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Abstract

Empirica studies find that stock returns are predictable both cross-sectionaly and over time.
Broadly spesking, this dissertation investigates whether the empirical patterns in stock returns
are consistent with an efficient capital market. The paper consists of two essays. In the first
essay, | investigate the ability of firms book-to-market ratios to predict returns, which has been
documented extensively in cross-sectional tests. To help understand the source of this
predictability, | examine the time-series relations among expected return, risk, and book-to-
market. Congistent with rationa pricing, book-to-market captures significant time-variation in
risk, but provides no incremental information about expected returns. In the second essay, |
explore the effects of estimation risk, or investor uncertainty about the parameters of the
cashflow process, on the behavior of prices and returns. | show that, with estimation risk, the
observable properties of prices and returns can differ significantly from the properties perceived
by rational investors. As a consequence, estimation risk can generate return predictability in
ways that resemble irrational pricing. Simulation evidence suggests the effects of estimation

risk can be economically significant.
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On the Predictability of Stock Returns: Theory and Evidence

Chapter 1
I ntroduction

Over the past 20 years, we have accumulated much evidence that stock returns are
predictable. At the aggregate level, Fama and Schwert (1977), Keim and Stambaugh (1986),
Fama and French (1989), and Kothari and Shanken (1997) show that interest rates, the yield
spread between low- and high-grade debt, aggregate dividend yield, and aggregate book-to-
market predict time-variation in expected returns. Further, LeRoy and Porter (1981) and Shiller
(1981) argue that the voldtility of stock prices is too high to be explained by a model with
constant discount rates, providing indirect evidence that expected returns change over time. At
the firm level, Fama and French (1992) conclude that size and book-to-market together explain
much of the cross-sectional variation in average returns. Jegadeesh and Titman (1993) aso
show that past returns contain additiona information about expected returns. In sum, there
seems little doubt that expected stock returns vary both cross-sectionally and over time.*

The interpretation of predictability, however, is more contentious. The empirica patterns
in returns are potentially consistent with either market efficiency or irrational mispricing. In
general terms, market efficiency implies that prices ‘fully reflect al available information.” To
formdize this idea for empirica testing, Fama (1976) distinguishes between the probability
distribution of returns perceived by ‘the market,” based on whatever information investors view
as relevant, and the true distribution of returns conditional on al information. The market is
said to be informationaly efficient if these didtributions are the same. As an obvious
consequence, market efficiency implies that investors correctly anticipate any cross-sectiond or
time-variation in tue expected returns. While Fama's definition ignores potentially important

issues like heterogeneous beliefs, it provides a useful framework for thinking about a broad set

! Clearly, this list of empirical papers and predictive variables is not meant to be exhaustive, and a
considerable amount of subsequent research extends, confirms, and critiques these findings. See Fama
(1991) for amore complete survey of the evidence.



of asset-pricing questions.

This paper contains two essays which, broadly speaking, attempt to understand whether the
empirical results are consistent with an efficient capital market. In the first essay, | investigate
the ability of ‘book-to-market’ ratios to predict returns. An extensive literature shows that the
ratio of a firm’'s book vaue to market value of equity — in short, book-to-market — explains
significant cross-sectional variation in expected returns. The intuition is that book value in the
numerator controls for the size of the firm (the size of expected cashflows), while market value
in the denominator captures information about discount rates. Both efficient-market and
mispricing stories have been offered to explain the evidence. In this paper, | examine the time-
series relations among expected return, risk, and book-to-market to help understand the source
of the predictability. As discussed in Chapter 2, the time-series anayss can help distinguish
between the rational- and irrational-pricing stories.

In the second essay, | investigate the impact of ‘estimation risk’ on the behavior of asset
prices. In the finance literature, estimation risk refers to investor uncertainty about the
parameters of the return or cashflow process. In other words, estimation risk exists whenever
investors do not have perfect information about some important feature of the economy.
Although it represents purely subjective uncertainty, estimation risk can have important
consequences for asset pricing because it affects investment decisions. In Chapter 3, | present a
smple modd of capital market equilibrium, and explore the consequences of estimation risk for
return predictability and tests of market efficiency. | aso present smulation evidence to give an
indication of the economic significance of the results. Again, the fundamental god is to
understand whether estimation risk might help explain the time-series and cross-sectional

evidence described above.



On the Predictability of Stock Returns: Theory and Evidence

Chapter 2
Thetime-seriesrelations among expected return,
risk, and book-to-market

Empirical research consistently finds a positive cross-sectional relation between average
stock returns and the ratio of a firm’s book equity to market equity (B/M). Stattman (1980) and
Rosenberg, Reid, and Lanstein (1985) document the association between expected returns and
B/M, which remains significant after controlling for beta, size, and other firm characteristics
(Fama and French, 1992). The explanatory power of B/M does not appear to be driven entirely
by data snooping or survival biases; it is found in stock markets outside the United States
(Chan, Hamao, and Lakonishok, 1991; Haugen and Baker, 1996) and in samples drawn from
sources other than Compustat (Davis, 1994). As a whole, the evidence provides considerable
support for the cross-sectiona explanatory power of B/M.

At least two explanations have been offered for the empirical evidence. According to
asset-pricing theory, B/M must proxy for a risk factor in returns. The significance of B/M in
competition with beta contradicts the capital asset pricing model (CAPM) of Sharpe (1964),
Lintner (1965), and Black (1972), or more precisely, the meanvariance efficiency of the market
proxy. However, the evidence might be consistent with the intertempora models of Merton
(1973) and Breeden (1979). In these models, the market return does not completely capture the
relevant risk in the economy, and additional factors are required to explain expected returns. |If
a multifactor model accurately describes stock returns, and B/M is cross-sectionally correlated
with the factor loadings, then the premium on B/M simply reflects compensation for risk.

A positive relation between B/M and risk is expected for several reasons. Chan and Chen
(1991) and Fama and French (1993) suggest that a distinct ‘distress factor’ explains common
variation in stock returns. Poorly performing, or distressed, firms are likely to have high B/M.

These firms are especidly sensitive to economic conditions, and their returns might be driven



by many of the same macroeconomic factors (such as variation over time in bankruptcy costs
and access to credit markets). In addition, following the arguments of Ball (1978) and Berk
(1995), B/M might proxy for risk because of the inverse relation between market value and
discount rates. Holding book value constant in the numerator, a firm's B/M ratio increases as
expected return, and consequently risk, increases.

Alternatively, B/M might provide information about security mispricing. The mispricing
view takes the perspective of a contrarian investor. A firm with poor stock price performance
tends to be underpriced and have a low market value relative to book value. As a result, high
B/M predicts high future returns as the underpricing is eliminated. Lakonishok, Shleifer, and
Vishny (1994) offer a rationae for the association between past performance and mispricing.
They argue that investors naively extrapolate past growth when evaluating a firm’'s prospects.
For example, investors tend to be overly pessmistic about afirm which has had low or negative
earnings. On average, future earnings exceed the market’'s expectation, and the stock does
abnormally well. Thus, the mispricing argument says that B/M captures biases in investor
expectations.

Fama and French (1993) provide evidence of a relation between B/M and risk. Using the
time-series approach of Black, Jensen, and Scholes (1972), they examine a multifactor model
congsting of market, sze, and book-to-market factors, where the size and book-to-market
factors are stock portfolios constructed to mimic underlying risk factors in returns. If the model
explains cross-sectional variation in average returns, the intercepts will be zero when excess
returns are regressed on the three factors. Fama and French find, as predicted by the risk-based
view, that the model does a good job explaining average returns for portfolios sorted by size,
B/M, earnings-price ratios, and other characteristics. Further, they document a strong
association between a stock’s B/M ratio and its loading on the book-to-market factor.

More recently, Daniel and Titman (1997) argue in favor of a characteristics-based model,

consistent with the mispricing view. They suggest that the three-factor model does not directly



explain average returns. Instead, the model appears to explain average returns only because the
factor loadings are correlated with firms characteristics (Sze and B/M). To disentangle the
explanatory power of the factor loadings from that of the characteristics, Daniel and Titman
construct test portfolios by sorting stocks first on B/M ratios and then on factor loadings. This
sorting procedure creates independent variation in the two variables. Consistent with the
mispricing story, Daniel and Titman find a stronger relation between expected returns and B/M
than between expected returns and factor loadings. Daniel and Titman conclude that firm
characterigtics, in particular B/M, and not covariances determine expected stock returns.

In this essay, | provide further evidence on the risk- and characteristics-based stories. In
contrast to Fama and French (1993) and Daniel and Titman (1997), | focus on the time-series
relations among expected return, risk, and B/M. Specificdly, | ask whether a portfolio’s B/M
ratio predicts time-variation in its expected return, and test whether changes in expected return
can be explained by changes in risk. Recently, Kothari and Shanken (1997) and Pontiff and
Schall (1998) find that B/M forecasts stock returns at the aggregate level, but the predictive
ability of B/M for individua stocks or portfolios has not been explored.

The time-series andysis is a natura aternative to cross-sectional regressons. An
attractive feature of the time-series regressionsis that they focus on changesin expected returns,
not on average returns. The mispricing story suggests that a stock’s expected return will vary
over time with B/M, but it says little about average returns if mispricing is temporary. Cross-
sectional regressions, however, can pick up arelation between average returns and B/M. The
time-series regressions aso highlight the interaction between B/M and risk, as measured by
time-variation in market betas and the loadings on the Fama and French (1993) size and book-
to-market factors. Further, |1 can directly test whether the three-factor mode explains time-
varying expected returns better than the characteristics-based model. These results should help
distinguish between the risk and mispricing stories.

The empirica tests initially examine B/M’s predictive ability without attempting to control



for changes in risk. | find that a portfolio’'s B/M ratio tracks economicaly and statistically
sgnificant variation in its expected return. An increase in B/M equal to twice its time-series
standard deviation forecasts a 4.6% (annualized) increase in expected return for the typical
industry portfolio, 8.2% for the typical size portfolio, and 9.3% for the typica book-to-market
portfolio. The average coefficient on B/M across al portfolios, 0.99, is approximately double
the cross-sectional dope, 0.50, found by Fama and French (1992, p. 439). B/M explans,
however, only a smdl fraction of portfolio returns, generdly less than 2% of total volatility.

Return predictability indicates that either risk or mispricing changes over time. Of course,
we cannot distinguish between these explanations without some model of risk. Following
Daniel and Titman (1997), | examine B/M’s explanatory power in competition with the Fama
and French (1993) three-factor model. The multifactor regressions employ the conditiona
asset-pricing methodology of Shanken (1990), which dlows both expected returns and factor
loadings to vary over time with B/M. In these regressions, time-variation in the intercepts
measures the predictive ability of B/M that cannot be explained by changes in risk. The
mispricing view suggests that the intercepts will be postively related to B/M; the risk-based
view implies that changes in the factor loadings will eliminate B/M’s explanatory power,
assuming the Fama and French factors are adequate proxies for priced risk in the economy.

Empiricaly, the factors absorb much of the volatility of portfolio returns, which permits
relatively powerful tests of the competing stories. | find that B/M explains sgnificant time-
variation in risk, but does not provide incremental information about expected return. In
generd, the loadings on the size and book-to-market factors vary positively with a portfolio’'s
B/M ratio, and dtatistical tests strongly reject the hypothesis of constant risk. The results for
market betas are more difficult to characterize: across different portfolios, B/M predicts both
significant increases and significant decreases in beta. Overdl, B/M contains substantial
information about the riskiness of stock portfolios.

In contragt, the intercepts of the three-factor model do not vary over time with B/M. For



the industry portfolios, the average coefficient on B/M (that is, variation in the intercept) has
the opposite sign predicted by the overreaction hypothesis and is not significantly different from
zero. Across the 13 portfolios, eight coefficients are negative and none is significantly positive
a conventiona levels. The results are smilar for size and book-to-market portfolios: the
average coefficients are indistinguishable from zero, and roughly haf are negative.
Importantly, the inferences from the multifactor regressions are not driven by low power. For
all three sets of portfolios, statistical tests can reject economicaly large coefficients on B/M. In
short, the three-factor model measures risk sufficiently wel to explain time-variation in
expected returns.

As an asde, | find that the book-to-market factor, HML, explains common variation in
returns that is unrelated to its industry composition. Daniel and Titman (1997) argue that HML
does not proxy for a distinct risk factor, but explains return covariation only because smilar
types of firms become mispriced at the same time. For example, a bank with high B/M will
covary postively with HML simply because the factor is weighted towards underpriced
financid firms. The time-series regressions provide evidence to the contrary. As an alternative
to HML, | estimate the regressions with an ‘industry-neutral’ book-to-market factor. This factor
is constructed by sorting stocks on their industry-adjusted B/M ratios, defined as the firm’s B/M
minus the industry average, so the factor should never be weighted towards particular
industries.  The results using the industry-neutral factor are smilar to those with HML. Thus,
HML'’ s explanatory power does not appear to be driven by industry factorsin returns.

The remainder of the essay is organized as follows. Section 2.1 introduces the time-series
regressions. Section 2.2 describes the data to be used in the empirical tests. Section 2.3

estimates the ssimple relation between expected returns and B/M, and Section 2.4 tests whether

2| also replicate the empirical tests using size in place of B/M, with similar results. There is some
evidence that size and expected returns are negatively related in time series. In conditional three-factor
regressions, size captures significant time-variation in risk, but does not contain additional information
about expected returns. Details are available on request. | thank Ken French for suggesting these tests.



the predictive ability of B/M can be explained by changesin risk, as measured by the Fama and

French (1993) three-factor model. Section 2.5 summarizes the evidence and concludes.

2.1. Distinguishing between characteristics and risk

Book-to-market explains cross-sectiona variation in average returns after controlling for
beta. Fama and French (1993) provide evidence that B/M relates to common risk factors in
returns. In contrast, Daniel and Titman (1997) argue that the Fama and French factors appear to
be priced only because the loadings are correlated with firm characterigtics, like B/M. This
section introduces the time-series methodology used in the current paper and discusses, more

generaly, asset-pricing tests of the risk and mispricing stories.

