information about returns. 

 The discussion has emphasized the time-series properties of returns.  We also examine the 

cross section of expected returns.  Curiously, for many years the conventional wisdom has been 

that estimation risk is largely irrelevant for equilibrium, although it is important for individual 

portfolio selection.  For example, Bawa and Brown (1979) argue that estimation risk does not 

affect market betas or the expected return on the market portfolio.  They conclude that 



 
 

 

48

‘in empirical testing of equilibrium pricing models, one should not necessarily be 
concerned with the problem of estimation risk – or expect estimation risk to be a factor 
explaining any possible deviation between CAPM and observed market rates of returns,’ 
(p. 87). 

More recently, Coles and Loewenstein (1988) argue that many of Bawa and Brown’s 

conclusions are driven by the questionable assumption that the return-generating process is 

exogenous.  Coles and Loewenstein take end-of-period payoffs as exogenous, and allow prices 

and expected returns to adjust in equilibrium.  They show that estimation risk affects 

fundamental economic features like relative prices, expected returns, and betas, although they 

continue to find that the CAPM holds in equilibrium. 

 Bawa and Brown (1979) and Coles and Loewenstein (1988) both examine the subjective 

distribution of returns.  Its relevance for empirical research is questionable:  although 

equilibrium imposes pricing restrictions under the subjective distribution, empirical tests use 

returns that are generated from the true distribution.  Beliefs are relevant only insofar as they 

impact observable quantities.  The basic distinction between the true and subjective 

distributions has typically been glossed over in the cross-sectional literature.  Because the two 

distributions differ with estimation risk, we show that observed returns will typically deviate 

from the predictions of the CAPM, even when investors attempt to hold mean-variance efficient 

portfolios.  Moreover, the deviations can be predictable, in either time-series or cross-sectional 

regressions, using past dividends and prices. 

 In short, our primary message is that estimation risk drives a wedge between the 

distribution perceived by investors and the distribution estimated by empirical tests.  Although 

investors are rational, the empirical properties of prices and returns can look very different from 

the properties under the subjective distribution.  Stock returns can appear predictable, in time-

series or cross-sectionally, even though they are not from the perspective of rational investors.  

As a result, parameter uncertainty has important implications for characterizing and testing 

market efficiency.  Our point here is not to argue that estimation risk necessarily explains 
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empirically-observed asset-pricing anomalies.  Rather, we emphasize that many so-called ‘tests 

of market efficiency’ cannot distinguish between an efficient market with estimation risk and an 

irrational market.  We believe that a world with estimation risk is the appropriate benchmark for 

evaluating apparent deviations from market efficiency. 

 Our results extend a growing literature on learning and parameter uncertainty.  In the 

continuous-time literature, Merton (1971) and Williams (1977) show that parameter uncertainty 

creates a ‘new’ state variable representing investors’ current beliefs, and the hedging demand 

associated with this state variable can cause deviations from the CAPM (see also Detemple, 

1986; Dothan and Feldman, 1986; Gennotte, 1986).  Our results are different because investors 

in our model attempt to hold mean-variance efficient portfolios; it is their mistakes, not their 

hedging demands, that induce deviations from the CAPM.  Stulz (1987) and Lewis (1989) also 

point out that prices can appear to overreact or underreact to information simply because 

investors must learn about the underlying true process.  Wang (1993) and Brennan and Xia 

(1998) show that learning about an unobservable state variable might increase return volatility, 

but the effect on predictability is less clear.  Finally, Timmermann (1993, 1996) recognizes that 

parameter uncertainty might induce both predictability and excess volatility.  We extend his 

work by analyzing an equilibrium model with fully rational (Bayesian) investors, and we 

discuss market efficiency and the cross-section of expected returns. 

 The essay is organized as follows.  Sections 3.1 and 3.2 introduce the basic model and 

derive capital market equilibrium.  Section 3.3 examines the time-series properties of prices and 

returns and Section 3.4 explores the cross-sectional behavior of returns.  Section 3.5 generalizes 

the model to incorporate informative priors, time-varying parameters, and non-stationary 

dividends, and presents simulation evidence from the general model.  Section 3.6 concludes. 

 

3.1. The model 

 We present a simple overlapping-generations model of capital market equilibrium in which 
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the dividend, or cashflow, process is taken as exogenous.  Investors are uncertain about the true 

dividend process and update their beliefs with observed data.  Many features of the model are 

borrowed from the economy analyzed by DeLong, Shleifer, Summers, and Waldmann (DSSW, 

1990).  Like DSSW, we examine capital market equilibrium when investors’ beliefs diverge 

from the true distribution.  In their model, noise traders’ beliefs are exogenously specified and 

irrational.  In contrast, investors in our model are rational and use all available information 

when making decisions. 

 
3.1.1. Time 

 We analyze the properties of asset prices in an infinite-period model, t = 1, …, ∞.  In 

single-period models of estimation risk, the end-of-period distribution of either returns or 

payoffs is exogenously specified (e.g., Bawa, Brown, and Klein, 1979; Coles and Loewenstein, 

1988).  In contrast, end-of-period prices in our model are determined by investors’ beliefs, and 

both payoffs and returns are endogenous.  When making decisions, investors must anticipate 

how market prices will react to the arrival of new information.  Thus, the model permits a 

detailed investigation of both the time-series and cross-sectional behavior of returns. 

 
3.1.2. Assets 

 We assume that there exists a riskless asset which pays real dividend r in every period.  

Following DSSW, the riskless asset is assumed to have perfectly elastic supply:  it can be 

converted into, or created from, one unit of the consumption good in any period.  As a result, its 

price in real terms must equal one and the riskless rate of return equals r. 

The capital market also consists of N risky securities.  As mentioned above, estimation risk 

has implications for both the time-series and cross-sectional behavior of asset prices.  When we 

discuss the time-series properties of prices and returns, we examine a model with a single risky 

asset.  The analysis with many risky assets focuses on the cross-sectional implications of 
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estimation risk. 

 Following Coles and Loewenstein (1988), we model investor uncertainty about an 

exogenously-specified cashflow process.  Clearly, nothing can be learned about the return 

process if it is simply taken as exogenous, as assumed by Williams (1977) and Bawa and Brown 

(1979).  If returns are endogenous, it is unclear how investors in the model would update their 

beliefs directly about the distribution of returns.  For example, we doubt that any multiperiod 

model with estimation risk would produce returns that are independently and identically 

distributed (IID) over time.  We show later that price reversals are inherent in a model with 

estimation risk, so it is unlikely that returns would be serially uncorrelated.  Since the dividend 

process is assumed to be exogenous, we do not have to worry about how investors’ beliefs 

affect its distribution. 

 The risky assets each have one unit outstanding and pay real dividend dt, an N×1 vector, in 

period t.  To develop the ideas in a simple framework, we initially assume that dividends are 

IID over time and have a multivariate normal distribution (MVN): 

 [ ]Σδ  , MVN ~d t , (3.1) 

where δ is the mean vector and Σ is a nonsingular covariance matrix.  Notice that the parameters 

of this distribution are assumed to be constant over time.  As a consequence, estimation risk will 

vanish as t goes to infinity.  In reality, parameter uncertainty seems unlikely to disappear even 

after a long history of data.  The economy evolves over time, and the underlying cashflow 

process undoubtedly changes as well.  Therefore, we extend the model in Section 3.5 to include 

unobservable shocks to the true parameters which periodically renew estimation risk. 

The IID assumption is not intended to be realistic, but dramatically simplifies the 

exposition.  Again, we relax this assumption later and allow dividends to follow a geometric 

random walk.  In addition, we have explored a model in which dividends are autocorrelated 

over time, and the qualitative results appear to be similar.  Throughout the paper, investors are 
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assumed to know the form of the distribution function (IID and normal), but may not know its 

parameters. 

 
3.1.3. Investors 

 Individuals live for two periods, with overlapping generations.  Following DSSW, there is 

no first-period consumption, no labor supply decision, and no bequest.  Therefore, in the first 

period individuals decide only how to invest their exogenously-given wealth.  We assume that 

investors can be represented by a single agent with constant absolute risk aversion, or 

 U(w)  exp ( 2  w)= − − γ , (3.2) 

where w is second-period wealth and γ > 0 is the risk-aversion parameter. 

 Investors in this model do not have to allocate wealth across time.  We ignore the 

intertemporal nature of the consumption problem and focus instead on estimation risk.  It is 

almost immediate that investors will attempt to hold mean-variance efficient portfolios, and will 

not have hedging demands related to changes in investment opportunities (see Merton, 1973).  

This assumption limits the ways in which estimation risk can affect equilibrium, and 

distinguishes the predictability in our model from that in Merton (1971) and Williams (1977).  

In those papers, learning creates a state variable representing investors’ beliefs, and the demand 

for risky assets contains a hedging component associated with this state variable.  Our paper 

emphasizes a distinct phenomenon.  We show that the difference between the true and 

subjective distributions can be a source of predictable returns. 

 The representative investor chooses a portfolio to maximize expected utility, where the 

expectation is taken over the investor’s subjective belief about the distribution of next-period 

wealth.  In all the cases we consider, both dividends and wealth are normally distributed.  

Consequently, it is easily shown that maximizing expected utility is equivalent to maximizing 

wµ − γ 2
wσ , where wµ  and 2

wσ  are the mean and variance of wealth.  Let pt be the vector of 
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risky-asset prices and xt be the vector of shares held in the portfolio.  The investor will choose 

 [ ] [ ]t1+t1+t
s
t

-1
1+t1+t

s
t

*
t p r)+(1  )+d(pE )d+(pvar 

2
1

=x −
γ

, (3.3) 

where s
tE  and s

tvar denote the subjective expectation and variance at t.16  The first term in 

brackets is the covariance matrix of gross returns, and the second term is the expected excess 

gross return.  Note that the optimal investment in the risky assets is not a function of initial 

wealth, an implication of constant absolute risk aversion.  Also, given our assumptions that 

investors are short-lived and returns are multivariate normal, it is immediate that investors 

attempt to hold mean-variance efficient portfolios.  Consequently, *
tx  is the Markowitz 

tangency portfolio under the subjective distribution. 

Equilibrium in the economy, which treats current and future prices as endogenous, must 

satisfy eq. (3.3).  In addition, equilibrium requires that the demands for the risky assets, given 

by *
tx , equal their supply in every period.  Setting *

tx  = ι, where ι is an N×1 vector of ones, and 

solving for price yields 

 [ ]ιγ−  )d +(p var 2  )d +(pE  
r+1

1
=p 1+t1+t

s
t1+t1+t

s
tt . (3.4) 

This equation gives the equilibrium current price in terms of next-period’s price, which in turn 

will be endogenously determined. 

 

3.2. Capital market equilibrium 

 This section derives capital market equilibrium with and without estimation risk.  We 

assume throughout that investors correctly anticipate how prices will react to the arrival of new 

information.  In other words, equilibrium satisfies the rational expectations property that the 

pricing function perceived by investors equals the true pricing function (Lucas, 1978).  This 

                                                 
16 Throughout the paper we denote subjective moments with an ‘s’ superscript. 
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condition does not imply, however, that investors’ subjective belief about the distribution of 

returns equals the true distribution.  Rational expectations, as we use the term, implies that these 

distributions are equal only if investors have perfect knowledge of the dividend process. 

