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Abstract 
 

Mean reversion in stock prices is stronger than commonly believed. I show that 1-, 3-, and 5-year 
returns are negatively related to future returns over the subsequent 12 to 18 months. Reversals in 1-
year returns are the most reliable, with strong significance in both the full 1926 – 1998 sample and the 
more recent 1946 – 1998 period. The reversals are also economically significant. The full-sample 
evidence suggests that 25% to 45% of annual returns are temporary, reversing within 18 months. The 
percentage drops to between 20% and 30% after 1945. Mean reversion appears strongest in larger 
stocks and can take several months to show up in prices. 

 
 
 
 



 

Temporary movements in stock prices 
 
1. Introduction 

 The random walk hypothesis has a long history in asset pricing.  Early studies, such as Kendall 

(1953) and Fama (1965), focused on daily or monthly stock returns.  At these frequencies, 

autocorrelations are typically close to zero.  Empirical research later turned to long-horizon returns to 

better isolate any transitory components in prices.  In stark contrast to the earlier studies, this research 

found strong negative autocorrelation in returns.  Fama and French (1988) estimate that mean reversion 

accounts for as much as 40% of the variation in 3- to 5-year returns for industry and size portfolios.  

Autocorrelations are strong for horizons of 2- to 6-years, and reversals tend to be most pronounced for 

smaller stocks.  Their evidence suggests that prices contain a large temporary component (see also 

Poterba and Summers, 1988). 

 Many papers have challenged the reliability of Fama and French’s results.1  At least three statistical 

issues complicate their tests.  First, it is well-known that autocorrelations are biased downward in finite 

samples.  Because the effective sample sizes in long-horizon regressions are so small – a 60-year sample 

covers only 12 independent 5-year observations – the bias toward finding mean reversion can be 

substantial.  Second, autocorrelations are typically estimated using overlapping monthly observations to 

increase the power of the tests.  This procedure induces strong correlation among the residuals, but 

methods to adjust for the correlation are valid only in large samples.  Third, the volatility of returns 

changes dramatically over time.  Volatility was especially high before 1940 and a relatively small number 

of observations during the Depression era has a large effect on autocorrelation estimates.  Taking these 

statistical issues together, the literature suggests four general conclusions about the autocorrelation of 

long-horizon returns: 

(a) Long-horizon autocorrelations are either insignificant or, at best, marginally significantly negative.  

The apparent significance reported by Fama and French (1988) is explained by a combination of the 

factors described above. 

                                                      
1 See, especially, Richardson and Stock (1989), Kim, Nelson, and Startz (1991), and Richardson (1993). 
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(b) To the extent that the autocorrelations are significant, the results are largely driven by the first 15 or 

20 years of the sample, the Depression and World War II years.  Autocorrelations are close to zero 

and insignificant after 1945. 

(c) Mean reversion, if real, shows up most strongly in small stocks.  The equal-weighted market index is 

more negatively autocorrelated than the value-weighted index, and small-stock portfolios are more 

negatively autocorrelated than large-stock portfolios. 

(d) Autocorrelations appear to be most negative for horizons of 3- to 5-years.  Mean reversion over 

relatively short 1- to 2-year holding periods and relatively long 7- to 10-year holding periods is 

typically close to zero. 

 This paper presents new evidence on mean reversion in stock prices.  My tests are based on 

regressions of monthly returns on lagged 1-, 3-, and 5-year returns.  These regressions, like standard 

autocorrelations, test whether past returns contain information about future returns.  They should be more 

powerful than full autocorrelations (5-year returns regressed on 5-year returns) because they focus on a 

shorter forecast horizon.  Most stories for mean reversion would say that, if 5-year returns are negatively 

autocorrelated, they should be more highly correlated with next year’s return than with the return in year 

4 or 5.  If so, then a regression of monthly returns on lagged 5-year returns provides a better test for mean 

reversion.  (Jegadeesh, 1990, formalizes this intuition in the context of Summer’s, 1986, fads model.)  A 

potential complication is that previous studies have identified strong short-run patterns in returns.  Lo and 

MacKinlay (1988) show that weekly and monthly portfolio returns are positively autocorrelated, and 

Jegadeesh and Titman (1993) show that prices exhibit momentum over 3- to 12-months.  This short-run 

momentum can dilute the appearance of long-horizon reversals.  As a simple solution, I test for mean 

reversion for up to 18 months in the future, reporting statistics for individual months as well as joint tests 

across all months. 