2.1.1. Time-series methodol ogy

The empirical tests initidly examine the smple relation between expected returns and
B/M. The explanations that have been offered for the cross-sectiona evidence aso suggest that
expected returns will vary over time with B/M. According to the risk-based view, B/M should
capture information about changes in risk, and consequently, expected return. The mispricing
view says that B/M is related to biases in investor expectations, and will contain information
about under- and overpricing. Thus, both explanations predict a positive dope coefficient in the
regression

Ri(t) = go + g1 B/M;(t-1) + & (1), (2.1

where R is the portfolio’s excess return and B/M; isits lagged book-to-market ratio. Note that
eg. (2.1) specifies a separate time-series regression for each portfolio, with no constraint on the
coefficients across different portfolios. The regressions focus only on the time-series relation
between expected returns and B/M, and do not pick up any cross-sectiona relation.

Eq. (2.1) makes no attempt to understand the source of time-varying expected returns.

According to traditional asset-pricing theory, a positive dope in eg. (2.1) must be driven by an



association between B/M and risk. It follows that the predictive power of B/M should be
eliminated if the regressions control adequately for changes in risk. The characteristics-based
story, on the other hand, suggests that B/M will capture information about expected returns that
is unrelated to risk. To help distinguish between the two explanations, | examine the predictive
power of B/M in competition with the Fama and French (1993) three-factor model.

The multifactor regressons employ the conditiona time-series methodology of Shanken
(1990). Roughly speaking, these regressons combine the three-factor model with the smple
regressions above. Fama and French estimate the unconditional model

Ri(t) =& + h Ry(t) + s SMB(t) + h HML(t) + e (t), (2.2
where Ry is the excess market return, SMIB (small minus big) is the size factor, and HML (high
minus low) is the book-to-market factor. Unconditional, here, refers to the implicit assumption
that the coefficients of the model are constant over time. If this assumption is not satisfied, the
estimates from eq. (2.2) can be mideading. The unconditiona intercepts and factor loadings
could be close to zero, but might vary considerably over time.

The conditional regressions alow both expected returns and factor loadings to vary with
B/M. Suppose, for smplicity, that the coefficients of the three-factor model are linearly related
to the firm’s B/M ratio, or

& = 8o + 81B/M;(t-1), b = bo + b B/M;(t-1),

St = So + S:B/M;(t-1), he = ho + hiB/Mi(t-1). (23)
Substituting these equations into the unconditiona regression yields a conditiona version of the
three-factor model:

R =ao+ a:B/M; + (bo + b:B/M)*Ry +

(So + S1B/M;)*SMB + (ho + h,B/M;)*HML + g, (2.4)
where the time subscripts have been dropped to reduce clutter. Multiplying the factors through

gives the regresson equation for each portfolio. Thus, the conditiona regressions contain not
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only an intercept and the three factors, but also four interactive terms with the portfolio’s lagged
B/M.

Basicdly, eg. (2.4) breaks the predictive power of B/M into risk and non-risk components.
The coefficient g, the interactive term with the intercept, measures the predictive ability of
B/M that is incremental to its association with risk in the three-factor model. A non-zero
coefficient says that changes in the factor loadings, captured by the coefficients b, s, and hy,
do not fully explain the time-series relation between B/M and expected return. Thus, rationa
asset-pricing theory predicts that a; will be zero for all stocks, assuming that the factors are
adequate proxies for priced risk. The mispricing, or characteristics-based, view implies that

B/M will forecast returns after controlling for risk and, consequently, &, should be postive.

2.1.2. Discussion

The conditional regressions directly test whether the three-factor model or the
characteristic-based model better explains changes in expected returns. To interpret the
regressions as a test of rational pricing, we must assume, of course, that the Fama and French
factors capture priced risk in the economy. This assumption could be violated in two important
ways (see Rall, 1977). Firgt, an equilibrium multifactor modd might describe stock returns, but
the Fama and French factors are not adequate proxies for the unknown risks. In this case, B/M
can predict time-variation in expected returns missed by the three-factor model if it relates to
the true factor loadings. Fortunately, this problem will not be a concern for the current paper
because the three-factor model will, in fact, explain the predictability associated with B/M.

Unfortunately, the assumption can also be violated in the opposite way: mispricing might

explain deviaions from the CAPM, but the size and book-to-market factors happen to absorb

% Similar regressions appear in previous studies. Fama and French (1997) estimate regressions in
which only the factor loadings on HML vary with B/M. He et al. (1996) estimate a nodel in the spirit of
eq. (2.4), but they constrain the intercepts and book-to-market coefficients to be the same across
portfolios. Given previous cross-sectional evidence, the B/M coefficient will be non-zero in the absence
of time-varying expected returns.
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the predictive power of B/M. This possibility is a concern particularly because the factors are
empiricaly motivated. Danid and Titman (1997), for example, argue that the construction of
HML, which is designed to mimic an underlying risk factor in returns related to B/M, could
induce ‘spurious correlation between a portfolio’'s B/M ratio and its factor loading. HML is
weighted, by design, towards firms with high B/M. If smilar types of firms become mispriced
at the same time, then we should expect that a firm will covary more strongly with HML when
its B/M is high. As a result, apparent changes in risk might help explain B/M’s predictive
ability even under the mispricing story.

In defense of the time-series regressions, it seems unlikely that changes in the factor
loadings would completely absorb mispricing associated with B/M. More importantly, Daniel
and Titman's argument cannot fully account for the relation between B/M and risk. The
argument suggests that the loadings on HML will tend to vary with B/M, but it does not say
anything about the loadings on the market and size factors. We will see below, however, that
B/M captures significant time variation in market betas and the loadings on SMB. Further, |
provide evidence in Section 2.4 that the time-series relation between B/M and the factor
loadings on HML is not driven by changes in the industry composition of the factor. | estimate
the conditional regressons with an ‘industry neutrd’ factor, which prevents HML from
becoming weighted towards particular industries. When this factor is used in place of HML, we
will continue to see a strong time-series relation between B/M and the factor loadings.

Findly, it is useful to note that many industries have large unconditional factor loadings on
HML, which suggests that HML does not smply capture mispricing in returns.  Intuitively,
Danid and Titman's argument suggests that a given stock will sometimes vary positively and
sometimes negatively with HML. Depending on the type of firms that are currently under- and
overpriced, HML will be related to constantly changing micro- and macroeconomic factors.
For example, HML will be sendtive to interest rate and inflation risk when it is weighted

towards underpriced financid firms, but will be negatively related to these risks when financia
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firms are overpriced. Corresponding to the changes in HML, a stock will tend to covary
positively with HML when smilar firms are underpriced, but negatively when smilar firms are
overpriced. Over time, however, a firm's average factor loading on HML should be close to
zero under the mispricing story, unless firms are persistently under- and overpriced (which
seems unreasonable).

This intuition can be formaized. Suppose that temporary overreaction explains deviations
from the CAPM, and that HML, because of its construction, absorbs this mispricing (ignore the
size factor for smplicity). To be more specific, assume that the proxy for the market portfolio,
M, is not meanvariance efficient conditiona on firms B/M ratios. However, HML is
constructed to explain the deviations from the CAPM, and R, and HML together an the
conditiona tangency portfolio. Appendix A proves that, in the time-series regression

Ri(t) =a +h Ru(t) + h HML(Y) + &(t), (25)
the unconditional factor loading on HML, h, will equal zero if assets are correctly priced on
average over time.* This result reflects the idea that temporary mispricing should not explain
unconditiona deviations from the CAPM. As noted above, however, many industries have
large unconditiond loadings on both SMB and HML, which therefore suggests that the factors
do not simply capture mispricing in returns.

In summary, the multifactor regressions test whether the three-factor mode or the
characteristic-based model explains time-variation in expected returns. The interpretation of the
regressions, like the results for any asset-pricing test, is limited by our need to use a proxy for
the unobservable model. Nevertheless, the regressions should help us understand whether the

risk or mispricing story is a better description of asset prices.

4 The result also requires that time-variation in iy and h; is uncorrelated with the factors’ expected
returns. This assumption seems reasonable since | am interested in the factor loadings changing over
time with firm-specific variables, like B/M, not with macroeconomic variables (the appendix provides a
numerical example). Itisalso consistent with the empirical evidence presented in Section 2.4.
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2.2. Data and descriptive statistics

The empirical andysis focuses on industry portfolios. These portfolios should exhibit
cross-sectional variation in expected returns and risk, so the tests can examine a diverse group
of portfolios. Industry portfolios are believed a priori to provide variation in expected returns
and factor loadings, while sorting by other criteria is often motivated by previous empirical
evidence. Hence, industry portfolios are less susceptible to the data-snooping issues discussed
by Lo and MacKinlay (1990).

As arobustness check, | aso examine portfolios sorted by size and B/M. In cross-sectiona
studies, different sets of portfolios often produce vastly different estimates of risk premia. Of
course, the time-series regressions in this paper might aso be sensitive to the way portfolios are
formed. Size portfolios have the advantage that they control for changes in market value, which
has been shown to be associated with risk and expected returns, yet should be relatively stable
over time. The book-to-market portfolios alow us to examine how the expected returns and
risk of distressed, or high-B/M, firms change over time.

The portfolios are formed monthly from May 1964 through December 1994, for a time
series of 368 observations. The industry and size portfolios consist of al NYSE, Amex, and
Nasdag stocks on the Center for Research in Security Prices (CRSP) tapes, while the book-to-
market portfolios consist of the subset of stocks with Compustat data. Stocks are sorted into 13
industry portfolios based on two-digit Standard Industrial Classification (SIC) codes as reported
by CRSP. For the most part, the industries consist of consecutive two-digit codes, although
some exceptions were made when deemed appropriate.” The size portfolios are formed based
on the market value of equity in the previous month, with breakpoints determined by NY SE
deciles. To reduce the fraction of market value in any single portfolio, the largest two portfolios
are further divided based on the 85th and 95th percentiles of NY SE stocks, for a total of 12

portfolios. Finaly, the book-to-market portfolios are formed based on the ratio of book equity

® Details available on request.
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in the previous fisca year to market equity in the previous month. Again, the breskpoints for
these portfolios are determined by NY SE deciles. The lowest and highest deciles are further
divided using the 5th and 95th percentiles of NY SE stocks, for atotal of 12 portfolios.

For al three sets of portfolios, value-weighted returns are calculated using al stocks with
CRSP data, and vaue-weighted B/M ratios are caculated from the subset of stocks with
Compustat data.® To ensure that the explanatory power of B/M is predictive, | do not assume
that book data become known until five months after the end of the fiscal year. Also, to reduce
the effect of potentia selection biases in the way Compustat adds firms to the database (see the
discussion by Kothari, Shanken, and Sloan, 1995), a firm must have three years of data before it
is included in any calculation requiring book @ta. The time-series regressions use excess
returns, calculated as returns minus the one-month T-bill rate, and the natura logarithm of B/M.

Table 2.1 reports summary statistics for the portfolios. The average monthly returns for
the industry portfolios range from 0.83% for utilities and telecommunications firms to 1.28%
for the service industry (which includes entertainment, recreation, and services), for an
annudized spread of 6.1%. Coincidentaly, these industries aso have the lowest (3.67%) and
highest (6.78%) standard deviations, respectively. The size and book-to-market portfolios also
exhibit wide variation in average returns and volatility. Average returns for the size portfolios
vary from 0.80% for the largest stocks to 1.24% for the smallest stocks, and the standard
deviations of returns decrease monotonically with size, from 6.68% to 4.17%. Average returns
for the book-to-market portfolios range from 0.76% for the second decile through 1.46% for the
stocks with the highest B/M. Interestingly, the standard deviation of returns are U-shaped; they
decrease monotonicaly with B/M until the sixth decile, which has a standard deviation of
4.42%, and increase thereafter, to 6.86% for portfolio 10b.

The satistics for B/M, like those for returns, reveal considerable cross-sectional

® The stocks included in the calculation of B/M are a subset of those included in the calculation of
returns, and we can interpret the estimate of B/M as a proxy for the entire portfolio. The inferences in
this paper are unchanged when portfolio returns are based only on those stocks with Compustat data.



Table2.1
Summary statigtics for industry, size, and book-to-market portfolios

Each month from May 1964 through December 1994, value-weighted portfolios are formed monthly from all NY SE, Amex, and Nasdaq stocks on
CRSP. Firms must also have Compustat data for the book-to-market portfolios. Book-to-market (B/M) is calculated as the ratio of book equity in
the previous fiscal year to market equity in the previous month for all stocks with Compustat data. The industry portfolios are based on two-digit
SIC codes. The size portfolios are based on the market value of equity in the previous month, with breakpoints determined by NY SE deciles;
portfolios 9 and 10 are further divided using the 85 and 95 percentiles of NY SE stocks. The book-to-market portfolios are based on B/M in the
previous month, with breakpoints determined by NY SE deciles; portfolios 1 and 10 are further divided using the 5 and 95 percentiles of NY S63E

stocks.