 
3.2.1. Equilibrium with perfect information 

 Suppose, initially, that investors know the dividend process.  This equilibrium will serve as 

a convenient benchmark for the model with estimation risk.  Since dividends are IID and the 

optimal investment in the risky asset does not depend on initial wealth, a natural equilibrium to 

look for is one in which prices are constant, or pt = p.  With constant prices, Et(pt+1 + dt+1) = p + 

δ and vart(pt+1 + dt+1) = Σ.  Substituting into eq. (3.4) and solving for price yields 

 ιΣγ−δ   
r

2
  

r
1
 = p . (3.5) 

The price of a risky asset equals its expected dividends discounted at the riskless rate minus a 

‘correction’ for risk.  Not surprisingly, an asset’s contribution to the risk of the market portfolio 

(proportional to Σι; see below) is important, rather than its total variance.  Investors require an 

expected rate of return that is higher than the riskless rate if the asset’s ‘market risk’ is positive. 

 Many of the time-series implications of estimation risk can be investigated in a model with 

a single risky asset.  The properties of this asset are identical to those of the market portfolio 

when there are many risky assets.  In particular, the market portfolio M has weights 

proportional to the vector of prices, pt = p.  Its value, or price, equals 

 pM = ι′ p = 2
MM r

2
r
1 σγ−δ , (3.6) 

where the dividend on the market portfolio has expectation δM = ι′δ and variance 2
Mσ = ι′Σι.  

Since the variance is always positive, the expected return on the market portfolio is necessarily 

greater than the riskless rate.  Referring back to the pricing function with many assets, it is 

straightforward to show that the general model collapses to eq. (3.6) when N = 1. 
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3.2.2. Equilibrium with estimation risk 

 The model above assumes that investors have perfect knowledge about the dividend 

process – that is, they know both the mean and the variance with certainty.  We now relax this 

strong assumption.  Specifically, suppose that investors begin with a diffuse prior over δ (the 

prior density function is proportional to a constant).  Although this prior permits δ to be 

negative, it is the standard representation of ‘knowing little’ about the mean and simplifies the 

algebra.  We later consider alternative prior beliefs.  With an informative prior, investors assign 

less weight to the data and more weight to their initial beliefs, which can be important for the 

way prices behave in equilibrium.  Consequently, the results in this and the next section should 

be interpreted as illustrative, but not completely representative, of the effects of estimation risk.  

For simplicity, we continue to assume that investors know the covariance matrix of dividends.  

Previous research finds that uncertainty about the covariance matrix is relatively unimportant 

(e.g., Coles, Loewenstein, and Suay, 1995), and we doubt that it would affect our basic 

conclusions. 

 Investors update their beliefs using Bayes rule, incorporating the information in observed 

dividends.  With a diffuse prior, the posterior distribution of δ at time t is ] )t1( ,d[ MVN t Σ , 

where td  is the vector of average dividends observed up to time t.  The subjective, or in 

Bayesian terms ‘predictive,’ distribution of dividends is 

 



 Σ 

t
1+t

 ,d MVN ~ d t
s

1+t . (3.7) 

An investor’s best guess about the mean of the dividend process is simply the average realized 

dividend.  The covariance matrix of the predictive distribution reflects both the true variance, Σ, 

and uncertainty about the mean, Σ / t. 

 From eq. (3.7), it is clear that the subjective distribution of dividends, and consequently 

future prices, differs from the true distribution.  Rational expectations requires, however, that 
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investors correctly anticipate how equilibrium prices will be determined next period.  We 

impose this requirement by recursively substituting for pt+k in eq. (3.4), yielding17 

 pt ( )
ι⋅








+

+
γ− ∑

∞

=
+   )d(pvarE

r1
1

   2  d 
r
1

 = k+tk+t
1k

s
1-kt

s
tkt . (3.8) 

Price is a function of expected dividends and the expected conditional variance of gross returns.  

Since estimation risk ‘scales up’ the predictive variance by (t+1)/t, the conditional variance of 

returns is unlikely to be constant.  However, if price is a linear function of td , then the 

conditional variance of returns will be a deterministic function of time.  We look for an 

equilibrium that has this property. 

 If the conditional variance of returns is deterministic, then we can drop the expectations 

operator from the infinite sum in eq. (3.8).  Variation in prices is driven entirely by the first 

term.  Therefore, the subjective variance of returns is 

 Σ





 +









+

+=  
t

1t
1)(tr 

1
1)d+(pvar

2

1+t1+t
s
t . (3.9) 

Substituting into eq. (3.8) yields the equilibrium pricing function: 

 ιΣγ−   f(t)  2  d
r
1

 =p tt , (3.10) 

where 

 f(t) = ∑
∞

=









−+
+









+

+
+1k

2

k 1kt
kt

k)r(t
1

1
r)(1

1
 . (3.11) 

The equilibrium price is similar to the price with perfect information (eq. 3.5).  The mean of the 

predictive distribution, td , replaces the true mean in the first term and the function f(t) replaces 

1/r in the second term.  The function f(t) decreases as t gets larger and converges to 1/r in the 

                                                 
17 Eq. (3.8) imposes the transversality condition limk→∞Et[pt+k]/(1+r)k = 0, which will be satisfied in 

equilibrium. 
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limit.  Since the probability limit of td  is δ, the equilibrium price with estimation risk 

converges to the price with perfect information.  This is intuitive because, as mentioned above, 

estimation risk vanishes in the limit.  In Section 3.5 we allow the true parameters to change, so 

that investors never completely learn the dividend process. 

 We noted in Section 3.1 that investors attempt to hold the tangency portfolio, which 

implies that the CAPM must describe expected returns under the subjective distribution.  We 

will discuss the CAPM in more detail below, but for now we note that the market portfolio’s 

value, or price, is 

 pM,t = ι′ pt = 2
MtM,  f(t)  2d

r
1 σγ− , (3.12) 

where ttM, d d ι′=  is the average dividend on the market portfolio from t = 1 to t.  Referring 

back to the pricing function with many assets, it is straightforward to show that the general 

model collapses to eq. (3.12) when N = 1. 

 Several colleagues have noted that the pricing function in eq. (3.10) could also be 

generated by a model with a nonstationary dividend process and no estimation risk.  In 

particular, suppose investors have perfect information and the true mean of the dividend process 

evolves over time as a function of average realized dividends (that is, δt+1 = td ).  In this case, 

the pricing function would be identical to the price in our model.  Notice, however, that our 

model should be distinguishable from one with nonstationary dividends.  Prices and expected 

returns evolve quite differently in the two models.  With a changing dividend process and 

perfect information, expected gross returns would be positively related to lagged dividends, and 

prices would exhibit no tendency to revert to a long-run mean.  The opposite is true in our 

model; true expected returns are negatively related to lagged dividends and price fluctuations 

are temporary.  Further, nonstationary dividends would not generate deviations from the 

CAPM. 
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3.3. The time -series properties of prices and returns  

 Equilibrium, derived above, is determined by the subjective distribution of returns.  

However, empirical tests use prices and returns drawn from the true distribution.  As we 

emphasized before, the subjective and true distributions differ when there is estimation risk, 

even though investors know the true pricing function.  In this section, we examine the time-

series properties of prices and returns, highlighting the impact of estimation risk on market 

efficiency.  The analysis considers a model with a single risky asset, interpreted as the market 

portfolio.  In this case, the price of the risky asset is given by eqs. (3.6) and (3.12).  We drop the 

subscript ‘M’ throughout this section for convenience. 

In the model with perfect information, prices are constant and returns simply equal realized 

dividends.  With estimation risk, prices fluctuate as investors update their beliefs about the 

dividend process.  From the previous section, the change in price from t to t+1 equals 

 [ ])1t(f  )t(f  2  )dd(
r
1

 p  p t1tt1t +−γ+−=− ++ . (3.13) 

The change in price contains two components.  The first term is random and reflects changes in 

investors’ beliefs about expected dividends.  The second term is deterministic and arises 

because estimation risk declines steadily over time.  Since f(t+1) < f(t), this component tends to 

make prices increase over time.  When we talk about predictability, the deterministic portion 

serves only to add an additional, non-random component to the equations.  Therefore, to focus 

on the main ideas, we assume in this section that investors are risk-neutral (γ = 0), causing the 

second term in the equation to drop out.  None of the results are sensitive to this assumption. 

 
3.3.1. Predictability  

 Previous studies argue that returns might be predictable either because business conditions 

change over time or because investors are irrational.  However, these stories cannot explain why 

returns would be predictable in our model.  The riskless rate, preferences, and the distribution of 



 
 

 

59

cashflows do not change, so ‘business conditions’ are constant by construction.  In addition, 

investors are rational and use all available information when making decisions, so irrational 

mispricing does not exist.  In our model, estimation risk is the only source of predictability. 

 As noted above, returns equal dividends when investors have perfect information.  With 

estimation risk, returns at t+1 equal 

  =R 1+t )d(d 
1)r(t

1
d t1t1t −

+
+ ++ . (3.14) 

The first term equals realized dividends, and the second term equals the change in price.  At 

time t, investors’ best guess about dividends is given by td ; when realized dividends differ 

from this expectation, investors revise their beliefs about the mean of the dividend process, 

which in turn affects prices. 

Under the subjective distribution, it is clear that prices follow a martingale: 

 0  ]pp[E t1t
s
t =−+ . (3.15) 

However, the empirical properties of returns will differ from the perceived properties.  The 

reason is simple.  From the investor’s perspective, the expected dividend is random, represented 

by a posterior belief over δ.  In contrast, for an empirical test, the dividend mean is fixed and 

constant, equal to whatever the true value actually is; the process that generates observed 

dividends does not have a random mean.  Put differently, the observable properties of returns 

are conditional on the true dividend process even though it is unknown.  Because of this 

fundamental difference between the true and subjective distributions, changes in prices can 

appear predictable to a researcher.  From eq. (3.14), the true conditional expected return is 

 [ ] )d (
1)r(t

1
    RE t1+tt −δ

+
+δ= . (3.15) 

It is clear that Rt+1 is negatively related to past dividends.18  Although dividends are IID by 

                                                 
18 For simplicity, we examine the predictability of gross returns rather than rates of return.  The 



 
 

 

60

assumption, price revisions are negatively correlated with past cashflows.  The intuition is fairly 

straightforward.  Prices depend on investors’ best guess about future dividends, given by td .  

The higher that past dividends have been, the lower that changes in beliefs are expected to be.  

As a result, price revisions move opposite to past cashflows. 

 From eq. (3.15), prices, dividends, and returns all predict time-variation in expected 

returns.  For example, suppose we are interested in the autocovariance of returns:19 

 [ ] 2
1+tt 1)(tr t 

1
R ,Rcov σ

+
−= . (3.16) 

With estimation risk, returns are negatively autocorrelated.  A researcher who ignores 

estimation risk, and observes that business conditions do not change, would come to the 

incorrect conclusion that investors overreact:  higher returns today predic t lower future returns.  

Similarly, 

 [ ] 2
1+tt 1)(tr t 

1
R ,dcov σ

+
−= . (3.17) 

A high dividend today predicts lower future returns, which would suggest that investors naively 

extrapolate recent dividend performance into the future.  However, investors are completely 

rational in our model and the predictability is driven entirely by estimation risk.  Investors 

appropriately incorporate all relevant information, but today’s dividend causes a revision in 

prices that moves opposite to expected returns. 