The results dispute, at least partially, all four assertions above.  I find statistically reliable evidence 

that stock returns are negatively autocorrelated over 1-, 3-, and 5-year horizons.  For the full sample, 1926 
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– 1998, 1- and 5-year returns on size portfolios are strongly negatively correlated with returns over the 

next 12 to 18 months (results for 3-year returns are weaker).  Based on bootstrap simulations, 1-year 

returns have significant predictive power for 8 of 12 size portfolios and 5-year returns have significant 

predictive power for 7 of the 12 portfolios.  The average coefficient across the 12 portfolios, as well as the 

estimates for equal- and value-weighted market indices, are also significant.  The autocorrelations are also 

economically large.  Bias-adjusted estimates imply that 25% to 45% of annual stock price movements are 

temporary, reversing within 18 months.  The estimates drop to between 10% and 15% for 5-year returns.  

(The predictive power of 1- and 5-year returns is similar because 5-year returns are more volatile.) 

 Mean reversion remains strong after 1945, and the patterns across forecast horizons and size 

portfolios run counter to conventional wisdom.  In the post-War period, 1-year returns have reliable 

predictive power, while the significance of 3- and 5-year returns diminishes.  One-year returns are 

significant for 8 of the 12 size portfolios and for both equal- and value-weighted market indices.  Further, 

mean reversion shows up most strongly in larger stocks.  The autocorrelations are most negative for 

portfolios in the 3rd quartile, between the 50th and 75th percentiles of NYSE stocks, whereas the 

estimates are close to zero for the very smallest and very largest stocks.  For example, the bias-adjusted 1-

year autocorrelation is –0.09 for the smallest portfolio, reaches a minimum of –0.26 for portfolio 9, and 

drops off to –0.07 for portfolio 12 (the largest stocks).  The estimates for portfolios 4 through 11 are 

statistically significant.  Interestingly, reversals can take several months to show up in prices and remain 

strong for up to 18 months. 

 The use of monthly regressions largely explains why I find stronger reversals than previous studies.  

However, there is a second reason that reversals are strong for 1-year returns.  To enhance comparison 

between the predictive power of 1-, 3, and 5-year returns, I use the same sample of monthly returns as the 

dependent variable in all regressions.  This means that the first month in the full-sample regressions is 

July 1932 for all three predictive variables.  In contrast, Fama and French (1988) began the tests with 1-

year returns in 1927, the tests with 3-year returns in 1929, etc.  This small change has a surprisingly large 

impact on the results.  In the first six years of data, 1926 – 1931, the average autocorrelation of 1-year 

returns is a remarkable 0.64 for the size portfolios used here (the largest autocorrelation is 0.91).  Because 
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returns in this period are so volatile, they exert a strong influence on autocorrelations even with 60 years 

of data.  I emphasize, however, that with the exception of the first few years, the autocorrelation estimates 

for 1-year returns are quite robust.  The autocorrelations are significantly negative in the shorter 1946 – 

1998 period, and the estimates are similar if the sample begins in 1941, 1951, or 1961.  Subperiod results 

for 1946 – 1971 and 1972 – 1998 provide additional evidence that reversals are significant. 

 On a methodological note, all of the tests here correct for time-varying volatility.  In fact, the tests 

are actually more conservative than many studies; without the correction for heteroskedasticity, the 

evidence for mean reversion would be much stronger.  In the full sample, for example, no simulation out 

of 5,000 produces coefficients on 1-year returns as large as the observed estimates for 6 of the 12 size 

portfolios.  The actual p-values range from 0.018 to 0.032 after correcting for heteroskedasticity.  While 

time-varying volatility is clearly important, it does not explain my results. 

 In short, stock prices seem to contain a large temporary component, consistent with evidence of 

Fama and French (1988).  Contrary to their results, however, reversals occur fairly quickly and appear 

strongest for larger portfolios.  The evidence also complements the recent findings of Lewellen (2000).  

He shows that the short-term momentum profits of Jegadeesh and Titman (1993) do not translate into 

positive autocorrelation in returns.  Over 6- to 12-months holding periods, returns exhibit both negative 

autocorrelation and negative cross-serial correlation (correlation between a given stock and the lagged 

returns on other stocks).  Together with the results here, the evidence suggests that mean reversion exists 

at all but the very shortest horizons. 

 The remainder of the paper is organized as follows.  Section 2 discusses the empirical methodology 

and the small-sample properties of the test statistics.  Section 3 describes the data and Section 4 presents 

the main empirical results.  Section 5 concludes. 