Return (%) Book-to-market Number of firms

Portfolio Mean  Std. dev. Mean Std. dev.  Autocorr. Adj. R*® May 1964  Dec. 1994
Panel A: Industry portfolios

Nat. resources 0.84 5.69 0.57 014 0.97 0.28 0 360
Construction 0.86 5.45 0.78 0.26 0.99 0.69 237 409
Food, tobacco 121 457 0.51 0.18 0.99 0.36 106 134
Consumer products 1.05 6.02 0.75 0.36 0.99 0.81 108 257
Logging, paper 0.98 535 0.4 0.15 0.98 054 74 190
Chemicas 0.96 4.78 0.40 0.13 0.99 0.28 102 392
Petroleum 1.08 523 0.74 0.20 0.98 0.38 30 32
Machinery, equipment 0.88 5.35 0.42 0.13 0.99 0.40 290 1222
Transportation 0.87 5.39 0.82 0.27 0.98 071 162 260
Utilities, telecom. 0.83 3.67 0.77 0.25 0.99 0.57 122 334
Trade 104 5.65 0.49 0.18 0.98 0.55 167 785
Financial 0.95 475 0.75 0.19 0.97 0.68 117 1,747
Services and other 1.28 6.78 0.47 0.20 0.98 0.55 61 981
Panel B: Sze portfolios

Smalest 124 6.68 103 041 0.98 0.88 409 3,338
2 116 6.17 0.90 0.32 0.97 0.79 175 932
3 115 6.08 0.85 0.30 0.97 0.77 154 634
4 1.16 591 0.84 0.31 0.97 0.80 149 463

a1



Table 2.1. Continued.

Return (%) Book-to-market Number of firms

Portfalio Mean Std. dev. Mean Std. dev. Autocorr. Adj. R?? May 1964  Dec. 1994
5 121 5.70 0.76 0.26 0.96 0.80 136 426
6 1.22 541 0.72 0.23 0.97 0.88 130 333
7 1.07 5.19 0.68 0.19 0.97 0.88 132 310
8 1.09 513 0.67 0.19 0.98 0.86 130 274
%a 1.02 4.89 0.67 0.18 0.97 0.78 62 122
% 0.97 471 0.66 0.20 0.97 0.78 64 111
10a 0.88 450 0.62 0.17 0.98 0.70 63 109
Largest 0.80 417 0.51 0.15 0.9 0.41 62 109
Panel C: Book-to-market portfolios

Lowest 0.98 5.69 0.15 0.05 0.97 0.59 21 559
1b 0.83 5.15 0.24 0.07 0.97 0.64 19 328
2 0.76 5.04 0.34 0.10 0.97 0.82 40 493
3 0.79 4.78 0.46 0.14 0.98 0.93 39 470
4 0.83 4.63 0.57 0.18 0.98 0.94 39 469
5 0.82 4.47 0.67 0.21 0.98 0.94 42 492
6 0.98 4.42 0.78 0.24 0.98 0.94 40 467
7 117 454 0.89 0.28 0.98 0.94 42 461
8 1.25 472 1.04 0.32 0.98 0.95 43 460
9 143 5.20 1.28 0.40 0.98 0.96 43 574
10a 1.46 6.12 1.65 0.53 0.97 0.93 24 378
Highest 1.46 6.86 2.66 0.95 0.96 0.84 25 482

2 Adjusted R from regressing the portfolio’'s B/M ratio on the value-weighted B/M ratio of all stocks that meet both CRSP and Compustat data
requirements.

9T
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differences in portfolio characteristics. Average B/M doubles from 0.40 for chemica firms to
0.82 for the transportation industry. A similar spread is shown for size portfolios, with B/M

ranging from 0.51 for the largest stocks to 1.03 for the smallest stocks. The book-to-market
portfolios, of course, have the greatest cross-sectional variation, with average B/M ranging from
0.15 for the low-B/M portfolio to 2.66 for the high-B/M portfolio. The standard deviations over
time are aso reasonably high, reflecting the volatility of stock returns. The time-series standard
deviation of B/M is, on average, 0.20 for the industries, 0.24 for the size portfolios, and 0.29 for
the book-to-market portfolios. Variation in B/M will be necessary for the time-series
regressions to have power distinguishing between the competing hypotheses.

Table 2.2 reports summary statistics for the Fama and French (1993) factors, which are
described fully in Appendix A. The market factor, Ry, is the excess return on the CRSP value-
weighted index, and the size and book-to-market factors, SMB and HML, are zero-investment
portfolios designed to mimic underlying risk factors in returns. The average monthly return of
Rwu is 0.39%, of SMB is 0.30%, and of HML is 0.38%. The risk premium for each factor is
measured by its mean return, so these averages imply positive compensation for bearing factor
risk. Asnoted by Fama and French, the procedure used to construct SMB and HML appears to
successfully control each factor for the influence of the other, as demonstrated by the low
correlation between the factors, equal to -0.06. Also, SMB is podtively correated with R,
(correlation of 0.36), while HML is negatively corrdated with Ry (-0.35). Thus, the returns on
the size and B/M factors are not independent of the market return, reflecting the fact that their
construction did not control for differencesin the betas of the underlying stocks.

The CAPM and most empirica studies examine the relation between smple-regression
market betas and expected returns. To enhance comparison with cross-sectiona studies, | use
size and B/M factors that are orthogona to R,. These factors, SMBO and HMLO, are
constructed by adding the intercepts to the residuals when SMB and HML are regressed on a

constant and the excess market return. From regression anaysis (e.g., Johnston, 1984, p. 238),
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Table 2.2
Summary statistics for factors

The factors are calculated monthly from May 1964 through December 1994. Ry, isthereturn onthe
CRSP vaue-weighted index minus the one-month T-bill rate. SMB is the return on a portfolio of
small stocks minus the return on a portfolio of big stocks. HML is the return on portfolio of high-
B/M stocks minus the return on a portfolio of low-B/M stocks. SMBO and HMLO are
orthogonalized versions of SMB and HML, constructed by adding the intercepts to the residuals in
regressions of SMB and HML on a constant and Ry. All returns are reported in percent.

Correlation
Factor Mean Std.dev. Autocorr. Ru SMB HML SMBO HMLO
Ru 0.39 445 0.06 1.00 0.36 -0.35 0.00 0.00
SMB 0.30 291 0.19 1.00 -0.06 0.93 0.07
HML 0.38 3.00 0.14 1.00 0.07 0.94
SMBO 021 271 0.06 1.00 0.07
HMLO 0.47 281 0.14 1.00

the coefficients in the three-factor model will be unaffected by the change in variables, except
that market betas will now be the smple-regression betas of the CAPM. Table 2.2 shows that
the average return on the book-to-market factor increases from 0.38% to 0.47%, but the return
on the size factor decreases from 0.30% to 0.21%. The correlation between the size and book-

to-market factors, 0.07, remains close to zero.

2.3. The predictability of portfolio returns

This section investigates the smple time-series relation between expected returns and B/M.
The smple regressions help evauate the economic importance of B/M, without regard to
changes in risk or mispricing, and provide a convenient benchmark for the conditional three-
factor model. In addition, the anaysis complements recent studies which find that B/M
forecasts aggregate stock returns (Kothari and Shanken, 1997; Pontiff and Schall, 1998).

As discussed above, the risk and mispricing views both suggest that B/M will predict

portfolio returns. For each portfolio, | estimate the time-series regression

R (t) =0got 01 B/Nh(t-l) + € (t), (26)
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where R, is the portfolio’s excess return and B/M; is the naturd log of its lagged book-to-market
ratio. The slope coefficient in this regression is expected to be positive.

Severa complications arise in estimating eg. (2.6). Firdt, the appropriate definition of B/M
is unclear. Cross-sectiona studies suggest that a portfolio’s B/M relative to other firms could
be important. Thus, B/M;(t-1) might be defined as either the portfolio’s actual B/M ratio or its
B/M ratio minus an aggregate index. The latter varies primarily with market-adjusted stock
returns, and would be a better measure if common variation in B/M is unrelated to mispricing.”
Asset-pricing theory provides little guidance. The conclusions in this paper are not sensitive to
the definition of B/M, and for simplicity | report only results for raw B/M. Also, to ease the
interpretation of the results, B/M is measured as deviations from its time-series mean for the
remainder of the paper. As a consequence, when B/M; equals zero in the regressions, B/M is
actualy at its long-run average for the portfolio.

Second, Stambaugh (1999) shows that contemporaneous carrelation between returns and
B/M will bias upward the dope coefficient in eg. (2.6). Suppose that B/M follows the AR(1)

process

B/M;(t) = c; + p B/M(t-1) + u(t). 27
The bias in the estimate of g, is gpproximately

B9, - 9i,] » [cov(e, u) / var(w)] X{-(1+3p) / T], (28)

where T is the length of the time series. The residuas in egs. (2.6) and (2.7), g and u, are
negatively related because a positive stock return decreases the portfolio’'s B/M. Also, Table
2.1 shows that B/M is highly persstent over time, with autocorrelations ranging from 0.96 to

0.99 a the first lag. Together, the correlation between ¢ and y and the persistence in B/M

" Kothari and Shanken (1997) and Pontiff and Schall (1998) show that aggregate B/M predicts market
returns during the period 1926 through 1992, which could reflect aggregate mispricing. Their results for
the period 1963 through 1992 are much weaker. For the current paper, preliminary tests indicate that
aggregate B/M has little power to forecast the market, size, and book-to-market factors.
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impart a strong upward bias in the estimate of g;. In arelated context, for market returns
regressed on aggregate B/M, Kothari and Shanken (1997) bootstrap the distribution of the dope

and find that Stambaugh’s formulais empiricdly valid. The tests below adjust for this bias.

2.3.1. Industry portfolios

Table 2.3 reports results for the industry portfolios. The evidence provides some support
for a podtive association between expected returns and lagged B/M, but the high volatility of
stock returns reduces the power of the tests. The bias-adjusted slopes range from -0.53 for food
and tobacco firms to 1.75 for the natura resources industry, and 10 of the 13 coefficients are
greater than zero. The average estimate is positive, 0.58, athough it is only about one standard
eror, 0.62, from zero (the standard error reflects cross-sectional correlation in the estimates).
Stronger evidence of predictive ability is provided by the c? test of the Sope coefficients. This
test regjects at the 5% level the hypothesis that B/M does not capture any variation in expected
returns.

The average coefficient, 0.58, is smilar to the cross-sectional dope, 0.50, estimated by
Fama and French (1992). Economicaly, the average coefficient is reasonably large. Consider,
for example, the effect that a change in B/M equal to two standard deviations would have on
expected returns. For the average industry portfolio, the time-series standard deviation of B/M
is 0.33. An increase in B/M twice this large maps into a 0.38% change (0.66 ~ 0.58) in
expected return for the typical portfolio, or 4.67% annudly. On the other hand, the predictive
power of B/M islow as measured by the adjusted R’s. Lagged B/M explains at most 1% of the
total variation in portfolio returns. This result is consistent with previous studies at the market
level, which generdly find that pre-determined variables explain only a smal fraction of
monthly returns (e.g., Fama and French, 1989).

In addition to the ordinary least squares (OLS) estimates just described, Table 2.3 reports

seemingly unrelated regression (SUR) estimates of the equations. OL S treats the regression for



Table2.3
Predictability of industry returns

Ri(t) = go + g1 B/Mi(t-1) + &(t)

The industry portfolios are described in Table 2.1. R is the portfolio’s monthly excess return (in percent) and B/M; is the natural log of the
portfolio’s book-to-market ratio at the end of the previous month. The table reports both ordinary least squares (OLS) and seemingly unrelated
regression (SUR) estimates of the slope coefficients. The OLS bias-adjusted slopes correct for small-sample biases using eg. 2.8 in the text. The
bias correction for the SURS, as well as the covariance matrix of the bias-adjusted estimates, is obtained from bootstrap simulations.

OoLS SUR

Portfolio 01 Biasadjg,  Std. er. Adj. R g Std.err.  Biasadjg,  Std. er.
Nat. resources 256 175 1.19 0.01 0.67 0.69 0.07 0.77
Construction 1.10 0.15 0.83 0.00 0.13 0.29 -0.30 0.44
Food, tobacco 0.35 -0.53 0.64 0.00 0.50 0.31 0.17 043
Consumer products 0.88 -0.06 0.72 0.00 0.71 031 0.33 0.45
Logging, paper 2.07 120 1.07 0.01 0.20 043 -0.30 0.55
Chemicals 1.01 0.09 0.78 0.00 0.06 0.35 -041 0.51
Petroleum 233 1.46 1.00 0.01 156 0.67 0.96 0.80
Mach., equipment 0.77 -0.19 0.80 0.00 -0.25 0.31 -0.69 0.50
Transportation 1.19 0.37 0.80 0.00 0.41 0.35 -0.02 0.47
Utilities, telecom. 1.06 0.40 0.57 0.01 111 0.36 0.77 0.52
Trade 1.69 0.97 0.88 0.01 0.70 0.37 0.35 0.45
Financial 1.93 1.18 0.96 0.01 114 0.42 0.74 0.47
Sarvices, other 1.69 0.79 0.93 0.01 0.86 0.36 0.51 0.46
Average 143 0.58 0.60 0.17

(std. err.) (0.62) (0.62) (0.20) (0.23)

c?® 18.44 26.42" 2248 9.83

(p-value) (0.142) (0.015) (0.048) (0.707)

3¢2 = ¢¢S? ¢, where c is the vector of coefficient estimates and S is the estimate of the covariance matrix of c. Under the null that all coefficients are zero,
this statistic is asymptotically distributed asc? (d.f. 13).
" Denotes coefficients that are greater than two standard errors from zero or ¢ statistics with a p-value less than 0.050.

Tc
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each portfolio separately, and ignores interactions among the equations. The resduas across
portfolios are correlated, however, because industries excess returns are driven by many of the
same macroeconomic factors. SUR uses this information to estimate the system of equations
more efficiently (Zellner, 1962). Although SUR requires an estimate of the residua covariance
matrix, the efficiency gain is likely to be large because (1) the error terms are highly correlated
across portfolios (see Greene, 1993, p. 489), and (2) the dimension of the covariance matrix
(13" 13) is smal relative to the length of the time series (368 months). Indeed, Table 2.3 shows
that the average standard deviation of the SUR dopes is 0.40, compared with 0.86 for OLS.
While the standard deviations are estimated with error, the large decrease suggests that SUR is
substantially more efficient.