 We later present simulation evidence to show how estimation risk can affect empirical 

tests.  To illustrate the results, Fig. 3.1 depicts a sample price path for the risky asset.  The 

figure assumes that investors are risk-neutral and the riskless rate of return is 0.05.  Dividends 

have mean 0.05 and standard deviation 0.10, taken to be similar to the dividend yield and 

                                                                                                                                               
analysis with rates of return is more difficult because it involves expectations of ratios, but the qualitative 
results are similar. 

19 This covariance is time-dependent because estimation risk declines over time.  We will break the 
strong connection between time and predictability in Section 3.5 when we allow the true dividend process 
to change. 
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Figure 3.1 
Equilibrium price of the risky asset 
 
This figure illustrates a typical price path for the risky asset when the dividend process is known 
(‘fundamental value’ in the figure; see eq. 3.6 in the text) and when investors must estimate expected 
dividends (‘actual price’; see eq. 3.12 in the text).  The riskless rate is 0.05, dividends have true 
mean 0.05 and standard deviation 0.10, and investors are risk-neutral.  Without estimation risk, the 
price of the risky asset is one.  With estimation risk, the price depends on average dividends, which 
we randomly select from a Normal distribution. 
 
 
 
volatility of dividends on the market portfolio.  Under these assumptions, the price of the risky 

asset without estimation risk equals one and its expected rate of return is 0.05.  The price with 

estimation risk depends on realized average dividends, which we randomly draw from a normal 

distribution.  The figure shows that the price of the risky asset tends to revert towards 

‘fundamental’ value.  The sample autocorrelation in returns equals -0.10 for the periods shown 

(t = 10 to 110) and the correlation between rates of return and lagged prices equals -0.28.  True 

conditional expected rates of return vary from 2.0% to 6.2%.20 

 In this example, the mean-reversion in asset prices is obvious from the figure.  The price-
                                                 

20 The example is for illustration purposes only.  The reported statistics do not adjust for small-sample 
bias in the correlation and regression coefficients.  We present more extensive simulation evidence in 
Section 3.5. 
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reversal effect of estimation risk might be observable to a researcher, yet prices at every point in 

time are set rationally.  Investors ignore the negative relation between returns and dividends 

because it provides no useful information about future expected returns.  In addition, the 

example suggests that the effects of parameter uncertainty can be relatively large, as measured 

by the variation in expected returns.  Similar results for actual stock market data would be 

interpreted as relatively strong evidence against efficient markets.  However, ex ante, investors 

in this example could not have forecast any variation in expected returns. 

 The analysis above considers the predictability of one-period returns.  Investor 

expectations are highly persistent, however, and price reversals can take many periods to occur.  

As a result, the negative relation between returns and past dividends becomes stronger for long-

horizon returns.  Define the H-period return ending at t+H as the sum of one-period returns, or 

R t H
H
+  = Rt+1 + … + Rt+H.  Then the conditional expected H-period return is 

 ][RE H
H+tt )d(

H)r(t
H

  H t−δ
+

+δ= . (3.18) 

Similar to one-period returns, H
HtR +  is negatively related to past prices.  Except for the 

substitution of t+H for t+1 in the denominator, the expected return is H-times more sensitive to 

changes in average dividends than one-period returns.  As a result, the price-reversal effect of 

estimation risk will be more pronounced in long-horizon returns.  For example, the 

autocovariance of H-period returns is 

 [ ] 2
2

H
H+t

H
t H)(tr t 

H
 R ,Rcov σ

+
−= , (3.19) 

which increases by a factor of H2 as the horizon is lengthened (except for the change from t+1 

to t+H in the denominator).  The variance of returns increases at a rate less than H, so returns 

become more negatively autocorrelated as the return horizon lengthens.  Results are similar for 

the relation between expected returns and lagged dividends. 
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In short, estimation risk can be a source of predictability.  However, the predictability of 

total returns does not say anything directly about market efficiency.  In the model analyzed by 

Lucas (1978), for example, returns are predictable yet the market is efficient.  To get a clearer 

picture of market efficiency, we need to examine the predictability of return surprises.  A 

standard result in finance is that forecast errors should be unpredictable if investors are rational.  

Indeed, tests of market efficiency, like those analyzed by Shiller (1981) and Abel and Mishkin 

(1983), rely on the assumption that rational forecast errors are uncorrelated with past 

information.  In the presence of estimation risk, we show that rationality no longer imposes this 

restriction.  Investors form expectations based on past information, so forecast errors will be 

correlated under the true distribution with past cashflows. 

 The unexpected portion of returns, URt+1, is given by the difference between realized 

returns and investors’ subjective expectation, or Rt+1 − [ ]1+t
s
t RE .  In this section, we have 

assumed that investors are risk-neutral, implying that unexpected returns equal excess returns.  

From eq. (3.14), 

 )d(d 
1)r(t

1
1 =UR t1t1+t −








+

+ + . (3.20) 

It follows that 

 [ ] )d  ( 
1)r(t

1
1 = URE t1+tt −δ




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


+

+ . (3.21) 

Therefore, like total returns, the unexpected portion of returns is predictable based on past 

dividends, returns, and prices.  It is precisely this result that differentiates predictability in our 

model from predictability in other models with rational investors.  With perfect information, 

excess returns must be unpredictable if investors are risk-neutral.  In contrast, once we allow for 

parameter uncertainty, excess returns can be predictable even with rational, risk-neutral 

investors. 
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Thus, not only do subjective expectations differ from true expectations, but they do so in a 

way that is predictable with prices and dividends.  With incomplete information, investors form 

expectations based on observed dividends.  If these have been, say, abnormally high, then price 

will be inflated above its fundamental (perfect information) value.  Consequently, prices are 

related to future returns in a way that resembles overreaction.  The predictability is consistent 

with rational expectations because it is based on the unknown, true distribution.  We emphasize, 

however, that the true distribution determines the empirical properties of returns even though it 

is unknown.  At the time portfolio decisions are made, investors cannot know whether past 

dividends have been above or below the true mean.  Over time, investors learn more about 

expected cash flows and, looking back, can observe the negative relation between prices and 

unexpected returns (as illustrated by Fig. 3.1). 

 Throughout this section, we have found that parameter uncertainty creates price reversals 

and negative autocorrelation in returns.  These results are relevant for the large empirical 

literature on excess volatility and apparent overreaction.  However, several studies also 

document momentum in stock returns.  Jegadeesh and Titman (1993), for example, find that 

short-term ‘winners’ (stocks that performed well over the past 3 to 12 months) have higher 

future returns than short-term ‘losers.’  In Section 3.5, we show that informative priors might 

give risk to momentum in returns.  In addition, alternative cashflow processes, such as 

autocorrelated dividends, could generate momentum if investors are uncertain about the 

persistence of cashflows. 

 
3.3.2. Price volatility 

 Price volatility is closely related to predictability (see, e.g., Campbell, 1991).  For example, 

investor overreaction generally implies that returns will be both negatively autocorrelated and 

excessively volatile.  Given our results above, it is clear that estimation risk will significantly 

affect the variance of prices and returns. 
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 In the model without estimation risk, the variance of returns simply equals the variance of 

dividends, σ2.  With parameter uncertainty, prices fluctuate over time as investors update their 

beliefs about the dividend process.  In particular, the (true) conditional variance of price is 

 [ ]1+tt pvar  = 2
2

1)+r(t
1

σ






 , (3.22) 

and the unconditional variance is 

 [ ]1+tpvar  = 2
2 1)+(tr

1 σ . (3.23) 

Estimation risk increases both the conditional and unconditional variances of observed prices.  

Similar to inferences about return predictability, ignoring the effects of estimation risk would 

suggest investor overreaction.  However, ‘excess’ volatility simply reflects parameter 

uncertainty; volatility is high precisely because investors rationally update their beliefs. 

 In the model, a relatively small amount of parameter uncertainty will substantially increase 

price volatility.  Suppose, for example, that investors are risk-neutral, the riskless rate of return 

of 0.05, and dividends are distributed with mean 0.05 and standard deviation 0.10.  (These are 

the values used in Fig. 3.1.)  In this case, the value of the risky asset equals one when the 

dividend process is known.  With parameter uncertainty, the standard deviation of pt equals 

t2 , which remains significant as a percentage of fundamental value for rather large t.  When 

t is, say, 100 the standard deviation of price is 0.20.  This implies that the length of a two-

standard-deviation confidence interval is 80% of fundamental value, despite the fact that the 

subjective standard deviation of dividends is less than one percent greater than the true standard 

deviation. 

 Thus, the model suggests that prices might vary considerably around their ‘true’ values.  

The deviations are eventually reversed, giving rise to predictable variation in returns, yet 

investors are completely rational.  Put differently, stock price movements do not have to be 
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explained by subsequent changes in dividends.  Indeed, in our model, prices are completely 

uncorrelated with future dividends.  Prices are backward looking and, ignoring estimation risk, 

investors appear to overreact to past information. 

 Asset prices can also violate the volatility bounds that have been the focus of much 

empirical research.  For example, Shiller (1981) argues that an immediate consequence of 

‘optimal forecasts’ is that 

 var(pt) ≤ var( *
tp ), (3.24) 

where *
tp  is the ex post rational price, or the price based on realized, rather than expected, 

dividends.  That is, *
tp  is given by 

 2

1k
ktk

*
t  f(t)  2 d 

r)(1
1

  p σγ−
+

= ∑
∞

=
+ . (3.25) 

With perfect information and rational investors, the bound holds because *
tp  equals the actual 

price plus a random, unpredictable forecast error.  We saw above, however, that the forecast 

error with parameter uncertainty can be negatively related to price.  In the current model, the 

variance of *
tp  is 
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Comparing this to eq. (3.23), we see that the volatility bound will be violated for t ≤ 1 + 2/r.  

Perhaps more directly, however, prices violate the basic premise of the volatility-bound 

literature, that revisions in prices should only reflect changes in true expected dividends.  With 

estimation risk, new information about future dividends does not have to correspond to changes 

in the true distribution.  Thus, the volatility literature tests the joint hypothesis that investors are 

rational and have perfect information about the dividend process.  Assuming that investors have 

less than perfect knowledge, it might be more surprising if prices did not violate the bounds. 
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 The volatility of returns provides additional insights into the effects of estimation risk.  The 

conditional variance of returns is 

 [ ]1+tt Rvar  = 2
2
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Comparing this to the variance of the subjective distribution (eq. 3.9), we find the standard 

result that the subjective variance equals the true variance multiplied by (t+1)/t.  Also, compared 

to the variance of returns when δ is known, which is just σ2, we see that estimation risk greatly 

increases return volatility if t is small.  For example, if the riskfree rate is 0.05 and t is 50, the 

conditional variance of returns is roughly twice as big with estimation risk than without. 

 

3.4. The cross-section of expected returns  

 We now return to the model with many assets and analyze the cross-sectional behavior of 

returns.  In single-period models, Bawa and Brown (1979) and Coles and Loewenstein (1988) 

find that the CAPM continues to hold with estimation risk.  These studies focus exclusively on 

the subjective distribution of returns, and find that estimation risk is largely irrelevant for 

equilibrium.  We emphasize instead the observable behavior of prices and returns. 

 Before continuing, we should mention again that investors are assumed to begin with a 

diffuse prior.  This assumption will affect the results in a variety of ways.  For example, an 

informative prior can contain more information about some securities than others.  The diffuse 

prior, on the other hand, is ‘symmetric.’20  To see why this important, recall that unexpected 

returns in the model equal 
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20 With a symmetric prior, the prior covariance matrix is proportional to the true covariance matrix.  