 

2. Methodology 

 Autocorrelation tests fall into two categories:  regression-based tests, which look directly at serial 

correlation in returns, and variance-ratio tests, which measure how volatility changes as the holding 

period is lengthened.  I focus on regression-based tests.  This section discusses the regressions and the 
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small-sample distribution of the test statistics. 

 
2.1. Regressions 

 The goal is to test whether prices contain a temporary component.  One approach is to simply 

estimate the autocorrelation of returns.  Let k
tr  equal the k-month return ending in month t.  Fama and 

French (1988) estimate regressions of the form 

 kt
k

tkk
k

kt r r ++ ++= ερα , (1) 

where k varies from 12 to 120 months.  To increase the power of the tests, Fama and French estimate eq. 

(1) using overlapping monthly returns.  Since adjacent observations overlap by k – 1 months, the 

regression residuals are strongly autocorrelated by construction.  I discuss the statistical properties of 

these regressions below. 

As an alternative to eq. (1), we can estimate exactly the same relation by breaking the dependent 

variable into the sum of k one-month returns (assume continuous compounding): 

 1111 ++ ++′= t
k

tt r r νβα , (2a) 

 2222 ++ ++′= t
k

tt r r νβα , (2b) 

   �  

 kt
k

tkkkt r r ++ ++′= νβα . (2c) 

These equations regress monthly returns on lagged k-month returns.  They are all the same except that the 

dependent variable ranges from one to k months into the future.  Because k
ktr +  = rt+1 + rt+2 + … + rt+k, the 

sum of the slope coefficients in the monthly regressions equals the full k-month autocorrelation from eq. 

(1), both in population and in sample. 

Estimating a series of monthly regressions has a number of advantages over full autocorrelations.  

Monthly regressions are more informative because we can observe how the predictive power of k
tr  

changes with the forecast horizon.  Most stories about mean reversion suggest that k
tr  will be more 

strongly related to returns in the near future than in the distant future.  For example, suppose that log 
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prices are the sum of a random walk and an independent AR(1) process.  Summers (1986) suggests this 

model as a parsimonious description of many behavioral theories; Fama and French (1988) argue that it is 

also consistent with time-variation in discount rates.  In this case, it is easy to show that k
tr  will be 

correlated most strongly with the return next month.  (The slope coefficients in the monthly regressions 

decay geometrically.)  As a consequence, the regression of rt+1 on k
tr  will have the greatest power to 

detect mean reversion in prices.  Jegadeesh (1990) formalizes this intuition. 

 The argument that reversals will be strongest in month 1 suggests we should focus on the first 

regression, eq. (2a).  That argument, however, depends critically on the AR(1) model for transitory price 

movements.  Previous research suggests that an AR(1) model is not a good description of prices.  Lo and 

MacKinlay (1988) show the weekly returns on size portfolios are strongly autocorrelated, and Jegadeesh 

and Titman (1993) show the prices exhibit momentum over 3- to 12-month horizons.2  Any short-term 

persistence in returns will tend to dilute the appearance of long-term reversals in month 1, implying that 

we might need to look several months into the future to detect mean reversion.  The cutoff I choose, 

primarily because of space limitations, is 18 months.  This cutoff is longer than any observed short-term 

patterns in returns, and it seems like a relatively long time to wait for mean reversion to show up.  

Shortening the period runs the risk of missing interesting patterns in the data, and lengthening the period 

reduces the power of the joint tests.  For completeness, I also report full autocorrelations to compare with 

previous studies. 

 
2.2. Statistical tests 

 The regressions, whether they use monthly or long-horizon returns, do not satisfy the standard 

assumptions of ordinary least squares (OLS).  The predictive variable in the regression is stochastic and 

correlated with the lagged residuals.  As a consequence, the slope estimate is biased downward and 

negatively skewed in finite samples. 

                                                      
2 Note, however, that Jegadeesh and Titman do not show that returns are positively autocorrelated over 3- to 12-

month horizons; they find only that past winners (stocks in the top return decile) outperform past losers (stocks in 
the bottom decile) over these horizons.  Lo and MacKinlay (1990) and Lewellen (2000) show that negative 
autocorrelation in returns is consistent with positive momentum profits. 
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Consider, first, the full autocorrelation estimates of eq. (1).  Kendall (1954) shows that 

autocorrelations are biased downward by approximately 1 / T under the null, where T is length of the 

sample.  Since the sample sizes with long-horizon returns are fairly short, regressions will be strongly 

biased toward finding mean reversion.  For example, with 70 years of data in the full sample, the 

autocorrelation of 5-year returns is biased downward by approximately 0.07.  The bias is difficult to 

extend analytically to regressions with overlapping returns, but Monte Carlo simulations suggests it is 

similar. 