It was noted above that OLS slope estimates are biased upward. | am not aware of any
research that explores the bias in SUR estimates, and there is little reason to believe that it is
identical to that of OLS. Without an anaytica estimate, | rely on bootstrap smulations to
assess the sampling digtribution of the SUR dopes. The smulation procedure, described in
Appendix A, randomly generates time series of returns and B/M, imposing the restriction that
expected returns and B/M are unrelated. Since the true coefficient in the simulation equals zero,
the mean of the distribution represents the bias in SUR estimates. Further, the standard
deviation of the distribution provides an estimate of the SUR standard error.?

Table 2.3 shows that the bias-adjusted SUR estimates tend to be smaller than their OLS
counterparts. The coefficients range from -0.69 for the machinery and equipment industry to
0.96 for petroleum firms, and eight of the 13 estimates are positive. The average coefficient on
B/M, 0.17, is positive, dthough it is under one standard error, 0.23, from zero. In addition, the

c? gatistic cannot reject the hypothesis that all slope coefficients are zero. The smulations

8| also simulate the distribution of the OLS slope estimates and find that the analytical estimate of the
bias is reasonably accurate. The average bias from the simulations is 0.92 compared with 0.85 from eq.
(2.8). The standard errors from the simulation, however, tend to be larger than the OLS estimates. For
example, the standard deviation of the average coefficient is 0.76, compared with the OLS standard error
of 0.62.
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indicate that the average bias in the SUR estimates, 0.43, is about haf the bias in the OLS
regressions, 0.85. The magnitude remains significant, however, and the average SUR
coefficient decreases by two-thirds, from 0.60 to 0.17, after correcting for bias.

In sum, the evidence in Table 2.3 is consistent with a positive relation between B/M and
expected returns, but B/M explains, at most, a small fraction of returns. After adjusting for bias
in the regressions, only the c® datistic for the OLS dope coefficients is significant at
conventional levels. We will see below that the power of the tests is much greater in the
conditional three-factor regressions, because the factors absorb much of the volatility of returns.
In addition, the sze and book-to-market portfolios reved a considerably stronger relation
between B/M and future returns.

As a find observation, it is useful to keep in mind that the regressions cannot reject
economicaly meaningful coefficients on B/M. A typica confidence interva around the
average estimate, for either OLS or SUR, would include reasonably large coefficients.
Moreover, low explanatory power does not imply that B/M is necessarily unimportant. For
example, Kandel and Stambaugh (1996) show that predictive variables with low explanatory
power can have a large impact on asset allocation decisions. | suspect a similar result would
hold a the portfolio leve: the optimd portfolio held by a risk-averse, Bayesian investor is

probably sengitive to predictive variables which have low statistical significance.

2.3.2. Size and book-to-market portfolios

Table 2.4 shows results for the size and book-to-market portfolios. For smplicity, | report
only the SUR egtimates, adong with the bias-adjusted estimates, since the evidence above
indicates that SUR increases the precision of the slope estimates. The table shows that B/M
predicts Satistically reliable variation in returns for both the size and book-to-market portfolios.
After correcting for bias, four coefficients for the size portfolios and nine coefficients for the

book-to-market portfolios are more than two standard errors above zero. All 12 estimates are



Table2.4
Predictability of returns: Size and book-to-market portfolios

Ri(t) = go + g1 B/Mi(t-1) + &(t)

The size and book-to-market portfolios are described in Table 2.1. R isthe portfolio’s monthly excess return (in percent) and B/M; isthe natural log
of the portfolio’s book-to-market ratio at the end of the previous month. The table reports seemingly unrelated regression (SUR) estimates of the
slope coefficients, together with bias-adjusted slope estimates. The bias correction for the SURs, as well as the covariance matrix of the bias-
adjusted estimates, is obtained from bootstrap simulations.

Size portfolios Book-to-market portfolios

Portfolio SURg; Std.err. Bias-adj g, Std. err. Portfolio SUR g, Std. e, Bies-adjg, Std.er.
Smallest 0.07 0.33 0.00 0.28 L owest -0.22 0.57 -045 054
2 0.32 0.23 0.31 0.15 1b -0.22 0.55 -0.46 0.50
3 0.30 0.21 0.28 0.13 2 057 0.55 0.31 0.45
4 031 0.19 0.29 0.15 3 121 0.51 0.96 044
5 0.18 0.20 0.15 0.15 4 132 0.50 1.09 042
6 0.19 0.20 0.16 0.15 5 132 0.51 1.06 0.45
7 0.38 0.22 0.34 0.17 6 119 0.52 093 0.45
8 045 0.22 0.40° 0.18 7 1.80 0.53 151 0.46
%9a 0.46 0.26 0.42 0.21 8 1.85 0.56 153 0.49
% 0.44 0.24 0.38 0.21 9 2.09 0.60 177 0.49
10a 054 0.28 0.45 0.24 10a 227 0.74 1.88 0.61
Largest 0.18 0.33 0.03 0.39 Highest 252 0.79 214 0.68
Average 0.32 0.27 Average 131 1.02

(std. err.) (0.16) (0.08) (std. err.) (0.46) (0.29)

c?? 10.84 20.71 c?? 2512 2821

(p-vaue) (0543 (0.055) (p-vaue) (0.024) (0.005)

3¢2 = ¢¢S? ¢, where c is the vector of coefficient estimates and S is the estimate of the covariance matrix of c. Under the null that all coefficients are zero,
this statistic is asymptotically distributed asc? (d.f. 12).
" Denotes coefficients that are greater than two standard errors from zero or ¢ statistics with a p-value less than 0.050.

ve
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positive for the size portfolios, and the average coefficient, 0.27, is greater than three standard
errors from zero. Similarly, ten of the 12 coefficients for the book-to-market portfolios are
positive, and the average coefficient, 1.02, is more than three standard errors above zero. The
estimates generally increase from the low-B/M deciles to the high-B/M deciles.

Interestingly, the bias in the regressions is significantly smaller for the size and book-to-
market portfolios than for the industry portfolios. The bootstrap estimate of the bias is 0.05 for
the size portfolios and 0.29 for the book-to-market portfolios, compared with 0.43 for the
industries (see Table 2.3). Also, the standard errors from the smulated distribution are less than
the actual SUR estimates, while the opposite is true for industry portfolios. From the bootstrap
distribution, the standard error of the average coefficient is only 0.08 for the size portfolios and
0.29 for the book-to-market portfolios.

Economically, the individua estimates and the average coefficient are quite large for the
book-to-market portfolios. A two-standard-deviation increase in B/M for the typica portfolio
predicts a 0.61% monthly increase in expected return, or 7.6% annually. The implied changein
expected return is greater than 11% annudly for the five portfolios with the highest B/M. The
conclusions from the OLS regressions (not reported) are qualitatively similar, but the estimates
are less precise. The average bias-adjusted OLS dope is 1.13 (standard error of 0.82) for the
size portfolios and 1.30 (standard error of 0.77) for the book-to-market portfolios. The strong
relation between expected returns and B/M documented in Table 2.4 should provide a

challenging test of the three-factor model.

2.4. Expected returns, characteristics, and risk: Empirical results

The evidence above indicates the B/M predicts significant time-variation in expected
returns. In this section, | examine the explanatory power of B/M in competition with the Fama
and French (1993) three-factor modedl. As discussed above, the conditiona regressions directly

test whether the three-factor modd or the characteristic-based modd better explains changesin
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expected returns over time.

Fama and French estimate the unconditional model
Rt =a +hRu(t) + s SMBO(t) + h HMLO(t) + &(t), (29)
where SMB and HML have been replaced here by the orthogonalized factors SMBO and
HMLO (see Section 2.2). The conditional version of the three-factor model alows the
intercepts and factor loadings to vary linearly with lagged B/M. Repeating eg. (2.4), the
conditional model is specified as.
R = a0 + a:B/M; + (bo + b:1B/M;)*Ry +
(S0 +5:B/M)*SMBO + (ho + h;B/M;)*HMLO + e, (2.10)
where B/M is lagged one month relative to returns and time subscripts have been dropped for
samplicity. Multiplying the factors through gives the equation to be estimated for each
portfolio. The B/M interactive term with the intercept, a;, is anaogous to the dope coefficient
in the simple regressions above, except that the multifactor regressions control for changes in

risk. Consequently, a; measures the predictive ability of B/M that cannot be explained by the

Fama and French three-factor modd.

2.4.1. Industry portfolios

Before continuing to the conditionad model, Table 2.5 reports unconditiona three-factor
regressions for the industry portfolios.” Consistent with the results of Fama and French (1997),
the size and book-to-market factors explain significant co-movement in industry returns not
captured by the market. For both SMBO and HMLO, ten of the 13 coefficients deviate from
zero by more than two standard errors. In fact, nine coefficients on the size factor and eight
coefficients on the book-to-market factor are greater than four standard errors from zero. If the

loadings change over time and are uncorrelated with the factors, the unconditional estimates can

® For these regressions, OLS and SUR are identical because the regressors are the same for all
portfolios (Greene, 1993, p. 488).



Table2.5
Unconditiona three-factor regressions. Industry portfolios

Ri(t) = a + b Ry(t) + 5 SMBO(t) + h HMLO(t) + g(t)

The industry portfolios and factors are described in Tables 2.1 and 2.2. R isthe portfolio’s monthly excess return (in percent). Ry isthereturn on
the CRSP value-weighted index minus the one-month T-bill rate. SMBO is the return on a portfolio of small stocks minus the return on a portfolio
of big stocks, orthogonalized with respect to Ry. HMLO is the return on portfolio of high-B/M stocks minus the return on a portfolio of low-B/M
stocks, again orthogonalized with respect to Ry. The table reports ordinary least squares estimates of the equations and the Gibbons, Ross, and
Shanken (1989) F-test of the intercepts.

a b S h

Portfolio Coeff.  Std. err. Coeff. Std. err. Coeff.  Std. err. Coeff.  Std. err. Adj R?
Nat. resources -0.05 0.20 0.97 0.04 0.03 0.07 -0.02 0.07 0.57
Construction -023 0.10 114 0.02 0.31 0.04 0.17 0.03 0.89
Food, tobacco 0.38 0.12 0.90 0.03 012 0.04 -0.01 0.04 0.77
Consumer products -0.15 0.12 1.18 0.03 0.68 0.04 0.19 0.04 0.86
Logging, paper 0.01 0.11 111 0.02 0.05 0.04 0.05 0.04 0.85
Chemicals 0.21 0.10 0.98 0.02 -0.21 0.04 -0.20 0.03 0.85
Petroleum 0.29 0.19 0.81 0.04 -045 0.07 0.12 0.07 053
Mach., equipment 0.04 0.10 111 0.02 0.14 0.04 -0.28 0.04 0.87
Transportation -0.24 0.12 1.08 0.03 0.20 0.04 0.28 0.04 0.83
Utilities, telecom. -0.06 0.10 0.65 0.02 -0.26 0.04 0.38 0.04 0.74
Trade 0.03 0.14 113 0.03 0.26 0.05 0.01 0.05 0.80
Financia -0.04 0.08 1.00 0.02 -0.04 0.03 021 0.03 0.89
Sarvices, other 0.16 0.11 138 0.03 0.74 0.04 -017 0.04 0.90
GRSF 2.63

(p-value) (0.003)

3 The GRS Fstatistic equals (T-N-K+1) / [N(T-K)] xa¢S™ a, where a is the vector of intercept estimates, S is the estimate of the covariance matrix of a, T is
368 (months), N is 13 (portfolios), and K is 4 (independent variables). Under the null hypothesis that all intercepts are zero, and assuming that returns are
multivariate normal, this statistic is distributed as F (d.f. 13, 352).

" Denotes coefficients that are greater than two standard errors from zero.
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be interpreted as the average factor sengtivities of the industries. Therefore, unless some
industries were ‘distressed’ throughout the sample period, the significant explanatory power of
SMBO and HMLO suggests that they proxy for more than just distress factors. Instead, the
mimicking portfolios appear to reflect information relevant to a broad cross section of firms (see
aso Section 2.4.3).

The factors, however, cannot completely explain cross-sectiona variaion in average
returns. Under the hypothesis that the three-factor model explains average returns, the
intercepts in the time-series regressions should be zero. Table 2.5 shows that several intercepts
are individudly significant, and the Gibbons, Ross, and Shanken (1989) Fstatistic rejects at the
1% level the redtriction that al are zero. Economicaly, the intercepts are generaly small, but
two ceviate from zero by over 3% annualy. In sum, SMBO and HMLO proxy for pervasive
risk factors in industry portfolios, and the three-factor model provides a reasonable, though not
perfect, description of average returns.™

Table 2.6 reports SUR estimates of the conditional modd. For smplicity, | do not report
the constant terms of the intercepts and factor loadings (&0, Bo, So, @and hy). Since the
industries B/M ratios are measured as deviations from their time-series means, the constant
terms are simply estimates of the average coefficients, and they are nearly identica to the
unconditional resultsin Table 2.5. Across all parameters, the mean absolute difference between
the constant terms and the unconditional estimates in Table 2.5 is 0.017; for the intercepts only,
it is 0.006. The similarity between the two sets of regressons indicates that changes in the
loadings are largely uncorrelated with the factors.

The interactive terms with B/M are more interesting for our purposes. The table shows

that B/M captures time-variation in risk, but does not appear to directly predict expected returns.

19 As a robustness check, | also estimate heteroskedastic-consistent standard errors and an
asymptotically valid c? statistic for the hypothesis that all intercepts are zero (based on the covariance
estimates of White, 1984; see also Shanken, 1990). The results are not sensitive to heteroskedasticity
adjustments.