That is, the prior distribution over δ has the form MVN [δ*, Σ/h], where h is a measure of prior 
information.  The diffuse prior can be interpreted as the limiting distribution as h approaches zero. 
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where URt+1, dt+1, and td  are now N×1 vectors.  In the brackets, the term ‘1/r(t+1)’ gives the 

effect that unexpected dividends have on prices.  With a diffuse prior, price revisions are 

proportional to the vector of unexpected dividends.  This result will not generally hold with an 

informative prior.  Dividends on assets with relatively high amounts of prior information 

provide clues about the values of other securities (Clarkson, Guedes, and Thompson, 1996; 

Stambaugh, 1997).  We discuss informative priors further in Section 3.5. 

 

3.4.1. Covariances and betas 

 When we talk about the CAPM, it will be useful to have a few results on covariances and 

market betas.  With one risky asset, we saw that parameter uncertainty increases both the 

subjective and true volatility of returns.  Similarly, with many assets, estimation risk scales up 

the true covariance matrix.  In particular, the conditional covariance matrix of gross returns is 

 [ ] Σ
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1+tt 1)(tr 
1

1Rvar . (3.29) 

The effect of estimation risk is analogous to the single asset case:  uncertainty about δ increases 

the true volatility of prices and returns.  In the model with perfect information, prices are 

constant and the covariance matrix of returns simply equals Σ.  With estimation risk, investor 

uncertainty increases all variances and covariances proportionally.  Further, this statement 

describes both the subjective and true covariance matrices.  Comparing eqs. (3.9) and (3.29), we 

find that the subjective covariance matrix equals the true covariance matrix multiplied by 

(t+1)/t, and both are proportional to Σ.21 

Because estimation risk simply scales up the covariance matrix, it does not affect market 

betas (for gross returns).  The market return is the sum of the asset returns, and market volatility 

                                                 
21 The assumption that investors begin with a diffuse prior is important here.  With informative priors, 

the subjective and true covariance matrices may not be proportional, and neither has to be proportional to 
Σ.  See Section 3.5. 
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increases by the same factor as the covariance matrix.  Consequently, with and without 

parameter uncertainty, betas equal 

 ιΣ
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=β   
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 tM,t
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. (3.30) 

Note also that eq. (3.30) gives both subjective and true market betas, which are the same 

because the two covariance matrices are proportional.  Again, this result is an artifact of the 

diffuse prior.  With an informative prior, subjective and true betas will not necessarily be the 

same, nor will they equal the betas without estimation risk.22 

 

3.4.2. Expected returns and the CAPM 

 In Section 3.3, we found that total and unexpected returns are predictable with lagged 

dividends and prices.  With many assets, we consider instead deviations from the CAPM.  We 

examine both the time-series and cross-sectional predictability of these deviations. 

 With and without estimation risk, the subjective distribution of returns is multivariate 

normal.  Together with the assumption that investors derive utility only from end-of-period 

wealth, this implies that the CAPM must hold under the subjective distribution.  In terms of 

gross returns, the CAPM says that 

 [ ] [ ]tM,1t,M
s
tt1t

s
t p r)R(E   pr   RE −β+= ++ . (3.31) 

Eq. (3.31) can be verified by substituting for equilibrium price and subjective expected returns, 

derived above.  Investors attempt to hold mean-variance efficient portfolios, which imposes the 

CAPM restriction on subjective expected returns.  However, empirical tests use returns taken 

from the true, not the subjective, distribution. 

To analyze the cross-sectional properties of returns, we focus on ex post deviations from 

                                                 
22 The analysis here focuses on gross returns, not rates of return.  As noted by Coles and Loewenstein 

(1988), estimation risk does affect rate-of-return betas.  Asset i’s rate-of-return beta equals its gross-
return beta multiplied by pm,t /  pi,t.  Rate-of-return betas will change unless relative prices remain the 
same, which will not be true in general. 
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the CAPM, given by 

 [ ]tM,1+tM,t1+t1+t pr R   pr R a −β−−= . (3.32) 

Note that at+1 is similar to the vector of unexpected returns, except that the realized return on the 

market enters eq. (3.32) rather than the expected market return.  We know from Section 3.3 that 

the market return is predictable based on past information.  By examining at+1, rather than 

unexpected returns, we eliminate predictability that is related to the aggregate market. 

 Deviations from the CAPM must be unpredictable under the subjective distribution: 

 [ ] 0aE 1t
s
t =+ . (3.33) 

In the absence of estimation risk, market efficiency implies that the true conditional expectation 

of at+1 is zero.  This restriction, of course, forms the basis for empirical tests of the CAPM.  For 

example, cross-sectional regressions, like those in Fama and MacBeth (1973), indirectly test 

whether firm characteristics predict cross-sectional variation in ai,t+1.  The multivariate F-

statistic of Gibbons, Ross, and Shanken (1989) tests whether the unconditional expectation of 

at+1 is zero, which follows from the law of iterated expectations.  Finally, various conditional 

asset-pricing tests directly examine the conditional expectation of at+1 (e.g., Harvey, 1989; 

Shanken, 1990). 

 With parameter uncertainty, rational expectations no longer requires that the true 

expectation of at+1 equals zero.  Substituting for prices and returns in eq. (3.32) and taking 

expectations yields 
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In general, this will deviate from zero.  Similar to unexpected returns in the model with a single 

risky security, deviations from the CAPM are negatively related to past dividends and prices.  In 

particular, for any asset i: 
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where var(ε i) is the residual variance when the asset’s dividend is regressed on the market 

dividend.  The ability of price to predict time-variation in ai,t+1 is similar to its ability to predict 

unexpected returns, except that var(ε i) is substituted for the dividend’s total variance.  Again, 

we see that estimation risk induces price reversals and apparent overreaction by investors.  

When investors’ best guess about expected dividends for a given stock is above the true mean 

(after adjusting for marketwide mispricing), price is inflated above its fundamental value and 

expected returns are lower than predicted by the CAPM. 

 Eq. (3.35) is essentially a time-series relation.  The predictability of at+1 arises because 

investors do not know whether past dividends are greater than or less than the true mean.  At 

any point in time, however, investors observe whether each security’s average dividend is above 

or below the cross-sectional average.  Our initial guess, then, was that deviations from the 

CAPM would not be cross-sectionally related to lagged prices:  if cross-sectional variation in 

ai,t+1 was related to the observable quantity pi,t, it would seem that investors could use this 

information to earn abnormal returns.  Surprisingly (to us), this intuition is wrong.  In sample, 

the cross-sectional relation between ai,t+1 and pi,t is 
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Taking the unconditional expectation yields 

 [ ] ∑ +
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which is negative because every covariance term is negative (see eq. 3.35).  In the presence of 

estimation risk, lagged dividends and prices explain cross-sectional variation in expected returns 
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after controlling for betas.  Investors understand the negative cross-sectional relation, but they 

cannot use this information to be better off. 

 We find this result paradoxical.  To gain some intuition, consider the decision process of a 

rational investor.  Implicitly, the expectation in eq. (3.37) integrates over all possible price paths 

from time 1 to t+1.  However, at time t, the conditional cross-sectional relation can be either 

positive or negative, depending on the difference between td and δ.  In other words, conditional 

on observing td , the cross-sectional covariance between prices and at+1 depends on the true 

value of δ.  Investors understand this dependence, and their beliefs about δ determine their 

investment choices.  Thus, they integrate over the subjective distribution of δ to make portfolio 

decisions.  The resulting belief about at+1 will always have mean zero.  The point is simply that 

investors do not ignore the relation between prices and deviations from the CAPM, but their 

best forecast of at+1 at any point in time is always zero. 

 Alternatively, we can think about this in terms of an individual asset.  Suppose that an asset 

has a relatively high price compared with other stocks.  Does this imply that the asset is 

overvalued relative to its ‘fundamental’ value?  The answer depends, of course, on the actual 

value of δi, which is unknown.  Integrating over the posterior beliefs about δi, an investors’ best 

guess at all times is that the asset is fairly priced.  Yet in hypothetical repeated sampling, the 

asset with the highest price will, on average, be overvalued.  This puzzle highlights the 

distinction between the conditional nature of Bayesian decision making (conditional on the 

observed prices) and the frequentist perspective of classical statistics.  For a Bayesian investor, 

hypothetical repeated sampling is irrelevant to the portfolio decision, which must be made after 

observing only a single realization of prices (see Berger, 1985, for an extensive discussion of 

these issues). 

 To illustrate the cross-sectional results, we simulate a set of prices and returns in the 

model.  Similar to the example in Section 3.3, we assume that investors are risk-neutral and the 
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riskless rate is 0.05.  In addition, all risky assets, with N = 15, have true expected dividends 

equal to 0.05.  Hence, all prices equal one in the absence of estimation risk.  When δ is 

unknown, security prices depend on realized dividends, which we randomly generate from a 

MVN distribution.  To provide a reasonable covariance matrix, we estimate the return 

covariance matrix for 15 industry portfolios formed from all stocks on the Center for Research 

in Security Prices (CRSP) database. 

 Both the time-series and cross-sectional behavior of returns reveal the price-reversal effect 

of estimation risk.  For t = 10 through 110, the correlation between total return and lagged price 

is negative for every security, with a mean correlation of -0.21.  Deviations from the CAPM 

also appear predictable based on lagged prices:  the average correlation between ai,t+1 and pi,t is -

0.16, and 14 out of the 15 correlations are negative.  Cross-sectionally, the relation between ai,t+1 

and pi,t is significantly negative in Fama-MacBeth style regressions, with a t-statistic of -3.97.  

On average, an increase in price from one standard deviation below to one standard deviation 

above the cross-sectional mean leads to a -0.042 change in ai,t+1.  Since prices are generally 

close to one, this would imply that Jensen’s alpha, based on rates of return, decreases by 

approximately -4.2%.  Although investors attempt to hold mean-variance efficient portfolios 

and use all available information when making decisions, realized average returns can differ 

substantially from the predictions of the CAPM.  Additional simulations show that this example 

is typical.  For example, across 2500 simulations, Fama-MacBeth regressions produce an 

average t-statistic of –3.75 with a standard deviation of 0.94. 

 

3.5. Informative priors, steady state, and simulations  

 We have presented an extremely simple model of estimation risk.  Among the 

simplifications, we assumed that investors begin with no information about expected dividends, 

all parameters are constant, and dividends are IID.  Each of these assumptions makes it difficult 

to judge the potential empirical significance of estimation risk.  In this section, we relax the 
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assumptions to make the model a bit more realistic .  We also present simulation evidence to 

suggest the practical importance of the results. 

 

3.5.1. Informative priors 

 The assumption of diffuse priors has at least two important effects on the model.  First, 

investors’ beliefs about expected dividends are determined entirely by past realized dividends.  

With an informative prior, investors would put less weight on the data and more weight on their 

initial beliefs.  Second, an investor’s belief about the expected dividend on one asset is 

determined solely by the realized dividends on that asset, and does not depend at all on the 

realized payoffs of other securities.  With an informative prior, however, dividends on assets 

with relatively high amounts of prior information can be useful in valuing other assets.  We 

discuss both of these issues in this subsection.  For now, we continue to assume that the true 

parameters of the dividend process remain constant over time. 