To get the bias in monthly regressions, notice that they resemble the predictive regressions analyzed 

by Stambaugh (1999).  Suppose that monthly returns are IID over time.  The predictive variable in the 

regressions has first-order autocorrelation of (k – 1) / k because it equals the sum of k monthly returns.  

Further, in a regression of k
tr  on k

tr 1− , the residual variance equals (2k – 1) / k times the variance of 

monthly returns.  Using these observations and Stambaugh’s eq. (18), the bias in the monthly slope is 

approximately 

 
Tk

kE 1
12
34]ˆ[ 11 −

−−≈− ββ , (3) 

where T is the number of monthly returns.  For large k, the downward bias is roughly 2 / T; the bias 

depends primarily on the sample size, not on the holding period of the predictive variables.  Although the 

monthly regressions do not strictly fit into Stambaugh’s framework, Monte Carlo simulations suggest that 

eq. (3) provides a reasonable approximation.  (Specifically, it is a good approximation for the regression 

at lag one; the bias drops off as the lag increases.) 

 I have included the analytical formula primarily as a reference.  Since the distribution is also 

negatively skewed, the statistical tests actually rely on simulations.  The simulations use the 

randomization technique of Kim, Nelson, and Startz (1991).  In each simulation, the historical sample of 

returns is randomly re-shuffled to eliminate any time-series patterns in the data.  Thus, the simulations 

generate artificial time-series of returns under the null, while at the same time maintaining the 

unconditional distribution of returns.  I estimate the regressions for each re-shuffled series, and an 

empirical distribution is constructed by repeating the process 5,000 times.  The statistical significance of 
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any coefficient is simply the fraction of simulations that are more extreme than the actual estimates.  This 

randomization technique is similar to bootstrap simulations except that monthly returns are sampled 

without replacement. 

 Unfortunately, the simulations have an important limitation:  they eliminate any time-varying 

volatility in the data.  If volatility changes over time, the simulations might significantly underestimate 

sampling variation in the estimates.  This concern is especially severe if volatility is correlated with past 

returns, for which there is strong evidence (e.g., Campbell and Hentschel, 1992).  There are two possible 

ways around this problem.  First, we can generate returns with time-varying volatility, but then we must 

make strong assumptions about the way volatility changes over time and across portfolios.  An easier 

solution is to draw inferences based on White’s (1980) t-statistics.  That is, I compare the observed t-

statistic (slope estimate divided by White’s standard error) to its simulated distribution.  White’s standard 

errors are, of course, consistent estimators under very general forms of heteroskedasticity.  As long as the 

distribution of the t-statistic is not very sensitive to the true form of volatility – and evidence in Jegadeesh 

(1990, appendix B) suggests it is not – the simulated distribution should be accurate without having to 

model the volatility process. 

 Heteroskedasticity also complicates the joint tests.  The empirical tests report, in addition to statistics 

from individual regressions, joint tests across portfolios and across months.  Because the simulations 

focus on t-statistics, I require an estimate of the covariances among regressions.  To simplify the task, I 

use exactly the same time period for the dependent variables in all regressions (regardless of the lag).  

Thus, all regressions have the same number of observations and their residuals line up together in time.  

Heteroskedastic-consistent covariance estimates are then a straightforward generalization of White’s 

standard errors.3 

 

3. Data and descriptive statistics 

 The empirical tests focus on size portfolios.  Much research finds that size is an important charac-

                                                      
3 Let βi and βj be estimates from any two regressions and Xi and Xj be the corresponding matrices of independent 

variables.  Then 11 )()()ˆ,ˆcov( −− ′′′= jjjjiiiiji XXXEEXXXββ , where Ei is a diagonal matrix constructed from 
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teristic in asset pricing.  Small stocks typically have higher risk and expected returns than big stocks, but 

lower liquidity and institutional ownership.  These differences suggest that mean reversion might also 

vary with size.  For example, Lee, Shleifer, and Thaler (1993) argue that investor sentiment is more likely 

to affect small stocks because they are held disproportionately by individual investors.  If so, then small 

stocks should exhibit stronger reversals. 