Table 2.6
Conditiona three-factor regressions: Industry portfolios

R = ao + a1B/M; + (bio + b1B/M)) Ry + (S0 + s1B/Mj) SMBO + (hio + h;B/M;) HMLO + g

The industries and factors are described in Tables 2.1 and 2.2. R isthe portfolio’s monthly excess return (%) and B/M; isthe natural log of its book-
to-market ratio, as a deviation from its mean. Ry is the excess return on the CRSP value-weighted index. SMBO isthe return on small stocks minus
the return on big stocks, with cov(Ry, SMBO) =0. HMLO is the return on high-B/M stocks minus the return on low-B/M stocks, with cov(Ry,
HMLO) = 0. The table reports SUR estimates of the interactive terms, a1, bi1, Si1, and h;1, which measure time-variation in the intercept and loadings.

a b S hy

Portfolio Coeff. Std. err. Coeff. Std. err. Coeff. Std. err. Coeff. Std. err.
Nat. resources -0.13 0.62 -0.01 0.12 -0.28 0.23 -0.22 0.20
Construction -0.36 0.24 -0.16 0.05 0.05 0.09 0.14 0.09
Food, tobacco -0.12 0.26 0.02 0.05 023 0.09 0.40 0.09
Consumer products 0.03 0.23 -017 0.04 0.12 0.08 027 0.07
Logging, paper -0.28 0.38 -0.06 0.07 -0.11 0.14 0.34 0.13
Chemicals -0.30 0.28 -0.05 0.06 0.06 0.10 0.28 0.10
Petroleum 0.62 054 -0.05 0.12 -0.32 0.20 -0.16 0.19
Mach., equipment 072 0.22 0.03 0.05 0.18 0.08 0.29 0.08
Transportation 0.07 0.30 -024 0.07 0.00 0.12 0.02 0.10
Utilities, telecom. 0.33 0.26 0.01 0.06 0.12 0.10 0.04 0.09
Trade -0.05 0.32 -0.02 0.07 027 0.12 055 0.10
Financial 0.43 0.31 0.07 0.07 -0.17 0.12 -033 0.11
Services, other -0.08 0.27 0.00 0.05 0.23 0.10 035 0.08
Average -0.04 -0.05 0.03 0.15

(std. err.) (0.09) (0.02) (0.03) (0.03)

c?? 14.27 3894 24.72 05.76

(p-value) (0.355) (0.000) (0.025) (0.000)

3c? = ¢St ¢, where c is the vector of coefficient estimates and S is the estimate of the covariance matrix of ¢. Under the null that all coefficients are zero,
this statistic is asymptotically distributed asc? (d.f. 13).
Denotes coefficients that are greater than two standard errors from zero or c? statistics with a p-value less than 0.050.
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The c? statistics easily reject the hypotheses that B/M is unrelated to the loadings on Ry,
SMBO, and HMLO. The B/M interactive terms with R,, SMBO, and HMLO are over two
standard errors from zero for 3 portfolios, 4 portfolios, and 8 portfolios, respectively. B/M
tends to be postively related to the loadings on the size and book-to-market factors (financial
firms are the exception), but negatively related to market betas. Interpreting increases in B/M
as evidence of distress, it appears that market risk becomes relatively less important for
distressed industries.  While somewhat surprising, a similar result has been documented
previoudly for firms near bankruptcy (e.g., McEnally and Todd, 1993).

In contrast, there is no evidence that B/M explains economicaly or statistically significant
variation in the intercepts. None of the interactive terms with the intercepts is significantly
postive, eight of the 13 estimates are negative, and the average coefficient, -0.04, is
insignificantly different from zero (standard error of 0.09)." In fact, the only significant
coefficient is actually negative (for the machinery and equipment industry), which is
inconsistent with the overreaction story. In addition, the c? statistic cannot reject the hypothesis
that al coefficients on B/M are zero, with a pvaue of 0.355. Thus, variation in risk appears to
explain any association between B/M and expected returns.

Importantly, the lack of statistical significance is not driven by low power. The standard
error of the average coefficient is relatively low, 0.09, and alows rejection of economicaly
significant dopes. For example, suppose that the actua coefficient is two standard errors above
the sample estimate, or 0.13. This coefficient maps into less than a 0.09% change in the
monthly intercept when B/M varies by 0.66, twice its standard deviation for the typica

portfolio. The OLS estimates (not reported) of the conditiona regressions support these

M There is no mechanical reason that the average coefficient is zero. Conditional asset-pricing tests
typically use the same conditioning variables for al portfolios, and some linear combination of the
coefficients must be zero. However, no linear constraint is imposed on the coefficients here because B/M
differs across portfolios. For example, aggregate B/M explains, on average, half of the variation in an
industry’s B/M ratio. In fact, when B/M is measured net of an aggregate index, the average correlation
across portfolios isnecessarily closeto zero.
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conclusons. Individualy, the B/M coefficients are not significant, with an average estimate
equal to -0.07 (standard error of 0.11), and the ¢ statistic does not reject the joint restriction
that al are zero (p-value of 0.370). The evidence is inconsistent with the argument that B/M
proxies for mispricing in stock returns.

We saw earlier that the dope estimate is biased upward in a Simple regression of returns on
lagged B/M. The B/M term in the three-factor regression islikely to be biased upward as well,
which would strengthen the conclusions above. An ad hoc estimate of the bias can be obtained
by subgtituting the residuas from the three-factor regressions for the smple-regression error
termsin eg. (2.8). The average bias estimated this way, 0.17, is much smaller than the bias in
the smple regressions, 0.85. Bootstrap simulations like those described in Section 4 produce a

samilar estimate, 0.18.

2.4.2. Size and book-to-market portfolios

Tables 2.7 and 2.8 report smilar findings for the size and book-to-market portfolios. In the
unconditional regressions in Table 2.7, SMBO and HMLO capture significant co-movement in
stock returns.  For the size portfolios, the loadings on al factors are greatest for the smallest
portfolios and decrease amost monotonicaly with size. They range from 0.91 to 1.22 on the
market factor, -0.31 to 1.39 on SMBO, and -0.08 to 0.30 on HMLO. For the book-to-market
portfolios, the loadings on SMBO and HMLO increase amost nonotonically from the lowest to
the highest deciles. The coefficients vary widely across portfolios. The cross-sectional spread
is -0.09 to 0.87 for the loadings on SMBO and -0.77 to 0.97 for the loadings on HMLO. Market
betas are generaly close to one, ranging from 0.91 to 1.13, but are highest for the extreme
portfolios (portfolios 1a and 10b). Consistent with the evidence in Fama and French (1993), the
multivariate Fstatistic rejects the asset-pricing restriction that al intercepts are zero. However,
the deviations from zero are small (with the exception of low-B/M portfolio), and the three-

factor model provides afairly accurate description of average stock returns.



Table 2.7
Unconditiona three-factor regressions. Size and book-to-market portfolios

Ri(t) = a + b Ry(t) + 5 SMBO(t) + h HMLO(t) + g(t)

The portfolios and factors are described in Tables 2.1 and 2.2. R isthe portfolio’s monthly excess return (in percent). Ry isthereturn onthe CRSP
value-weighted index minus the one-month T-bill rate. SMBO is the return on a portfolio of small stocks minus the return on a portfolio of big
stocks, orthogonalized with respect to Ry. HMLO is the return on portfolio of high-B/M stocks minus the return on a portfolio of low-B/M stocks,
again orthogonalized with respect to Ry. The table reports ordinary least squares estimates of the equations and the Gibbons, Ross, and Shanken
(1989) F-test of the intercepts.

a b S h
Portfolio Coeff.  Std. err. Coeff.  Std. err. Coeff. Std. err. Coeff.  Std. err. Ad R
Panel A: Sze portfolios
Smallest -0.15 0.09 116 0.02 139 0.03 0.30 0.03 0.93
2 -013 0.05 119 0.01 1.09 0.02 0.19 0.02 0.97
3 -011 0.04 122 0.01 0.96 0.02 0.15 0.01 0.98
4 -0.05 0.05 121 0.01 0.84 0.02 0.12 0.02 0.98
5 0.03 0.05 119 0.01 0.74 0.02 0.11 0.02 0.98
6 0.09 0.05 115 0.01 0.59 0.02 0.11 0.02 0.97
7 -0.01 0.05 112 0.01 043 0.02 0.10 0.02 0.97
8 0.02 0.05 112 0.01 0.27 0.02 0.13 0.02 0.97
%9a 0.01 0.06 107 0.01 0.09 0.02 0.14 0.02 0.95
% -0.01 0.05 104 0.01 0.05 0.02 0.11 0.02 0.96
10a 0.00 0.05 0.99 0.01 -0.12 0.02 0.03 0.02 0.96
Largest 0.04 0.04 0.91° 0.01 -0.31 0.01 -0.08 0.01 0.97
GRSF 243
(p-value) (0.005)

(Table 2.7 continued on next page)
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Table 2.7. Continued.

a b [ h
Portfolio Coeff.  Std. err. Coeff. Std. err. Coeff. Std. err. Coeff.  Std. er. Adj R?
Panel B: Book-to-market portfolios
Lowest 040 0.09 112 0.02 -0.02 0.03 077 0.03 0.01
la 0.11 0.09 107 0.02 -0.09 0.03 -042 0.03 0.90
2 -0.04 0.07 1.09 0.01 -007 0.02 -0.25 0.02 0.9
3 -0.06 0.07 103 0.02 -0.06 0.03 -0.10 0.02 0.92
4 -0.10 0.08 0.99 0.02 -0.04 0.03 0.09 0.03 0.90
5 -0.14 0.08 0.95 0.02 -0.01 0.03 0.19 0.03 0.89
6 -0.05 0.08 091 0.02 -0.06 0.03 0.39 0.03 0.90
7 0.08 0.07 0.93 0.02 -001 0.03 0.48 0.03 0.91
8 0.06 0.07 0.93 0.02 0.10 0.03 0.65 0.03 0.01
9 0.14 0.08 101 0.02 025 0.03 0.71 0.03 0.92
10a 0.02 0.12 112 0.03 052 0.04 0.81 0.04 0.87
Highest -0.12 0.15 113 0.03 0.87 0.06 0.97 0.05 0.82
GRS P 224
(p-value) (0.010)

2The GRS Fstatistic equals (T-N-K+1) / [N(T-K)] xa¢S™ a, where a is the vector of intercept estimates, S is the estimate of the covariance matrix of a, T is
368 (months), N is 12 (portfalios), and K is 4 (independent variables). Under the null hypothesis that all intercepts are zero, and assuming that returns are
multivariate normal, this statistic is distributed as F (d.f. 12, 353).

" Denotes coefficients that are greater than two standard errors from zero.
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The conditional three-factor regressions are more important for the current paper. Table
2.8 reports SUR estimates for the conditional model, in which intercepts and factor loadings
vary linearly with lagged B/M. As before, the constant terms in the regressions are similar to
the unconditional coefficientsin Table 2.7, and | report only the interactive terms with B/M.

The evidence supports the conclusion that B/M captures significant variation in risk, but
has little power to directly predict expected returns. For both sets of portfolios, the ¢ statistics
strongly reject, at the 0.001 level, the hypothesis that B/M is unrelated to the factor loadings.
B/M displays a consstently positive relation to the loadings on the size and book-to-market
factors. For the 24 portfolios shown in Table 2.8, 15 of the interactive terms with SMBO are
greater than two standard errors above zero, and only one is significantly negative. Similarly,
16 of the coefficients on HMLO are dgnificantly postive, and only one is sgnificantly
negative. The relation between B/M and markets betas is mixed. Anincreasein B/M predicts
smdller betas for ten portfolios and larger betas for eight portfolios. Together with Table 2.6,
the conditiona regressions provide considerable evidence that B/M explains variation in risk.

Changes in risk absorb nearly al of B/M’s predictive ability. The interactive terms with
the intercepts are generaly small and statigtically insignificant. The average coefficient for the
size portfolios is 0.00 (standard error of 0.05) and for the book-to-market portfolios is 0.03
(standard error of 0.07). Neither estimate is statistically different from zero, and we can regject
economicaly significant coefficients. For example, true coefficients of 0.10 and 0.17 are two
standard errors above the averages reported in Table 2.8. These coefficients map into 0.06%
and 0.10% changes in monthly expected returns, respectively, when B/M varies by twice its
sandard error for the typica portfolio. The findings are dtriking given the significant
explanatory power of B/M in simple regressions (see Table 2.4). By controlling for changesin
risk, the average slopes on B/M decrease from 0.27 to 0.00 for the size portfolios and 1.02 to
0.03 for the book-to-market portfolios. B/M does not appear to have incrementa explanatory

power in predicting returns.