 Consider first the model with one risky asset.  Assume that the variance of the dividend 

process, σ2, remains known, and suppose that investors begin with some information about the 

mean.  In particular, assume that prior beliefs are centered around some δ* and have variance 

σ2/h, where h is a measure of prior information.  Writing the variance in this form is simply for 

notational convenience; a variance equal to σ2/h means that the investor has prior information 

that is as informative as a sample of h realized dividends.  With this prior, a Bayesian investor’s 

belief about dividends at time t is 
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Investors shrink their best guess about expected dividends toward their prior mean, and the 

variance reflects both the volatility of dividends, σ2, and uncertainty about the mean, σ2/(t+h).  

It is clear that the prior mean exerts a permanent, yet diminishing, influence on beliefs.  To the 

extent that the prior mean deviates from δ, investors’ beliefs are ‘biased’ away from the true 
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mean.  However, as before, beliefs eventually converge to the true distribution as t gets large. 

 Equilibrium takes nearly the same form as the original model, except that price now 

reflects both the information in realized dividends as well as prior beliefs.  Denote the mean of 

the subjective distribution as mt.  At time t, the price of the risky asset equals 
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where f(t) is defined in eq. (3.11).  With informative priors, the price contains a new term 

corresponding to the initial belief about expected dividends.  It is clear from eq. (3.39) that the 

time-series properties of prices and returns will be determined by the properties of mt.  

Moreover, the prior information anchors the price to the investor’s initial guess, but does not 

have a stochastic effect on prices.  As a result, in this simple model with fixed parameters, 

informative priors have little effect on the qualitative conclusions from the original model.  

Returns continue to be negatively related to past prices and dividends, although the magnitude 

is diminished compared with diffuse priors.  For example, 
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221+tt 1)h(th)(tr
t

R ,pcov σ
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which is negative but smaller than the corresponding expression with diffuse priors.  This result 

is actually quite intuitive since prior information has, for practical purposes, the effect of simply 

adding h periods to the model before time 0. 

 We present more thorough simulations in Section 3.5.3, but it may be useful to report 

simulations here to illustrate the impact of informative priors.  The model is simulated 2500 

times assuming that investors are risk neutral, the riskless rate is 0.05, true expected dividends 

are 0.10, and the standard deviation of dividends is 0.10.  Using the simulated data, we estimate 

the correlation between excess rates of return, which equal unexpected returns because of risk 
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neutrality, and lagged average dividends for 70 periods, from t = 10 through t = 80.  The results 

confirm our analytic work.  The average correlation equals –0.136 with perfect information (this 

is negative because of small-sample bias; see Stambaugh, 1999) and at the other extreme, the 

average correlation equals –0.259 with diffuse priors.  Informative priors produce results that 

are between these polar cases.  For example, with h = 20, meaning that investors have observed 

the equivalent of 30 periods of dividends when we begin estimating predictability, the average 

correlation between excess returns and lagged dividends equals –0.198.  These results are not 

sensitive to the prior mean. 

 We should add an important caveat at this point.  The relatively minor effect of informative 

priors depends on the assumption that the true mean is fixed.  Once we allow for shocks to the 

true parameters, informative priors can play a larger role because investors may appear to react 

slowly to changes in the dividend process (see the next section).  In addition, notice that even in 

the current model, forecast errors are all expected to have the same sign because of the 

permanent influence of the prior mean.  Although the influence is non-stochastic and does not 

affect serial correlation in returns, it could create the appearance of underreaction in some 

contexts.  For example, Lewis (1989) argues that a similar phenomenon might account for the 

persistent forecast errors observed in the foreign exchange market in the 1980s. 

 Informative priors can also play a more important role with many assets.  We need to 

consider two possible types of informative priors when there are many assets:  symmetric 

information and differential information.  In the discussion above, we denoted the variance of 

the prior as σ2/h, where h can be interpreted as the length of the sample already observed.  

Loosely speaking, a symmetric prior means that the investor has observed the equivalent of h 

dividends for all securities.  In this case, the prior covariance matrix equals Σ/h, where Σ is the 

covariance matrix of dividends.  Of course, symmetric information is a fairly special case, and 

investors will typically have more information about some securities than others.  With 

differential information, the prior covariance matrix does not have to be proportional to the 
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dividend covariance matrix. 

 We briefly consider the general case of differential information.  Suppose that investors’ 

prior beliefs about expected dividends are MVN [δ*, Ω].  For a Bayesian investor, the posterior 

distribution for δ at time t is MVN [mt, Πt], where 

 [ ] [ ]t
1*1-111-

t d  t    t m −−− Σ+δΩΣ+Ω= , (3.41) 
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The mean of the distribution is a matrix-weighted-average of δ* and td , with weights given by 

the inverses of the covariance matrices.  Importantly, the mean for a given asset will typically 

depend on the realized dividends for all assets and the covariance matrix does not have to be 

proportional to Σ.  Beliefs about dividends (the previous equations are for δ) have the same 

mean; the covariance matrix reflects both the true variance of dividends and uncertainty about 

the mean, or Πt + Σ. 

In the special case of symmetric information, the mean and variance of the posterior 

distribution simplify to 
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The mean is a scalar weighted-average of δ* and td , and an investor’s belief about expected 

dividends for a given asset is unrelated to past dividends on other securities. 

The equilibrium pricing function remains similar in form to the basic model.  Specifically, 

the price at time t is 

 ιγ−   v(t) 2  m
r
1

 =p tt , (3.45) 

where v(t) is a deterministic N×N matrix that plays the role of f(t) in the original model.  Once 
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again, the properties of prices and returns depend on the behavior of mt.  Without going into too 

many details, we can draw two conclusions about the behavior of returns with informative 

priors: 

 
(a)  The cross-sectional correlation between deviations from the CAPM and lagged prices 

can be either positive or negative, depending on the strength of the prior and the relation 

between the prior mean and true expected dividends.  Recall that with a diffuse prior, the cross-

sectional correlation is always negative and investors appear to react too strongly to realized 

dividends.  With an informative prior, however, investors can appear to update too slowly 

because they place less weight on the data and more on their prior beliefs. 

To give a concrete example, suppose that the true mean of the dividend process is δ, an 

N×1 vector.  Investors have symmetric priors and cannot distinguish among the assets, meaning 

that they have the same prior mean for every asset, or δ ~s N[δ*ι, Σ/h] where δ* is a scala r and ι 

is a vector of ones.  To make matters simple, assume that the prior beliefs are correct on 

average, so that δ* equals the cross-sectional average of δ.  Under these assumptions, it can be 

shown that the expected cross-sectional covariance between deviations from the CAPM and 

lagged price equals 
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where var(ε i) is the residual variance when the asset’s dividend is regressed on the market 

dividend (see eq. 3.35), and )(var iε  denotes the cross-sectional average.  The cross-sectional 

covariance can be either positive or negative depending on the strength of the prior (the 

parameter h) and the cross-sectional variance of δ.  Qualitatively, these results are intuitive.  

When investors have weak prior beliefs (h is small), they appear to react too strongly to realized 

dividends and the price-reversal effect described in Section 3.3 dominates.  On the other hand, 

with strong prior beliefs, investors rely less heavily on the data and might appear to react too 
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slowly to new information. 

 
(b)  In Section 3.4, we showed that estimation risk simply ‘scales up’ the return covariance 

matrix when investors have diffuse priors.  This result does not have to hold with differential 

information.  In the general model, the true conditional covariance matrix of returns is given by 
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where 
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The matrix Mt maps unexpected dividends into unexpected returns.  The identity matrix, I, gives 

the immediate effect that unexpected dividends have on returns, and the second term gives the 

effect that unexpected dividends have on prices.  The subjective covariance matrix of returns is: 

 [ ] T
1+tt1+t1+t

s
t M   M  )(Rvar Σ+Π= . (3.49) 

The difference between the subjective and true covariance matrices is that the predictive 

covariance, Πt + Σ, enters eq. (3.49). 

Parameter uncertainty affects both the true and subjective distributions through the matrix 

Mt+1.  In general, the subjective and true covariance matrices will not be proportional to each 

other, nor will they be proportional to the covariance matrix when the dividend process is 

known.  As a result, estimation risk affects subjective and true market betas differently, and 

both differ from market betas with perfect information.  Consider, for example, a simple model 

with two assets, a low-information and a high-information security.  Specifically, assume the 

investor has previously observed L periods of dividends for the low-information security and H 

> L periods of dividends for the high-information security.  In this case, it can be shown that 

parameter uncertainty increases the beta of the low-information security.  Further, the subjective 

beta is greater than the true beta, implying that the true (observable) beta does not fully capture 
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the risk perceived by investors. 

 
In summary, informative priors can be important for the way parameter uncertainty affects 

equilibrium prices and returns.  Our basic conclusions about predictability and market 

efficiency, however, continue to hold. 

 

3.5.2. Renewal of estimation risk 

 Perhaps the most obvious limitation of our model is that estimation risk steadily diminishes 

over time.  As time passes, investors accumulate information and their beliefs converge to the 

true process.  The reason is simple:  we have assumed that the dividend process is fixed, so 

investors never ‘lose’ information.  In reality, the economy evolves over time and a more 

realistic model would allow the dividend process to change.  In this section, we extend the 

model to incorporate unobservable shocks to the true parameters which periodically renew 

estimation risk.  We focus on the model with a single risky asset because the section is most 

applicable to the time-series properties of aggregate returns.  At the microeconomic level, firms 

continually appear and disappear from the stock market, and it is not clear that the long-run 

implications of estimation risk are relevant for the behavior of individual stocks. 

 There are many ways to prevent estimation risk from vanishing in the limit.  Here, we have 

chosen a particularly simple form of ‘renewal’ to illustrate the ideas.  The model remains the 

same with one exception:  we now assume that the true mean of the dividend process fluctuates 

over time at known, fixed intervals.  Specifically, every K periods the mean is re-drawn from a 

normal distribution with mean δ* and variance 2
sσ .  Thus, the model is essentially a sequence of 

short ‘regimes’ that look like our basic model truncated after K periods.  We have analyzed 

alternative models in which (1) the length of the intervals is random rather than fixed and (2) 

the true mean of the dividend process follows a persistent process.  The qualitative conclusions 

from these models appear to be similar. 



 
 

 

81

After an infinite number of periods, it is clear that investors would learn the distribution 

from which the short-run mean is drawn.  Therefore, in the limit, investors’ priors at the 

beginning of each regime would be ] ,[ N 2
s

* σδ .  Although we analyze these priors as a special 

case, we do not think that it is either the most realistic or most interesting because it represents 

an extreme amount of learning.  Instead, we consider the more general beliefs ] ,[ N 2
h

* σδ , 

which have the same mean as the actual distribution but not necessarily the same variance.  

Thus, we assume that investors have observed the process long enough to know long-run 

expected dividends, even though they cannot observe short-run changes in the process.  

Permitting the variances to be different can be justified on several grounds. 

First, we are trying to capture the idea that the economy moves though periods of high and 

low growth that cannot be perfectly observed.  These periods might cover many years, so 

learning about the switching process – and its variance – is likely to be slow.  Second, we have 

made the artificial assumption that the mean is repeatedly drawn from the same distribution.  

The economy undoubtedly moves through periods of relative stability and periods of rapid 

change, and the variance of shocks to expected dividends is likely to change over time.  If 

investors cannot observe changes in volatility, then their current estimate of the volatility will 

not be perfect.  Finally, alternative assumptions about the evolution of the true mean do not 

necessarily have the property that the prior variance ever converges to the true variance.23  We 

abstract from these issues, and take the more expeditious approach of simply permitting the 

prior variance to be different from 2
sσ . 

 The pricing function is similar to the price in the basic model.  The renewal model consists 

of a sequence of intervals with fixed expected dividends, and investors do not observe the 

current draw of the short-run mean, δk.  As discussed above, investors’ priors at the beginning 
                                                 

23 For example, suppose the dividend mean δt follows a random walk, dividends have conditional 
variance σ2, and the shocks to δt are uncorrelated with dividends and have variance 2

sσ .  In the long-run, 

investors beliefs about δt will be N[mt, 
2
hσ ], where 2

hσ  is time-invariant and 2
hσ > 2

sσ . 
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of each interval are ] ,[ N 2
h

* σδ .  For notational convenience, let s/  22
s σ=σ  and h/  22

h σ=σ , and 

assume for simplicity that investors are risk neutral.  Realized dividends during the current 

interval provide no information about payoffs after the end of the interval, so beliefs about those 

payoffs always have mean δ*.  Therefore, the price at the beginning of every regime equals δ*/r, 

the value of expected dividends in perpetuity.  After t periods in the current regime, the 

investor’s predictive belief about short-run dividends has mean 

 t
*

t d
ht

t
ht

h
  m

+
+δ

+
= , (3.50) 

identical to eq. (3.38).  Thus, price equals 

 
rr)(1

1
  m FA  p
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δ

+
+= , (3.51) 

where AFK-t is an annuity factor for K-t periods.  Not surprisingly, the time-series properties of 

prices and returns once again depend on the behavior of mt.  It is straightforward to show that 

excess, or unexpected, returns are given by 

 ( )t1t
1-t-K

1t md 
1ht
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  1  UR −


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

++
+= ++ . (3.52) 

The term in parentheses is simply unexpected dividends, which have an immediate effect on 

unexpected returns (the ‘1’ in brackets) and an indirect effect on prices (with the multiplier AFk-

t-1/(t+h+1)). 

 The analysis of predictability with renewal is more complicated than in our basic model.  

In particular, now that the short-run mean is random, we have to distinguish between 

expectations that are conditional on the current mean and expectations that treat the parameter 

as random.  It turns out that a combination of the two seems to be relevant for empirical tests 

(see the simulations below).  At time t (interpreted as t periods into the current regime), the 

unexpected return has true mean 
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which follows immediately from eq. (3.52).  As in our basic  model, the true unexpected return 

is negatively related to past dividends and prices.  Consequently, taking the value of δk as given, 

the covariance between excess returns and lagged prices equals 
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which is negative.  We refer to this expression as the ‘conditional covariance’ because it regards 

the short-run mean as fixed.  The equation is very similar to our previous results with 

informative priors, except that the covariance is attenuated because price fluctuations are less 

pronounced (the price always returns at the end of the regime to δ*/r).  Therefore, in one sense, 

the effects of estimation risk documented above remain the same even in the long-run:  the true 

and subjective distributions are different, leading to price reversals. 

Unfortunately, things are not quite so simple.  Although the conditional covariance does 

not depend on δk, the ‘unconditional covariance’ – which regards the short-run mean as random 

– will nonetheless differ from eq. (3.54).24  Specifically, the unconditional covariance equals 
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The sign of the unconditional covariance depends on the relative magnitudes of s and h.  Recall 

that σ2/s is the true variance of δk while σ2/h is the prior variance.  Therefore, the unconditional 

covariance is negative when the prior variance is greater than the true (h < s), but positive when 
                                                 

24 In statistical terms, the expected conditional covariance does not equal the unconditional covariance 
because the means of the variables move together over time. 
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the prior variance is less.  When investors believe that the variance of shocks to expected 

dividends is high, they are relatively sensitive to realized dividends and the price-reversal effect 

of estimation risk shows up both conditionally and unconditionally.  On the other hand, if the 

short-run mean is more variable than investors believe, they tend to be surprised by the large 

movements in expected dividends and require many observations to update their beliefs.  

Consequently, returns exhibit patterns of continuation or momentum.  The cutoff value occurs 

when investors have exactly the right beliefs about the variance of δk, or when s = h.  In this 

case, the unconditional covariance between excess returns and lagged prices is exactly zero. 

Thus, we have two results on predictability in the renewal model:  (1) the conditional 

covariance is always negative, regardless of the relative magnitudes of s and h, and (2) the 

unconditional covariance depends on whether h is less than or greater than s.  The fact that the 

conditional covariance is negative implies immediately that excess returns are predic table, but it 

is not obvious to us whether the unconditional or conditional covariance is more relevant for 

standard empirical tests.25  An empirical test depends on the observed sample, and implicitly 

conditions on the sample value (or values) of the mean parameter δk.  This observation suggests 

that the conditional variance might be most relevant.  Indeed, take a particularly simple case in 

which observed sample covers only one regime.  Regardless of the value of δk, the covariance 

between unexpected returns and prices is expected to be negative; the correlation in this case 

corresponds directly to the conditional covariance.26  On the other hand, if a sample covers 

multiple regimes, the empiricist implicitly conditions on several values of δk and our simple 

formula for the conditional variance no longer represents the population counterpart of the 

estimate.  To muddy the waters further, if the empiricist suspects that a change in regime occurs 
                                                 

25 Some additional explanation might be useful.  A predictive regression for returns that includes 
regime dummies would estimate the conditional covariance, and can therefore detect the price reversals.  
Alternatively, the price reversals can be picked up by estimating within-regime covariances.  However, it 
is not common to include regime dummies in predictive regressions, nor is it easy to identify regime 
changes. 

26 We stress that this is not a survival bias or a so-called ‘peso problem.’  We expect to see a negative 
correlation for any value of δk because the true correlation is negative. 
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and adds a dummy variable to the regression, or focuses on subperiod regressions, then the 

sample covariance will correspond once again to the conditional variance.  Rather than 

speculate further, we rely on simulations to assess the expected value of the sample covariance 

with estimation risk. 

 

3.5.3. Simulations 

To investigate the ‘steady-state’ effects of estimation risk with renewal, we simulate the 

model 2500 times and examine the predictability of returns.  To make the model more realistic, 

the simulations assume that dividends follow a geometric random walk with time-varying 

growth.  Specifically, dividends follow the process 

 ln dt+1 = gk + ln dt + ε t+1, (3.56) 

where ε t+1 ~ N[0, σ2] and gk is randomly drawn every K periods from a normal distribution with 

mean g* and variance σ2/s.  The simulations normalize the initial dividend to equal one, the 

discount rate equals 0.12, σ = 0.10, and the long-run growth rate g* equals 0.03.  These 

parameters are chosen to be reasonably close to actual values, interpreting a period in the model 

as one year.  In comparison, the average annual return on the CRSP value-weighted index 

equals 12.5% for the period 1926 through 1997, and Brennan and Xia (1998) report that the 

average real growth rate in dividends equals 1.6%, with a standard deviation of 12.9%, over the 

period 1871-1996.  The simulations estimate predictive regressions using roughly 75 years of 

data, again taken to be similar to a typical study.  We report results for several combinations of 

the parameters s, h, and K.  These parameters determine the true variance in short-run growth 

rates, the variance of investors’ priors, and the length of a regime, respectively.  Appendix B 

describes the Bayesian inference problem for this model. 

 Table 3.1 reports the results of the simulations.  Specifically, the table shows the average 

slope coefficient and t-statistic when excess returns are regressed on lagged dividend yield.  An 
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important complication arises because the slope coefficient in these regressions suffers from a 

significant small-sample bias (see Stambaugh, 1999, and the discussion in Section 2.3).  The 

bias is caused by the same phenomenon that biases autocorrelation estimates downward, but the 

coefficients in these regressions are biased upward, giving the appearance of more 

predictability.  To help reduce the effects of the bias, we also report bias-adjusted slope 

coefficients using the results of Stambaugh (1999).27  In addition, the table reports results when 

investors perfectly observe the dividend process.  The difference between the bias-adjusted 

coefficients with estimation risk and with perfect information represents an estimate of the 

predictability caused by estimation risk. 

Table 3.1 shows that estimation risk can induce predictability even in steady state.  The 

results suggest that the negative conditional covariance tends to dominate the regressions.  Even 

when investors know both the mean and variance of the distribution from which the growth rate 

is drawn (h = s), the slope coefficient in the dividend yield regression is positive.  For example, 

with two regimes over the 75 years, the average slope coefficient ranges from 1.06 to 1.52 for 

different values of h = s (see the diagonal terms in the last column).  With four regimes the 

slope coefficient ranges from 0.56 to 0.60, and with six regimes the slope ranges from 0.45 to 

0.50.  The price reversal effect tends to be larger when the regimes are longer, and it becomes 

much more pronounced when investors’ prior variance is higher than actual variance.  With s = 

49 and h = 16, the table shows that the slope coefficient varies between 1.98 and 2.24 for 

different values of K.  Cases in which s > h, so the subjective variance is greater than the true, is 

of particular interest because it shows roughly how prices behave before we reach steady state

                                                 
27 To derive the bias, Stambaugh (1999) makes several assumptions about the return and dividend 

processes that do not hold in our model (e.g., dividend yields are AR(1) and returns are homoskedastic).  
Indeed, Table 1 shows that with perfect information, the bias adjustment tends to correct too much (the 
corrected slopes are negative not zero).  To confirm that the simulation evidence is not driven by 
problems with the bias-adjustment procedure, we perform an additional check.  We also estimate 
regressions using true unexpected returns, which always have conditional mean zero but otherwise have 
the same properties as excess returns.  The average slope coefficient in these regressions provides an 
alternative estimate of the bias.  These results support our conclusions in Table 3.1. 
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Table 3.1 
Predictability in steady state 
 
We simulate the renewal model 2500 times.  Dividends are assumed to follow a geometric random 
walk with time-varying expected growth, where the short-run growth rate gk is randomly drawn every 
K periods from N[g*, σ

2/s].  Investors are risk neutral and have initial beliefs about gk at the beginning 
of each regime equal to N[g*, σ

2/h].  In the simulations, r = 0.12, σ = 0.10, and g* = 0.03.  The table 
reports various combinations of s, h, and K.  The table shows the average slope coefficient and t-
statistic when excess returns are regressed on lagged dividend yield for roughly 75 years (we require 
the number of years to be divisible by K).  We also report bias-adjusted slope coefficients which 
correct for small-sample bias using the results of Stambaugh (1999). 
 