Table2.8
Conditiona three-factor regressions. Size and book-to-market portfolios

R = ao + 3:B/M; + (bio + B1B/M)) Ry + (S0 + s1B/Mj) SMBO + (hio + h;B/M;) HMLO + g

The portfolios and factors are described in Tables 2.1 and 2.2. R isthe portfolio’s monthly excess return (in percent) and B/M,; is the natural 1og of
the portfolio’s book-to-market ratio, measured as a deviation from its time-series mean. Ry is the excess return on the CRSP value-weighted index.
SMBO is the return on a portfolio of small stocks minus the return on a portfolio of big stocks, orthogonalized with respect to Ry. HMLO isthe
return on portfolio of high-B/M stocks minus the return on a portfolio of low-B/M stocks, again orthogonalized with respect to Ry. The table
reports SUR estimates of the interactive terms, a1, bi1, Si1, and h, which measure time-variation in the intercepts and factor loadings.

al b]_ Sl hl
Portfolio Coeff. Std. err. Coeff. Std. arr. Coeff. Std. err. Coeff. Std. err.
Panel A: Sze portfolios
Smallest -0.10 0.24 -0.10 0.04 -0.08 0.09 017 0.07
2 0.09 0.15 -0.10 0.03 0.05 0.05 0.25 0.04
3 0.09 0.12 -0.06 0.02 0.07 0.04 0.17 0.04
4 0.06 0.12 -0.06 0.02 011 0.04 022" 0.04
5 -0.09 0.12 -0.09 0.02 0.08 0.04 0.21 0.04
6 -0.10 0.13 -0.05 0.02 0.19 0.05 017 0.04
7 -0.01 0.15 0.02 0.03 033 0.05 0.16 0.04
8 0.03 0.14 0.09 0.03 0.19° 0.05 0.18 0.04
% -0.16 0.17 0.10 0.03 0.23 0.06 0.18 0.05
% 0.07 0.15 0.08 0.03 0.14 0.05 0.07 0.05
10a 0.18 0.15 0.09 0.03 0.07 0.06 -0.06 0.06
Largest -0.07 0.08 -0.08 0.02 -0.21° 0.03 -0.02 0.03
Average 0.00 -0.01 0.10 014
(std. err.) (0.05) (0.01) (0.02) (0.01)
c?® 7.67 78.67 8149 126.28
(p-value) (0.810) (0.000) (0.000) (0.000)

(Table 2.8 continued on next page)
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Table 2.8. Continued.

a b]_ S hl
Portfolio Coeff. Std. err. Coeff. Std. err. Coeff. Std. err. Coeff. Std. err.
Panel B: Book-to-market portfolios
Lowest -0.70 0.25 021 0.05 0.24 0.09 -0.18 0.09
1b -0.79 0.27 0.10 0.06 -0.01 0.10 0.17 0.09
2 -0.04 0.23 -0.03 0.05 021 0.08 0.05 0.07
3 067 0.24 -0.08 0.04 0.06 0.09 0.09 0.07
4 043 0.25 -0.11 0.05 0.19 0.09 0.19 0.08
5 0.24 0.25 -013 0.05 0.30 0.09 0.25 0.08
6 -0.07 0.25 -013 0.05 0.05 0.09 043 0.07
7 0.35 0.25 0.00 0.04 0.12 0.09 0.32 0.07
8 0.17 0.25 -0.07 0.05 0.18 0.09 0.33 0.07
9 0.34 0.26 0.13 0.05 0.35 0.10 -0.02 0.08
10a 0.05 0.39 0.18 0.07 033 0.14 0.27 0.11
Highest -0.26 0.43 0.16 0.08 0.68 0.16 051 0.12
Average 0.03 0.02 023 0.20
(std. err.) (0.07) (0.01) (0.03) (0.02)
c?? 2432 42.08 103.26 146.74
(p-value) (0.018) (0.000) (0.000) (0.000)

3¢2 = ¢¢S™ ¢, where c is the vector of coefficient estimates and S is the estimate of the covariance matrix of c. Under the null that all coefficients are zero,
this statistic is asymptotically distributed asc? (d.f. 12).
Denotes coefficients that are greater than two standard errors from zero or c? statistics with a p-value less than 0.050.
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Individually, the estimates for the size portfolios are small, and the ¢ statistic cannot reject
the hypothesis that al coefficients are zero, with a pvalue of 0.810. The results for the book-
to-market portfolios, however, provide some evidence of predictability: two coefficients are
significantly negative (-0.70 and -0.79 for portfolios 1a and 1b) and one is significantly positive
(0.67 for the portfolio 3). | discount the significance of the negative coefficients since they are
inconsistent with both the efficient-market and overreaction stories. Also, the positive
coefficient is the maximum estimate observed after searching over many coefficients, which

provides an upward-biased estimate of the true maximum.*?

Overdl, the picture that emerges
from Tables 2.6 and 2.8 is that B/M contains substantial information about the riskiness of stock
portfolios, but does not directly predict expected returns. There is virtualy no support for the

overreaction hypothesis.

2.4.3. Industry-neutral HML

Danid and Titman (1997) argue that HML does not proxy for a separate risk factor in
returns, but explains return covariation only because similar types of firms become mispriced at
the same time. Their argument suggests that an industry’s B/M ratio and its loading on HML
will be related even under the mispricing story. By construction, HML invests in stocks with
high B/M ratios. When an industry’s B/M increases, HML becomes weighted toward firms in
that industry and will, therefore, tend to covary more strongly with the industry return. In this
case, time-varying factor loadings on HML might help explain mispricing related to B/M. To
check whether the results for industry portfolios are driven by changes in the industry
composition of HML, | replicate the three-factor regressions using an ‘industry-neutra’ book-

to-market factor.

12 Bonferroni confidence intervals provide a straightforward way to incorporate searching into
statistical significance. Viewed in isolation, the estimate for decile 3 has a one-sided p-value of 0.002.
Recognizing that the estimate is the maximum over 37 total portfolios, the Bonferroni upper bound on the
p-valueis0.002 " 37, or 0.083. See Johnson and Wichern (1982, p. 197).
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As detailed in Appendix A, HML equals the return on a portfolio of high-B/M stocks
minus the return on a portfolio of low-B/M stocks. | construct an industry-neutral factor, HML-
N, in exactly the same way, except that stocks are sorted by their industry-adjusted B/M ratios,
defined as the firm's B/M ratio minus the value-weighted average for al firmsin their industry.
The industries are defined for this purpose using the same classifications as the industry
portfolios. By congtruction, then, the adjusted B/M ratios for firms in each industry are
digtributed around zero, so every industry should be represented approximately equaly in the
high- and low-B/M portfolios used to obtain HML-N."

Empiricaly, the sorting procedure does not dramatically alter the book-to-market factor.
HML-N has an average monthly return of 0.44% and a standard deviation of 2.42%, compared
with 0.38% and 3.00%, respectively, for HML. The correlation between the two book-to-
market factors, 0.87, is farly high, which suggests that much of the variation in HML is
unrelated to industry factors. In fact, part of the difference between HML and HML-N is
caused by the difference in their market betas. The market beta of HML-N equals -0.03,
sgnificantly closer to zero than the -0.23 beta of HML. | also note that the sorting procedure
affects SMB, since the size factor controls for differences in stocks' B/M ratios. The new size
factor, which | continue to call SMB, has a mean return of 0.24% and a standard deviation of
2.64%, compared with 0.30% and 2.91% for Fama and French’s (1993) size factor. The two
Size factors are amost perfectly correlated, with a sample correlation of 0.99. As before, |
orthogonalize these factors with respect to the market return for the three-factor regressions.

Table 2.9 reports conditional regressions for the industry portfolios. For smplicity, the
table reports only the coefficient estimates because the standard errors are close to those in
Tables 2.5 and 2.6 (most differ by less than 0.01). The results are surprisingly similar to the

findings for the Fama and French factors. Like HML, HML-N explains significant co-

13 As an alternative, | also divided the industry-adjusted B/M ratios by the standard deviation across
firmsin theindustry. Thismodification does not affect the qualitative results.



Table2.9
Three-factor regressions with industry-neutral HML: Industry portfolios

R = ao + a1B/M; + (bio + B1B/M)) Ry + (S0 + 5:B/M;) SMBO + (hio + h1B/M;) HML-N + g

The industries are described in Table 2.1. R is the portfolio’s monthly excess return (%) and B/M; is the natural log of its book-to-market ratio, asa
deviation from its mean. Ry is the excess return on the CRSP value-weighted index. SMBO is a portfolio of small stocks minus big stocks. HML-N
is a portfolio of high-B/M stocks minus low-B/M stocks. HML-N is constructed by sorting stocks based on their industry-adjusted B/M ratios (the
firm's B/M ratio minus its industry average). The table reports SUR estimates, and the standard errors are similar to Tables 2.5 and 2.6.

I ntercept Ru SMBO HML-N

Portfolio o & bo by S St ho hy

Nat. resources -0.06 -0.19 0.98 0.00 0.00 -0.28 0.05 -0.39
Construction -027 -042 115 -0.15 0.24 -0.01 0.32 0.15
Food, tobacco 0.38 -0.06 0.90 0.02 -0.10 0.29 013 0.29°
Consumer products -0.16 -0.02 1.20 -0.12° 0.67 0.12 0.18 0.26
Logging, paper -0.02 -0.32 112 -0.04 0.01 -0.17 011 0.41
Chemicals 0.20 -0.23 0.99 -0.05 -0.19 0.06 022 0.20
Petroleum 0.32 0.71 0.81 -0.05 -0.50 -0.36 0.10 -0.36
Mach., equipment -0.01 -0.70 113 0.03 0.15 0.13 -0.23 0.38
Transportation -0.24 -0.01 112 -0.21° 0.14 0.07 0.39 -0.04
Utilities, telecom. 0.00 0.33 0.65 -0.01 -0.27 0.19 0.24 0.08
Trade 0.01 -0.07 114 0.02 0.26 0.29 -0.06 053
Financia -0.01 0.38 0.99° 0.07 -0.02 -0.12 0.18 -0.34
Sarvices, other 0.16 -0.07 1.37 0.04 0.78 023 -027 041
Average 0.02 -0.05 1.04 -0.03 0.09 0.03 0.05 0.12"
(std. err.) (0.02) (0.08) (0.01) (0.02) (0.01) (0.03) (0.01) (0.03)
c?@ 36.42 1352 50841.86 30.37 727.70 2376 288.46 7723
(p-value) (0.001) (0.408) (0.000) (0.004) (0.000) (0.033) (0.000) (0.000)

3¢2 = ¢S ¢, where c is the vector of coefficient estimates and S is the estimate of the covariance matrix of c. Under the null that all coefficients are zero,
this statistic is asymptotically distributed asc? (d.f. 13).
" Denotes coefficients that are greater than two standard errors from zero or c? statistics with a p-value less than 0.050.
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movement in returns. ten of the 13 unconditional factor loadings are greater than two standard
errors from zero, and the ¢ dtatistic strongly rejects the hypothesis that al are zero. In addition,
B/M captures significant time-variation in the factor loadings. Focusing on HML-N, seven of
the 13 interactive terms are more than two standard errors from zero, and both the average
coefficient (0.12, standard error of 0.03) and the ¢ statistic (p-value less than 0.001) reject the
hypothesis of constant risk. Again, B/M does not predict returns after controlling for changesin
risk. None of the interactive terms with the intercept, a;, is sgnificantly positive, and more
than half of the estimates are negative. The average coefficient is also negative, and the c?
satistic cannot reject that all coefficients are zero.

These results say severa interesting things about the book-to-market factor. First, HML
(or HML-N) appears to capture arisk factor in returns that is unrelated to industry, contrary to
the arguments of Danidl and Titman (1997). Neither the variation in HML, nor its covariation
with industry returns, changes substantially when | control for changes in HML’s industry
composition. Second, HML appears to proxy for more than a distress factor in returns, unless
some industries were distressed throughout the sample period. The cross-sectional spread of the
unconditiona factor loadings on HML is large (0.66 compared with 0.73 for market betas), and
the variation across individua stocks is undoubtedly greater. Thus, HML contains information
about a broad cross section of firms regardless of whether they are currently distressed. Finally,
changes in the industry composition of HML do not drive changes in the industry portfolios
factor loadings. B/M continues to explain significant time-variation in risk after controlling for
changes in HML' s industry composition. Taken as a whole, the evidence supports the argument

that B/M relates to a priced risk factor in returns.

2.5. Summary and conclusions

Previous studies find that B/M explains significant cross-sectiona variation in average
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returns. That finding implies that, at a fixed point in time, B/M conveys information about the
firm’s expected return relative to other stocks. This essay addresses a related question: For a
given portfolio, does B/M contain information about the portfolio’s expected return over time?
The time-series analysis complements research on the predictability of stock returns at the
agoregate level, and provides an dternative to cross-sectiond tests of the risk- and
characteristic-based asset-pricing stories.

The main empiricd tests focus on industry portfolios. | find some evidence that an
industry’s B/M ratio predicts changes in its expected return, but the high variance of monthly
returns reduces the precision of the estimates. The average, bias-adjusted coefficient on B/M,
0.58, is gmilar to the cross-sectional sope, 0.50, estimated by Fama and French (1992). The
size and book-to-market portfolios produce more reliable evidence that B/M predicts returns.
The results suggest that B/M tracks economically large changes in expected returns.

The conditional multifactor regressions indicate that B/M captures time-variation in risk, as
measured by the Fama and French (1993) three-factor model. B/M tends to be postively
related to the loadings on the size and book-to-market factors, but its relation to market betas is
more difficult to characterize. The general impression conveyed by the conditiona regressions
is that market risk becomes relatively lessimportant as a portfolio’s B/M ratio increases. While
it is beyond the scope of the current paper, understanding the economic reasons for the pattern
of coefficients would provide additiona insights into the connection between B/M and risk. |
amply note here that the positive association between B/M and the loadings on HML does not
seem to be driven by industry-related variation in the book-to-market factor.

After controlling for changes in risk, B/M contains little additiona information about
expected returns. Time-variation in the intercepts of the three-factor model measures the
incremental explanatory power of B/M. For the industry portfolios, the average estimate has the
opposite sign predicted by the overreaction story, and it is not significantly different from zero.

Across the 13 portfolios, eight coefficients are negative and none are significantly positive at
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conventional levels. Results for the size and book-to-market portfolios support these
inferences. the average coefficients are ndistinguishable from zero and roughly half the
estimates are negative. The evidence for these portfolios is especialy striking given B/M’s
strong predictive power when it is used aone in simple regressions. | have aso replicated the
tests in this paper using a firm's size in place of its B/M ratio, and find results quditatively
smilar to those for B/M. In short, the three-factor model appears to explain time-varying
expected returns better than a characteristic-based model.

To interpret the results, it is important to remember that we can aways find some factor
model to describe expected returns under both the efficient-market and mispricing stories (see,
e.g., Roll, 1977; Shanken, 1987). The tests obtain economic meaning only when restrictions are
imposed on the model. According to asset-pricing theory, the factors should capture pervasive
risk in the economy related to investment opportunities or consumption. Under the mispricing
view, it seems unlikely that the factors would explain, unconditionaly, substantia covariation
in returns. Many industries have large unconditiona loadings on both the size and book-to-
market factors, which provides some evidence that the factors proxy for priced risk in the
economy.