   Estimation  risk  Perfect information  Difference 

   h  h  h 

  s 16 25 49  16 25 49  16 25 49 
 16 2.91 3.05 3.68  0.40 0.39 0.50  2.41 2.65 3.16 

25 3.31 3.57 4.41  0.37 0.31 0.52  2.94 3.26 3.88 slope 
49 3.92 4.16 5.62  0.44 0.50 0.41  3.48 3.65 5.21 

             
16 0.78 0.32 -0.53  -0.28 -0.29 -0.16  1.06 0.60 -0.37 
25 1.16 0.84 0.15  -0.28 -0.34 -0.11  1.44 1.18 0.25 

bias-
adj 

slope  49 1.77 1.39 1.31  -0.21 -0.14 -0.21  1.98 1.53 1.52 
             

16 1.02 0.80 0.53  0.25 0.25 0.28  0.77 0.55 0.25 
25 1.15 0.98 0.71  0.23 0.19 0.18  0.92 0.78 0.53 

2 
regimes 
(K = 38) 

t-stat 
49 1.34 1.14 0.94  0.11 0.14 0.13  1.23 1.00 0.81 

 
 

16 2.56 2.44 1.97  0.37 0.30 0.34  2.19 2.15 1.64 
25 3.34 3.29 3.61  0.32 0.32 0.28  3.02 2.97 3.32 slope 
49 4.01 4.21 5.25  0.35 0.35 0.27  3.65 3.85 4.98 

             
16 0.29 -0.56 -2.95  -0.27 -0.33 -0.29  0.56 -0.23 -2.66 
25 1.06 0.26 -1.36  -0.29 -0.31 -0.34  1.35 0.57 -1.01 

bias-
adj 

slope  49 1.72 1.17 0.24  -0.27 -0.27 -0.35  1.99 1.43 0.60 
             

16 0.62 0.38 0.05  0.24 0.20 0.22  0.38 0.18 -0.17 
25 0.86 0.59 0.32  0.18 0.18 0.16  0.69 0.41 0.16 

4 
regimes 
(K = 19) 

t-stat 
49 1.05 0.80 0.56  0.14 0.14 0.11  0.91 0.66 0.46 

 
 

16 2.59 1.94 1.41  0.27 0.32 0.24  2.33 1.62 1.17 
25 3.65 3.44 3.65  0.31 0.28 0.25  3.34 3.16 3.40 slope 
49 4.38 4.87 5.80  0.29 0.30 0.26  4.09 4.57 5.54 

             
16 0.16 -1.35 -4.15  -0.33 -0.26 -0.34  0.49 -1.08 -3.81 
25 1.22 0.14 -1.95  -0.27 -0.31 -0.34  1.49 0.45 -1.61 

bias-
adj 

slope  49 1.94 1.56 0.18  -0.29 -0.27 -0.32  2.24 1.83 0.50 
             

16 0.48 0.19 -0.05  0.17 0.20 0.16  0.31 -0.01 -0.20 
25 0.42 0.45 0.22  0.16 0.15 0.13  0.57 0.31 0.08 

6 
regimes 
(K = 13) 

t-stat 
49 0.90 0.71 0.44  0.11 0.10 0.10  0.79 0.60 0.34 
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(even if investors know 2
sσ , the subjective variance of dividends is always greater than the true 

after a finite number of periods).  We believe that the evolutionary process is as relevant for 

empirical tests as the steady-state equilibrium. 

To add some perspective, the historical slope coefficient for the period 1941 to 1997 is 

3.93 (standard error of 1.73), before adjusting for bias, when the CRSP value-weighted return is 

regressed on its lagged dividend yield.  Although a more thorough study is necessary to draw 

detailed conclusions, the simulations provide preliminary evidence that estimation risk could 

account for a non-trivial portion of the predictability.  We hesitate to draw firm conclusions 

because the simulations do not (and probably cannot) capture all of the relevant properties of 

actual dividends and returns, and it is beyond the scope of the current paper to understand which 

set of parameter values best characterizes the historical stock market. 

The table also shows that return continuation, or a negative slope coefficient in the 

dividend yield regressions, is possible if investors’ prior variance is smaller than the true.  This 

case corresponds to a situation in which the economy is changing more dramatically than 

investors anticipate.  Investors require many dividend observations until their beliefs ‘catch up’ 

with the actual changes, which creates persistence in expected returns. 

Finally, adding a regime dummy variable to the regressions produces an estimate of the 

conditional covariance.  In results not reported, the average bias-adjusted slope coefficient is 

approximately 1.47 with two regimes, 2.00 with four regimes, and 2.55 with six regimes.  These 

values are not sensitive to the values of h and s, presumably because h and s affect the 

covariance in the numerator and the variance in the denominator by similar magnitudes.  

Although we believe these issues deserve a more complete treatment, we simply note here that 

the simulations confirm, in substance, our earlier results.  Even in steady state, parameter 

uncertainty can be a source of predictability. 
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3.6. Summary and conclusions  

 Financial economists generally assume that, unlike themselves, investors know the means, 

variances, and covariances of the return or cashflow process.  Practitioners do not have this 

luxury.  To apply the elegant framework of modern portfolio theory, they must estimate 

expected returns using whatever information is available.  As Black (1986) observes, however, 

the world is a noisy place and our observations are necessarily imprecise.  The estimation risk 

literature formalizes this problem.  Surprisingly, this literature has had little impact on 

mainstream thinking about equilibrium asset pricing and market efficiency.  We believe that this 

is due, in large part, to its focus on the subjective beliefs of investors, rather than the true, or 

empirical, distribution of returns.  As we have emphasized throughout the paper, the subjective 

distribution of returns does not have to correspond to the empirical distribution even when 

investors are rational. 

 Our analysis shows that parameter uncertainty can significantly affect the time-series and 

cross-sectional behavior of asset prices.  Prices in our model satisfy commonly accepted notions 

of market efficiency and rational expectations:  investors use all available information when 

making decisions and, in equilibrium, the perceived pricing function equals the true pricing 

function.  However, prices and returns violate standard tests of efficiency, suggesting that 

parameter uncertainty is likely to be important for characterizing an efficient market.  Although 

we do not argue that estimation risk necessarily explains specific asset-pricing anomalies, our 

results relate to several empirically-observed patterns in stock prices: 

 Return predictability.  Empirical studies document time-varying expected stock returns, 

captured by variables like past returns, aggregate dividend yield, and aggregate book-to-market 

(e.g., Keim and Stambaugh, 1986; Fama and French, 1989; Kothari and Shanken, 1997).  These 

studies attribute variation in expected returns to changes in business conditions or to irrational 

investors.  We find that estimation risk can be a third source of return predictability.  In our 

basic model, expected returns are negatively related to past prices, dividends, and returns.  The 
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price-reversal effects become more pronounced in long-horizon returns, consistent with the 

evidence of Fama and French (1988) and Poterba and Summers (1988).  In more elaborate 

models, parameter uncertainty could also give the appearance of underreaction or momentum in 

returns. 

 Volatility.  Leroy and Porter (1981) and Shiller (1981) derive bounds on the volatility of 

asset prices in an efficient market.  They conclude that prices ‘move too much to be justified by 

subsequent changes in dividends.’  Our findings suggest that estimation risk might help explain 

excess volatility.  Asset prices can reject the volatility bounds even though investors are rational 

and prices reflect all available information.  The volatility bounds can be viewed as tests of 

market efficiency only if investors have perfect knowledge of the dividend process.  In our 

simple model with IID dividends, price changes are completely uncorrelated with future 

dividends.  Thus, like the results on predictability, price volatility would suggest investor 

overreaction in the absence of estimation risk.  Asset prices can take long swings away from 

‘fundamental’ value, which are eventually reversed, giving the appearance of fads or bubbles in 

stock prices. 

 CAPM.  Many empirical studies find that the CAPM does not completely describe the 

cross-section of expected returns.  Departures from the CAPM have been attributed to missing 

risk factors, irrational investors, or trading frictions.  We find that estimation risk provides an 

additional explanation.  When investors must estimate expected dividends, returns will typically 

deviate from the predictions of the CAPM even if investors attempt to hold mean-variance 

efficient portfolios.  Moreover, the deviations can be predictable, both cross-sectionally and in 

time series, with past dividends, prices, and returns.  Our results complement previous studies 

on asset pricing with incomplete information (e.g., Williams, 1977). 

 The fact that estimation risk might explain these patterns does not, of course, mean that it 

does.  The impact of estimation risk on actual prices is obviously an empirical issue, which we 

plan to explore in future work.  Clarkson and Thompson (1990) find evidence that market betas 
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reflect differences in the quality of available information about firms, consistent with 

differentially-informative priors.  However, our analysis suggests the possibility of much more 

general effects on volatility and predictability, at both the individual-security and aggregate-

market levels.  The central question becomes:  To what extent do rational forecasts deviate from 

expectations based on perfect knowledge of the underlying cashflow process?  We believe, from 

casual observation and reading of the financial press, that these deviations could be quite large.  

To assess market efficiency in light of estimation risk, the researcher may, in effect, need to 

mimic the Bayesian-updating process of rational investors. 

 It is important to distinguish between ‘true’ uncertainty in the economy and estimation 

risk.  True uncertainty concerns economic conditions or events that could not be predicted even 

with complete knowledge of the underlying economic process.  In contrast, estimation risk 

refers to subjective uncertainty about some relevant characteristic of the economy that is already 

largely determined at the time of the forecast, but not directly observable.  Although the line 

between subjective and true is not always clear, the distinction can be important for asset 

pricing.  As we have seen, uncertainty about a predetermined characteristic (expected dividends 

in our model) gives rise to price-related predictability in returns, since resolution of this 

uncertainty is negatively related to past mistakes.  In contrast, resolution of true uncertainty will 

be unrelated to past information. 

As an example of subjective uncertainty, consider the rate of productivity growth in the 

United States, which has recently received much attention.  Market analysts debate whether past 

technological innovations allow the economy to grow more quickly.  The question, then, is 

whether productivity growth has already accelerated; the change in the economy is presumed to 

have already taken place, but it is unknown.  Similarly,  Lewis (1989) argues that demand for 

U.S. currency shifted in the early 1980s, but investors could not immediately learn about this 

change.  At the firm level, uncertainty about the demand for a firm’s product or service would 

generate estimation risk.  Consumers’ preferences, and consequently true expected demand, 
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might be predetermined, but ‘noise’ prevents investors from precisely measuring the true 

probability distribution of demand.  In all of these examples, the underlying economic process 

cannot be perfectly observed. 

 We close with a few reflections on the relation between data mining and estimation risk.  

In recent years, researchers and practitioners have become increasingly sensitive to the 

possibility that, with the intensive scrutiny of data common in investment research, ‘statistically 

significant’ return patterns can emerge even when returns are essentially random (see, for 

example, Lo and MacKinlay, 1990).  Thus, we might observe patterns that do not exist in the 

true underlying process.  Our analysis of estimation risk suggests a complementary concern.  

With hindsight, we can discern patterns that existed in the true return process, but could not 

have been exploited at the time by rational investors.  Similar to the results of data snooping, 

these patterns would not be relevant for future investment decisions.  Unlike data snooping, 

however, the patterns can persist in the future because they are part of the true process.  This 

conclusion provides an alternative perspective on empirical anomalies.  For example, Fama 

(1998) argues that various long-horizon return anomalies in the literature are chance results, 

consistent with market efficiency.  He finds that ‘apparent overreaction to information is about 

as common as underreaction’ and, given data mining and other methodological concerns, 

concludes that the overall weight of the evidence is not compelling.  Our work reinforces this 

conclusion by demonstrating that reversals and continuations might be expected in an efficient 

market with estimation risk, not only as a random outcome of the data but as a feature of the 

actual process. 
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Appendix A 
 
 This appendix supplements Chapter 2.  I prove that hi equals zero in eq. (2.5) and give a 

specific  example in which asset prices satisfy the proposition.  In addition, the appendix 

describes the Fama and French (1993) factors used in the empirical tests and summarizes the 

bootstrap simulations in Section 2.3. 

 

A.1. Proof that hi = 0 

 Let M be the proxy for the market portfolio, and assume that HML is constructed so that M 

and HML span the conditional tangency portfolio.  The portfolio weights of HML can change 

over time, but I suppress the time subscript for simplicity.  Without lack of generality, assume 

that cov(RM, HML) = 0.  We need to show that, under the mispricing story, the factor loading 

on HML must be zero in the unconditional time-series regression 

 Ri(t) = ai + bi RM(t) + hi HML(t) + ei(t). (A.1) 

I assume that mispricing is temporary, by which I mean that conditional deviations from the 

CAPM have expectation zero.  Also, assume that any time-variation in the conditional factor 

loadings is unrelated to time-variation in the factors’ expected returns.  These assumptions 

imply that the CAPM holds unconditionally: 

 E[Ri] = bi′ E[RM], (A.2) 

where bi′ is the unconditional market beta.  Also, taking expectations in eq. (A.1) yields: 

 E[Ri] = ai + bi E[RM] + hi E[HML]. (A.3) 

If ai = 0 and bi = bi′, then it follows from Eqs. (A.2) and (A.3) that hi must be zero.  Otherwise, 

the expected returns in the two equations cannot be equal.28  The orthogonality between RM and 

                                                 
28 I assume here that E[HML] ≠ 0.  It is straightforward to show that the conditional expectation of 

HML cannot be zero, and there is no reason that the unconditional expectation should be zero. 
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HML establishes that bi = bi′.  Also, M and HML span the tangency portfolio, so ′′a i  is zero in 

the conditional regression (e.g., Shanken, 1987) 

 Ri(t) = ′′a i  + ′′bi,t RM(t) + ′′h i,t HML(t) + ′′e i (t), (A.4) 

where the conditional market beta and loading on HML are given by ′′bi,t and ′′h i,t , respectively.  

Because changes in the parameters are uncorrelated with the factor expected returns, ai = ′′a i = 

0.  It follows that hi must be zero. 

 This proof depends on the assumption that time-variation in the conditional factor loadings, 

′′bi,t and ′′h i,t , is uncorrelated with the factors’ expected returns.  Although that assumption will 

not hold in general, it seems reasonable in my context because I am interested in the loadings 

changing over time with firm-specific variables, like B/M, not with macroeconomic conditions.  

Even if the assumption is not strictly true, previous studies suggest that correlation between the 

loadings and the factors has little effect on unconditional tests (e.g., Shanken, 1990).  To gain 

some additional intuition, it may be useful to provide an example in which the assumption – and 

proposition – are exactly true.  The example is similar to one presented by MacKinlay (1995). 

 The simplest scenario in which the assumption holds is when the factor expected returns 

are constant.  To construct this example, assume first that the expected excess return on the 

market is constant (or, more generally, is uncorrelated with deviations from the CAPM).  This 

assumption can be satisfied easily, regardless of whether the CAPM holds or not.  We want to 

show that the expected return on HML can also be constant.  Suppose that the residual 

covariance matrix, Σ, in market-model regressions is constant over time, non-singular, and has 

identical variances and covariances for all assets.  For example, Sharpe’s (1963) diagonal model 

or Ross’s (1976) strict factor structure, with the market return as the only factor, are special 

cases if there are common residual variances.  Also, suppose that conditional deviations from 

the CAPM, given by the N×1 vector αt, have cross-sectional mean zero and variance 2
ασ  at 
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every t.  The deviation for a given asset can fluctuate randomly over time, with mean zero, but 

we require that the cross-sectional dispersion is constant.  These assumptions are stronger than 

necessary, but deliver the desired result, as we now show. 

From MacKinlay (1995), the portfolio weights of HML are given by wHML,t = Σ -1αt.29  

Notice that an asset’ weight in the portfolio fluctuates over time with its mispricing.  In this 

example, and in the Fama and French (1993) three-factor model, HML is a zero-investment 

portfolio, ι′ wHML,t = 0.  This fact can be derived from the requirement that ι′ αt = 0 and the 

assumptions about Σ.  Since HML is uncorrelated with the market return, its expected return 

equals α′ wHML,t = αt′ Σ -1 αt = ∑ ∑ αασ−
i j t,jt,i

1
ij , where 1

ij
−σ  are the elements of the matrix Σ -1.  

By assumption, Σ -1 has constant diagonals ( 1
ii
−σ = c1) and constant off-diagonals ( 1

ij
−σ = c2, for i ≠ 

j).  Therefore, 

 Et[HML] = c1 ∑ α
i

2
t,i  + c2 ∑ ∑ ≠

αα
i ij t,jt,i  

 = N c1
2
ασ  + c2 ∑ ∑ ≠

αα
i ij t,jt,i  

 = N c1
2
ασ  + c2 ∑ α−α

i t,it,i )(  

 = N (c1 – c2) 2
ασ , 

where the final three lines all use the fact that αi,t has cross-sectional mean zero.  In this 

example, the expected return on HML depends only on the total amont of mispricing, measured 

by the cross-sectional dispersion of αi,t.  Therefore, the expected return on HML is constant, and 

more importantly, the unconditional factor loading, hi, must be zero. 

 The example helps develop some intuition about the proposition.  In general, it seems 

reasonable to believe that the expected return on HML will depend primarily on the cross-

sectional dispersion in αi,t.  When mispricing is large, investors can do much better than the 
                                                 

29 To be precise, the vector of weights defined here does not guarantee that HML is orthogonal to RM.  
Without loss of generality, I will assume that they are uncorrelated, but that is for convenience only. 
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CAPM, and HML has a high expected return.  There does not seem to be any obvious reason 

that a given asset’s mispricing should be strongly correlated with the overall amount mispricing 

in the market.  If so, then the proposition should hold fairly well. 

 

A.2. Factors 

The factors used in this study are similar to those of Fama and French (1993), with a few 

minor differences.  The three-factor model consists of market, size, and book-to-market factors.  

The market factor equals the return on the CRSP value-weighted index minus the T-bill rate at 

the beginning of the month.  This factor differs somewhat from the market factor used by Fama 

and French, since they used only stocks with Compustat data to calculate the market return.  

However, there is little reason to limit the regression to stocks on Compustat, so all firms on 

CRSP are used for both the dependent portfolios and the market factor. 

 The size and book-to-market factors are calculated as follows.  Each month, all stocks with 

market value data on CRSP for the previous month and book value data on Compustat for the 

previous fiscal year are sorted independently on size and B/M.  I do not assume that book data 

become known until five months after fiscal year end.  Following Fama and French, I define 

book equity as the book value of stockholder’s equity minus the book value of preferred stock 

plus balance-sheet deferred taxes and investment tax credits, where the book value of preferred 

stock is given by redemption, liquidation, or par value, in that order of availability.  Only firms 

with non-negative book equity and stock classified as common equity by CRSP are included. 

 Stocks are sorted into two size portfolios and three book-to-market portfolios, using as 

breakpoints the median market value and the 30th and 70th book-to-market percentiles of 

NYSE stocks, respectively.  I calculate value-weighted returns for each of the six portfolios 

formed by the intersection of the two size and three book-to-market portfolios.  In other words, 

returns are calculated for three portfolios of small stocks, with low, medium, and high B/M 

ratios, and for three portfolios of ‘big’ stocks, also with low, medium, and high B/M ratios.  The 
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size factor, SMB, equals the average return on the three small portfolios minus the average 

return on the three big portfolios.  The book-to-market factor, HML, equals the average return 

on the two high-B/M portfolios minus the average return on the two low-B/M portfolios.  

Hence, SMB and HML are returns on zero-investment portfolios designed to capture risk 

factors related to size and B/M, respectively. 

 

A.3. Bootstrap simulations 

 The OLS slope estimate is biased upward in a regression of stock returns on lagged B/M 

(see Stambaugh, 1986).  Since the bias in SUR estimates is unknown, I rely on bootstrap 

simulations to assess their sampling distribution. 

 The return regression can be thought of as part of the system 

 Ri(t) = γi0 + γi1 B/Mi(t-1) + ei(t), (A.5) 

 B/Mi(t) = ci + pi B/Mi(t-1) + ui(t). (A.6) 

The bias in the OLS estimate of γi1 is a function of pi and cov(ei, ui).  Therefore, to estimated the 

bias in the SUR estimates, the simulation maintains the strong autocorrelation in B/M and the 

negative covariance between ei and ui that are observed in the data.  Also, since SUR jointly 

estimates the system of equations for all portfolios, the simulation incorporates cross-sectional 

correlation among the residuals. 

 The bootstrap generates artificial time series of excess returns and B/M from eqs. (A.5) and 

(A.6).  To construct returns, γi0 is set equal to portfolio i’s average return and γi1 is set equal to 

zero.  Notice that the OLS bias is not a function of γi1 (see eq. 2.8 in the text), so the value of γi1 

that is chosen should not be important.  To construct B/M, the beginning value is given by the 

historical starting value and ci and pi are set equal to the sample estimates.  The artificial time 

series, for 368 months, are then generated by sampling from the OLS residuals of the system, 

obtained after adjusting for the OLS bias in γi1.  Each month of the sample, OLS produces a 
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vector of residuals from both equations, where the vectors are made up of the error terms for all 

portfolios.  I randomly select, with replacement, pairs of residual vectors from this population. 

 Given these series, I estimate the return equations using the SUR methodology.  The 

process is repeated 1500 times to construct an empirical distribution of SUR estimates.  Since 

γi1 equals zero by construction, the mean of the distribution estimates the bias in the SUR 

estimates.  The covariance matrix provides an estimate of the SUR standard errors and 

covariances. 
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Appendix B 
 
 This appendix supplements Chapter 3.  We describe the Bayesian inference problem for the 

numerical simulations presented in Table 3.1. 

The simulations are based on the renewal model of estimation risk, in which the mean of 

the dividend process is subject to periodic shocks.  Dividends are assumed to follow a geometric 

random walk with a time-varying growth rate: 

 ln dt+1 = gk + ln dt + ε t+1, (B.1) 

where ε t+1 ~ N[0, σ2] and gk is randomly drawn every K periods from a normal distribution with 

mean g* and variance σ2/s.  At the beginning of a regime, investors’ prior beliefs about gk are 

N[g*, σ2/h].  After t periods in a regime (t ≤ K), investors beliefs about gk are ] ,c[N 2
 tc,t σ , where 

 ∑ =
∆

+
+

+
=

t

1i i
*

t d ln
t
1
 

ht
t
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ht
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  c , (B.2) 
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+
=σ . (B.3) 

The predictive belief about log dividends next period is normally distributed with mean ct + ln dt 

and variance [(t+h+1)/(t+h)]σ2.  Actual dividends are log-normally distributed.  Converting the 

expectations about log dividends into actual dividends, and extending the results to any 

dividend in the next q periods, where t + q ≤ K (that is, dividends in the current regime), we 

have that the predictive distribution of dividends is log-normal with mean 

 [ ] 



 σ+σ+=+

2
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22
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2
1

   q 
2
1

  cexp d   d E . (B.4) 

This equation fully takes into account the fact that changes in log dividends are correlated with 

changes in beliefs about the growth rate.  In other words, investors recognize that their beliefs, 

both the mean and the variance, will evolve over time.  After the end of the current regime, 
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investors expect dividends to grow once again at the rate g*, and the variance of the growth rate 

is σ2/h.  Therefore, to derive beliefs about long-run dividends requires two steps:  first, take the 

expectation conditional on the realized dividend at the end of the current regime, dK, and then 

take the expectation conditional only on the current dividend, dt.  Details available on request. 