Unfortunately, the case for rationa pricing is not entirely satisfactory. This essay has been
concerned primarily with changes in expected returns over time, not with their average levels.
Congistent with the results of Fama and French (1993, 1997) and Daniel and Titman (1997), |
find that the unconditiond intercepts in the three-factor model are not zero. Thus, the model
does not explain average returns. Just as important, the risk factors captured by the size and
B/M mimicking portfolios have not been identified. The rationalpricing story will remain

incomplete, and perhaps unconvincing, until we know more about the underlying risks.



On the Predictability of Stock Returns: Theory and Evidence

Chapter 3
Estimation risk, market efficiency, and the predictability
of returns™

The analysis in Chapter 2 adopts the traditional perspective that predictability might arise
either from mispricing or from changes in risk. As discussed in the introduction, market
efficiency requires that prices ‘fully reflect al available information.” To formaize this ideafor
empirica testing, Fama (1976) distinguishes between the probability distribution of returns
perceived by ‘the market,” based on whatever information investors view as relevant, and the
true distribution of returns conditional on al information. The market is sad to be
informationally efficient if these distributions are the same. As an obvious consequence, market
efficiency implies that investors correctly anticipate any cross-sectiona or time-variation in true
expected returns.

Market efficiency is closaly related to the ‘rational expectations property analyzed by
Muth (1961) and Lucas (1978). In Lucas's model, asset prices are a function of the current
level of output, whose behavior over time is known by investors. Consumers make investment
decisions based, in part, on their expectations of future prices. Rational expectations requires
that the pricing function implied by consumer behavior (the true pricing function) is the same as
the pricing function on which decisions are based (the perceived pricing function). Lucas
shows that rationa expectations can, and generally will, give rise to predictable variation in
expected returns (see aso LeRoy, 1973). Intuitively, changes in economic conditions will lead
to changes in the discount rate and, consequently, predictable returns. Thus, researchers must
judge whether the empirical patterns in returns are consistent with credible models of rational
behavior or can be better explained by irrational mispricing.

In this essay, we argue that there is a third potential source of return predictability:

14 This essay represents joint work with Jay Shanken.
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estimation risk. In the asset-pricing literature, estimation risk refers to investor uncertainty
about the true parameters of the return- or cashflow-generating process. Because investors do
not know the true distribution, they must estimate the parameters using whatever information is
available, which can be formally modeled using Bayesian analysis. The parameter uncertainty
increases the perceived risk in the economy and necessarily influences portfolio decisions. Asa
result, estimation risk will affect equilibrium prices and expected returns. We show that, in
equilibrium, estimation risk can be a source of predictability in a way that differs from other
models with rational investors.

The theoretica literature typicaly focuses on the subjective distribution perceived by
investors.  The subjective distribution combines investors prior beliefs with the information
contained in observed data  This distribution represents investors best guess about future
returns or cashflows, and is therefore relevant for investment decisions.”> Our paper emphasizes
instead the true distributions of prices and returns which arise endogenously in equilibrium.
The true distribution smply refers to the actual, or observable, distribution from which prices or
returns are drawn. Under the standard definition of market efficiency, the true and subjective
digtributions are the same. However, that definition goes well beyond the intuitive notion that
prices fully reflect available information, and implicitly assumes that investors know the
parameters of the cashflow process. In the presence of estimation risk, the two distributions
necessarily differ since the true distribution depends on the unknown parameters. We should
siress that ‘true’ does not mean ‘exogenous: the true distribution of returns must be
endogenous because prices clearly depend on investors' beliefs.

Our central result is easy to summarize: with estimation risk, the doservable properties of

prices and returns can differ significantly from the properties perceived by rationa investors.

15 See Zellner (1971) and Berger (1985) for a general introduction to Bayesian analysis and Bawa,
Brown, and Klein (1979) for an application to portfolio theory. Jobson, Korkie, and Ratti (1979), Jorion
(1985), Kandel and Stambaugh (1996), Stambaugh (1998), and Barberis (1999) also discuss portfolio
choice when investors must estimate expected returns.
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For example, returns can appear predictable based on standard empirical tests even when they
are not predictable by rational investors. The reason is simply that empirical tests estimate the
true properties of returns, and these properties will typicaly differ from those under the
subjective distribution.  An example should help illustrate the point. Suppose dividends are
normally distributed and independent over time with unknown mean d and known variance s*
(in our parlance, this is the true distribution). From the investors' perspective, the mean of the
dividend process is random, represented by a posterior belief about d. However, for an
empirical test, the process that generates actua dividends has a fixed, constant mean. The
sampling digtribution of any datistic calculated from dividends — say, an autocorrelation
coefficient - depends only on this true digtribution. In a smilar way, the true distribution of
returns isrelevant for empirical tests even when it is unknown. To put the idea a bit differently,
returns can be predictable under the true distribution, when they are not predictable by
investors, since this digtribution conditions on unknown information. We show that standard
empirical tests, like predictive regressons and volatility tests, can in principle detect this
predictability.

We develop these ideas in a smple overlapping-generations model of capital market
equilibrium. Investors have imperfect knowledge about an exogenous dividend process, and
they estimate the parameters based on current and past cashflows. For smplicity, we initialy
assume that all parameters are constant over time. We later extend the mode to incorporate
periodic shocks to the dividend process, in which case investors never fully learn the true
distribution. Throughout, investors are assumed to be rational and use al available information
when making decisons. As long as estimates of expected cashflows diverge from the true
values, asset prices deviate from their values in the absence of estimation risk. However, prices
tend to move toward these ‘fundamenta’ values over time as investors update their beliefs.

Through this process of updating, parameter uncertainty affects the predictability, volatility, and



cross-sectional distribution of returns.

The model shows that estimation risk can induce return behavior that resembles irrational
mispricing. In our benchmark modd without estimation risk, returns are unpredictable using
past information. When investors must estimate the mean of the cashflow process, returns
become predictable based on past dividends, prices, and returns. For example, when investors
begin with a diffuse prior over the mean of the dividend process, stock prices appear to react too
strongly to redized dividends, and returns become negatively related to past dividends and
prices. In afairly genera sense, it appears that this phenomenon is inherent in amode with
estimation risk because investors ‘mistakes eventually reverse as they learn more about the
underlying parameters. However, the predictability induced by estimation risk can take the
form of ether reversas or continuations (or neither), depending on investors' prior beliefs and
on the underlying cashflow process (we discuss these issues further in Section 3.5). When
investors have prior information about the dividend process, they may appear to react too
dowly to new information, giving rise to momentum.

Predictability in the mode is fundamentaly different from predictability in other models
with rational investors, such as that of Lucas (1978). The difference is illustrated most easily by
considering the case of risk-neutral investors. In amode with perfect information, excess stock
returns must be unpredictable if investors are risk-neutral. This does not have to be true with
estimation risk. We show that excess stock returns can be predictable, under the true
digribution, even with rationd, risk-neutral investors. This predictability is consstent with
rational expectations because investors do not know the true distribution. Nonetheless, the
predictability can be detected by standard empirical tests. To reiterate our earlier point, excess
returns remain unpredictable from the perspective of rationa investors, but empirical tests
estimate the true, not the subjective, distribution.

The example with risk-neutral investors shows that some basic properties of asset prices do

not hold with etimation risk. Mogt importantly, investor rationdity no longer implies that
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return surprises must be uncorrelated with any element of investors information set. In fact,
return surprises will often be correlated with past prices if investors must estimate expected
cashflows. The idea is smple. Suppose that prices equal the discounted present vaue of
expected future dividends, assumed to be independent and identically distributed over time, and
assume that investors do not know the mean of the dividend process. If a representative
investor's estimate at a given point in time is, say, higher than the true mean, the price of the
stock will be inflated above its ‘fundamental’ value. Furthermore, future dividends will be
drawn from a true distribution with alower mean than the market’s estimate, and investors will,
on average, perceive a negative surprise over the subsequent period. It follows that relatively
high prices predict relatively low future returns.

This story resembles the standard mispricing argument, but with some important
differences. Given estimation risk, the reversals are driven by completely rational behavior on
the part of investors. The reversals arise precisely because prices do fully reflect dl avalable
information at each point in time. In fact, investors know that returns are negatively
autocorrelated but cannot take advantage of it. They would want to exploit this pattern by
investing more aggressively when the market’s best estimate is less than the true mean of the
dividend process, but of course they cannot know when this is the case. In contrast, Delong,
Shleifer, Summers, and Wadmann (1990), Danidl, Hirshleifer, and Subramanyam (1998), and
Barberis, Shleifer, and Vishny (1998) generate return predictability by assuming irrationdity on
the part of investors. Investors misperceive the true return-generating process because of
behavioral biases, not because they have imperfect information about returns.

The discussion has emphasized the time-series properties of returns. We aso examine the
cross section of expected returns. Curioudly, for many years the conventional wisdom has been
that estimation risk is largely irrdevant for equilibrium, athough it is important for individua
portfolio sdlection. For example, Bawa and Brown (1979) argue that estimation risk does not

affect market betas or the expected return on the market portfolio. They conclude that
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‘in empirical testing of equilibrium pricing modes, one should not necessarily be
concerned with the problem of estimation risk — or expect estimation risk to be a factor
explaining any possible deviation between CAPM and observed market rates of returns,’

(p. 87).

More recently, Coles and Loewenstein (1988) argue that many of Bawa and Brown's
conclusions are driven by the questionable assumption that the return-generating process is
exogenous. Coles and Loewenstein take end-of-period payoffs as exogenous, and alow prices
and expected returns to adjust in equilibrium. They show that estimation risk affects
fundamental economic features like relative prices, expected returns, and betas, although they
continue to find that the CAPM holds in equilibrium.

Bawa and Brown (1979) and Coles and Loewenstein (1988) both examine the subjective
digribution of returns. Its relevance for empirica research is questionable:  athough
equilibrium imposes pricing redtrictions under the subjective distribution, empirical tests use
returns that are generated from the true distribution. Beliefs are relevant only insofar as they
impact observable quantities. The basic digtinction between the true and subjective
digtributions has typicaly been glossed over in the cross-sectional literature. Because the two
distributions differ with estimation risk, we show that observed returns will typicaly deviate
from the predictions of the CAPM, even when investors attempt to hold mean-variance efficient
portfolios. Moreover, the deviations can be predictable, in either time-series or cross-sectiona
regressions, using past dividends and prices.

In short, our primary message is that estimation risk drives a wedge between the
distribution perceived by investors and the distribution estimated by empirica tests. Although
investors are rational, the empirica properties of prices and returns can look very different from
the properties under the subjective distribution. Stock returns can appear predictable, in time-
series or cross-sectionaly, even though they are not from the perspective of rationa investors.
As a result, parameter uncertainty has important implications for characterizing and testing

market efficiency. Our point here is not to argue that estimation risk necessarily explains
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empirically-observed asset-pricing anomalies. Rather, we emphasize that many so-cdled ‘tests
of market efficiency’ cannot distinguish between an efficient market with estimation risk and an
irrational market. We believe that a world with estimation risk is the appropriate benchmark for
evaluating apparent deviations from market efficiency.

Our results extend a growing literature on learning and parameter uncertainty. In the
continuous-time literature, Merton (1971) and Williams (1977) show that parameter uncertainty
creates a ‘new’ state variable representing investors current beliefs, and the hedging demand
associated with this state variable can cause deviations from the CAPM (see also Detemple,
1986; Dothan and Feldman, 1986; Gennotte, 1986). Our results are different because investors
in our model attempt to hold meanvariance efficient portfolios; it is their mistakes, not their
hedging demands, that induce deviations from the CAPM. Stulz (1987) and Lewis (1989) also
point out that prices can appear to overreact or underreact to information simply because
investors must learn about the underlying true process. Wang (1993) and Brennan and Xia
(1998) show that learning about an unobservable state variable might incresse return volatility,
but the effect on predictability is less clear. Findly, Timmermann (1993, 1996) recognizes that
parameter uncertainty might induce both predictability and excess voldtility. We extend his
work by analyzing an equilibrium model with fully rationa (Bayesian) investors, and we
discuss market efficiency and the cross-section of expected returns.

The essay is organized as follows. Sections 3.1 and 3.2 introduce the basic model and
derive capital market equilibrium. Section 3.3 examines the time-series properties of prices and
returns and Section 3.4 explores the cross-sectional behavior of returns. Section 3.5 generalizes
the modd to incorporate informative priors, time-varying parameters, and non-stationary

dividends, and presents simulation evidence from the general model. Section 3.6 concludes.

3.1. The model

We present a smple overlapping-generations mode of capital market equilibrium in which
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the dividend, or cashflow, process is taken as exogenous. Investors are uncertain about the true
dividend process and update their beliefs with observed data. Many features of the modd are
borrowed from the economy analyzed by Delong, Shieifer, Summers, and Wadmann (DSSW,
1990). Like DSSW, we examine capital market equilibrium when investors beliefs diverge
from the true distribution. In their model, noise traders beliefs are exogenoudy specified and
irrational. In contrast, investors in our model are rationd and use al available information

when making decisions.

3.1.1. Time

We anayze the properties of asset prices in an infinite-period modd, t = 1, ..., ¥. In
sngle-period models of egtimation risk, the end-of-period distribution of either returns or
payoffs is exogenoudy specified (e.g., Bawa, Brown, and Klein, 1979; Coles and Loewenstein,
1988). In contrast, end-of-period prices in our model are determined by investors bdiefs, and
both payoffs and returns are endogenous. When making decisions, investors must anticipate
how market prices will react to the arrival of new information. Thus, the model permits a

detailed investigation of both the time-series and cross-sectiona behavior of returns.

3.1.2. Assets

We assume that there exists a riskless asset which pays real dividend r in every period.
Following DSSW, the riskless asset is assumed to have perfectly dastic supply: it can be
converted into, or created from, one unit of the consumption good in any period. Asaresult, its
pricein real terms must equal one and the riskless rate of return equalsr.

The capital market aso consists of N risky securities. As mentioned above, estimation risk
has implications for both the time-series and cross-sectional behavior of asset prices. When we
discuss the time-series properties of prices and returns, we examine a model with a single risky

asset. The anaysis with many risky assets focuses on the cross-sectiona implications of
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estimation risk.

Following Coles and Loewenstein (1988), we modd investor uncertainty about an
exogenoudy-specified cashflow process. Clearly, nothing can be learned about the return
processiif it is smply taken as exogenous, as assumed by Williams (1977) and Bawa and Brown
(1979). If returns are endogenous, it is unclear how investors in the model would update their
beliefs directly about the distribution of returns. For example, we doubt that any multiperiod
modd with estimation risk would produce returns that are independently and identicaly
distributed (11D) over time. We show later that price reversals are inherent in a model with
edtimation risk, s0 it is unlikely that returns would be seridly uncorrdlated. Since the dividend
process is assumed to be exogenous, we do not have to worry about how investors beliefs
affect its distribution.

The risky assets each have one unit outstanding and pay real dividend d, an N” 1 vector, in
period t. To develop the ideas in a smple framework, we initidly assume that dividends are

I1D over time and have a multivariate normd distribution (MVN):
d, ~MVN [d, 5], (3.)

where d is the mean vector and S isanonsingular covariance matrix. Notice that the parameters
of this digtribution are assumed to be constant over time. As a consequence, estimation risk will
vanish as t goes to infinity. In redity, parameter uncertainty seems unlikely to disappear even
after a long history of data. The economy evolves over time, and the underlying cashflow
process undoubtedly changes as well. Therefore, we extend the model in Section 3.5 to include
unobservable shocks to the true parameters which periodicaly renew estimation risk.

The [ID assumption is not intended to be redigtic, but dramaticaly simplifies the
exposition. Again, we relax this assumption later and alow dividends to follow a geometric
random wak. In addition, we have explored a modd in which dividends are autocorrelated

over time, and the quditative results appear to be similar. Throughout the paper, investors are
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assumed to know the form of the distribution function (I1D and normal), but may not know its

parameters.

3.1.3. Investors

Individuas live for two periods, with overlapping generations. Following DSSW, there is
no first-period consumption, no labor supply decison, and no bequest. Therefore, in the first
period individuas decide only how to invest their exogenoudy-given wealth. We assume that

investors can be represented by a single agent with constant absolute risk aversion, or
Uw) = - exp(-2¢w), 32

where w is second-period wedlth and g> O is the risk-aversion parameter.

Investors in this model do not have to alocate wedlth across time. We ignore the
intertemporal nature of the consumption problem and focus instead on estimation risk. It is
amost immediate that investors will attempt to hold mean-variance efficient portfolios, and will
not have hedging demands related to changes in investment opportunities (see Merton, 1973).
This assumption limits the ways in which estimation risk can affect equilibrium, and
digtinguishes the predictability in our model from that in Merton (1971) and Williams (1977).
In those papers, learning creates a state variable representing investors' beliefs, and the demand
for risky assets contains a hedging component associated with this state variable. Our paper
emphasizes a distinct phenomenon. We show that the difference between the true and
subjective distributions can be a source of predictable returns.

The representative investor chooses a portfolio to maximize expected utility, where the
expectation is taken over the investor's subjective belief about the distribution of next-period
wedth. In al the cases we congder, both dividends and wedth are normaly distributed.

Consequently, it is easly shown that maximizing expected utility is equivalent to maximizing

m, - gs 2, where m, and s?2 are the mean and variance of wealth. Let p be the vector of
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risky-asset prices and x be the vector of shares held in the portfolio. The investor will choose

« 1 s 1] s
X, = g VA P+ de)| M [ES () - @+1py. (33)

where EP and var®denote the subjective expectation and variance at t.** The first term in

brackets is the covariance matrix of gross returns, and the second term is the expected excess
gross return.  Note that the optima investment in the risky assets is not a function of initia
wedth, an implication of constant absolute risk averson. Also, given our assumptions that

investors are short-lived and returns are multivariate normdl, it is immediate that investors

atempt to hold meanvariance efficient portfolios. Consequently, x, is the Markowitz
tangency portfolio under the subjective distribution.

Equilibrium in the economy, which treats current and future prices as endogenous, must
satisfy eq. (3.3). In addition, equilibrium requires that the demands for the risky assets, given
by x;, equa their supply in every period. Setting x, =i, wherei isan N” 1 vector of ones, and
solving for price yields

1 q., . .
P TTer Et(Puatdig) - 2gvar(py, +dy,)if. (34)

This equation gives the equilibrium current price in terms of next-period’s price, which in turn

will be endogenoudy determined.

3.2. Capital market equilibrium

This section derives capital market equilibrium with and without estimation risk. We
assume throughout that investors correctly anticipate how prices will react to the arriva of new
information. In other words, equilibrium satisfies the rational expectations property that the

pricing function perceived by investors equals the true pricing function (Lucas, 1978). This

18 Throughout the paper we denote subjective moments with an ‘s’ superscript.
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condition does not imply, however, that investors subjective belief about the distribution of
returns equals the true distribution. Rational expectations, as we use the term, implies that these

distributions are equal only if investors have perfect knowledge of the dividend process.

3.2.1. Equilibrium with perfect information

Supposg, initidly, that investors know the dividend process. This equilibrium will serve as
a convenient benchmark for the model with estimation risk. Since dividends are 11D and the
optimal investment in the risky asset does not depend on initid wedth, a natura equilibrium to
look for is one in which prices are constant, or p = p. With constant prices, Ei(p+1 + G+1) =p +

d and var(p.1 + ds1) = S. Subgtituting into eg. (3.4) and solving for price yields

p=1d- Xsi. (35
roor

The price of arisky asset equals its expected dividends discounted at the riskless rate minus a
‘correction’ for risk. Not surprisingly, an asset’s contribution to the risk of the market portfolio
(proportional to Si; see below) isimportant, rather than its total variance. Investors require an
expected rate of return that is higher than the riskless rate if the asset’s ‘ market risk’ is positive.

Many of the time-series implications of estimation risk can be investigated in a model with
a snglerisky asset. The properties of this asset are identical to those of the market portfolio
when there are many risky assets. In particular, the market portfolio M has weights

proportiona to the vector of prices, p = p. Itsvaue, or price, equas
pu=itp= 2d,, - Zsi,, (36)

where the dividend on the market portfolio has expectation dy = i® and variance sy, = i¢Si.
Since the variance is dways positive, the expected return on the market portfolio is necessarily
greater than the riskless rate. Referring back to the pricing function with many assets, it is

straightforward to show that the general model collapsesto eg. (3.6) when N = 1.



3.2.2. Equilibrium with estimation risk

The modd above assumes that investors have perfect knowledge about the dividend
process — that is, they know both the mean and the variance with certainty. We now relax this
strong assumption. Specificaly, suppose that investors begin with a diffuse prior over d (the
prior dendity function is proportional to a congant). Although this prior permits d to be
negative, it is the standard representation of ‘knowing little’ about the mean and smplifies the
agebra. We later consider dternative prior beliefs. With an informative prior, investors assign
less weight to the data and more weight to their initia beliefs, which can be important for the
way prices behave in equilibrium. Consequently, the results in this and the next section should
be interpreted as illustrative, but not completely representative, of the effects of estimation risk.
For smplicity, we continue to assume that investors know the covariance matrix of dividends.
Previous research finds that uncertainty about the covariance matrix is relatively unimportant
(eg., Coles, Loewenstein, and Suay, 1995), and we doubt that it would affect our basic
conclusions.

Investors update their beliefs usng Bayes rule, incorporating the information in observed

dividends. With a diffuse prior, the posterior digtribution of d a timetis MVN [Ht,(]/t) 9],

where d, is the vector of average dividends observed up to time t. The subjective, or in
Bayesian terms ‘predictive,” distribution of dividends is

< t+1l Q)
d,, ~MVNS, —=s¥. 3
1~ MVN G, == Sy @7)

An investor’'s best guess about the mean of the dividend process is smply the average redized
dividend. The covariance matrix of the predictive distribution reflects both the true variance, S,
and uncertainty about the mean, S/ t.

From eq. (3.7), it is clear that the subjective distribution of dividends, and consequently

future prices, differs from the true distribution. Rational expectations requires, however, that
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investors correctly anticipate how equilibrium prices will be determined next period. We

impose this requirement by recursively substituting for p. in eg. (3.4), yidding*’

u.
k Eivartik—l(pﬁk + dt+k)L’J>q . (38)
&a (L+7) a

Priceis a function of expected dividends and the expected conditional variance of gross returns.
Since estimation risk ‘scales up’ the predictive variance by (t+1)/t, the conditiona variance of
returns is unlikely to be constant. However, if price is a linear function of d,, then the

conditional variance of returns will be a deterministic function of time. We look for an
equilibrium that hes this property.

If the conditional variance of returns is deterministic, then we can drop the expectations
operator from the infinite sum in eg. (3.8). Variation in prices is driven entirely by the first

term. Therefore, the subjective variance of returnsis

VAt (P ) = 4t ?:12 39)
Subdtituting into eqg. (3.8) yields the equilibrium pricing function:

p, =4, - 201()S, (310)
where

f(t)_ 1 u Faet+k 0 3.11)

k=1 (1+r)k el e+ k)8 gt"‘k lg
The equilibrium price is smilar to the price with perfect information (eg. 3.5). The mean of the
predictive digtribution, at, replaces the true mean in the first term and the function f(t) replaces

Ur in the second term. The function f(t) decreases as t gets larger and converges to 1/r in the

17 Eq. (3.8) imposes the transversality condition lim yE[pei]/(1+1) = 0, which will be satisfied in
equilibrium.
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limt. Since the probability limit of at is d, the equilibrium price with estimation risk
converges to the price with perfect information. This is intuitive because, as mentioned above,
estimation risk vanishes in the limit. In Section 35 we allow the true parameters to change, so
that investors never completely learn the dividend process.

We noted in Section 3.1 that investors attempt to hold the tangency portfolio, which
implies that the CAPM must describe expected returns under the subjective distribution. We
will discuss the CAPM in more detail below, but for now we note that the market portfolio’s

value, or price, is
O 2
Pus = iCp = ?dM,t - 29f(t)sy, . (312

where d,,, =i¢d, is the average dividend on the market portfolio fromt=1tot. Referring

back to the pricing function with many assets, it is straightforward to show that the generd
model collapsesto eg. (3.12) when N = 1.

Severa colleagues have noted that the pricing function in eq. (3.10) could aso be
generated by a mode with a nongtationary dividend process and no estimation risk. In

particular, suppose investors have perfect information and the true mean of the dividend process
evolves over time as a function of average redlized dividends (that is, dw; = d,). In this case,

the pricing function would be identical to the price in our modd. Notice, however, that our
moded should be distinguishable from one with nongtationary dividends. Prices and expected
returns evolve quite differently in the two models. With a changing dividend process and
perfect information, expected gross returns would be positively related to lagged dividends, and
prices would exhibit no tendency to revert to a long-run mean. The opposite is true in our
model; true expected returns are negatively related to lagged dividends and price fluctuations
are temporary. Further, nongtationary dividends would not generate deviations from the

CAPM.



3.3. Thetime-series properties of pricesand returns

Equilibrium, derived above, is determined by the subjective didribution of returns.
However, empirical tests use prices and returns drawn from the true distribution. As we
emphasized before, the subjective and true distributions differ when there is estimation risk,
even though investors know the true pricing function. In this section, we examine the time-
series properties of prices and returns, highlighting the impact of estimation risk on market
efficiency. The analysis considers a mode with a single risky asset, interpreted as the market
portfolio. In this case, the price of the risky asset is given by egs. (3.6) and (3.12). We drop the
subscript ‘M’ throughout this section for convenience.

In the model with perfect information, prices are constant and returns smply equal redlized
dividends. With estimation risk, prices fluctuate as investors update their beliefs about the

dividend process. From the previous section, the change in price fromt to t+1 equas

Pea- P =2 (@ 6) +20[F (0 1(t+D)]. @1

The change in price contains two components. The first term is random and reflects changesin
investors beliefs about expected dividends. The second term is deterministic and arises
because estimation risk declines steadily over time. Since f(t+1) < f(t), this component tends to
make prices increase over time. When we talk about predictability, the deterministic portion
serves only to add an additional, non-random component to the equations. Therefore, to focus
on the main ideas, we assume in this section that investors are risk-neutral (g = 0), causing the

second term in the equation to drop out. None of the results are sensitive to this assumption.

3.3.1. Predictability
Previous studies argue that returns might be predictable either because business conditions
change over time or because investors are irrational. However, these stories cannot explain why

returns would be predictable in our model. The riskless rate, preferences, and the distribution of
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cashflows do not change, so ‘business conditions are constant by construction. In addition,
investors are rational and use dl available information when making decisons, so irrationa
mispricing does not exist. In our mode, estimation risk is the only source of predictability.

As noted above, returns equa dividends when investors have perfect information. With

estimation risk, returns at t+1 equal

1

Riyy = Oup +———
t+1 dt 1 r(t+1)

(dt+l - at) . (3-14)

The first term equals redized dividends, and the second term equals the change in price. At
time t, investors best guess about dividends is given by d,; when redized dividends differ

from this expectation, investors revise their beliefs about the mean of the dividend process,
which in turn affects prices.

Under the subjective distribution, it is clear that prices follow a martingae:

Ei[Pus- P,]1=0. (3.15)
However, the empirical properties of returns will differ from the perceived properties. The
reason is simple. From the investor’s perspective, the expected dividend is random, represented
by a posterior belief over d. In contrast, for an empirical test, the dividend mean is fixed and
constant, equa to whatever the true value actualy is; the process that generates observed
dividends does not have a random mean. Put differently, the observable properties of returns
are conditional on the true dividend process even though it is unknown. Because of this
fundamental difference between the true an