 The portfolios are formed from all NYSE, Amex, and NASDAQ stocks on the Center for Research 

in Security Prices (CRSP) database.  Each month, stocks are sorted into 12 size portfolios based on the 

market value of equity in the previous month.  Following Fama and French (1988), the breakpoints are 

given by equally-spaced NYSE percentiles.  I use NYSE percentiles to avoid dramatic changes in the 

portfolios as Amex and NASDAQ stocks enter the sample (in 1962 and 1973, respectively).  It also helps 

reduce the fraction of market value in the largest portfolios.  I calculate value-weighted returns for the 

portfolios from 1926 – 1998, and report tests both for the full sample and the shorter 1946 – 1998 period.  

Stock returns were extremely volatile prior to 1940, and previous research suggests that those years can 

have a large impact on the results. 

 Table 1 shows descriptive statistics for the portfolios.  There is considerable cross-sectional variation 

in the portfolios, with most characteristics varying monotonically with size.  In the full sample, average 

monthly returns range from 0.97% for the largest stocks to 1.87% for the smallest stocks.  Standard 

deviations range from 5.19% to 11.71%.  The differences across portfolios are much less pronounced 

after 1945 because small stocks have lower average returns and volatility.  The spread in average returns 

drops to 0.17% and the spread in volatility drops to 2.08%.  Notice, also, that the number of firms and the 

fraction of market value vary greatly across portfolios.  The smallest portfolio contains roughly 40% of 

the firms but less than 1% of total market value. 

 The table also reports descriptive statistics for equal- and value-weighted market indices and for the 

average size portfolio.  The equal- and value-weighted indices are self-explanatory, but the average size 

portfolio might need additional explanation.  It is simply a portfolio formed by equally-weighting the 12 

size portfolios.  This index provides, in some ways, a better measure of average returns.  Comparing the 

                                                                                                                                                                           
regression i’s residuals.  See White (1984). 
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three indices, the equal-weighted index tends to overweight small stocks, by virtue of their large numbers, 

and looks a lot like the smallest few portfolios.  The value-weighted index, in contrast, is made up 

primarily of the largest one or two size portfolios.  The average size portfolio fits somewhere in the 

middle.  I report evidence for these three indices in addition to the size portfolios. 

 

4. Testing for mean reversion 

 The empirical tests are based on the regressions described in Section 2.  The test explore which 

holding periods have the greatest forecasting power and how quickly mean reversion begins to show up in 

prices. 

 
4.1. Full autocorrelations 

Before turning to the monthly regressions, Table 2 shows full autocorrelations for comparison to 

previous studies.  I report estimates for 1-, 3-, and 5-year returns.  These holding periods are chosen to 

provide a fairly wide range of evidence, but hopefully not to overwhelm the reader with numbers.  (The 

volume of numbers grows quickly when we get to the monthly regressions.)  I have repeated the tests 

with 6-month returns, on the short end, and 7-year returns, on the long end, and find substantially the 

same patterns. 

The table reports bias-adjusted autocorrelations and Newey-West standard errors.  The regressions 

use overlapping monthly returns, so the number of lags for the Newey-West standard errors equals the 

overlap in the dependent returns.  The bias and significance levels are obtained from simulations (see 

Section 2.2), while the standard errors are estimated from the actual regressions.  Recall that the statistical 

tests are based on the distribution of Newey-West t-statistics as a way to control for time-varying 

volatility. 

The autocorrelations are largely consistent with earlier studies.  There is some indication of reversals 

but the evidence is weak.  In the full sample, the bias-adjusted autocorrelations in 1-year returns are close 

to zero, ranging from –0.13 to 0.01, and nowhere significant.  The estimates for 3- and 5-year returns drop 

substantially, with most between –0.10 and –0.30.  The average autocorrelation in 3-year returns is –0.22, 
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but only the estimate for portfolio 7 is significant at the 5% level (one-sided).  For 5-year returns, the 

autocorrelations are significantly negative for portfolios 4 – 7 and for the equal-weighted index (estimates 

between –0.26 and –0.34).  Overall, however, mean reversions is only marginally significant:  reversals 

are close to zero for the largest and very smallest stocks, and the average estimate across the 12 size 

portfolios is not significant for any holding period.  That message is similar to the conclusions in the 

literature.4 

Panel B suggests that reversals in 3- and 5-year returns disappear after 1945.  The 3-year 

autocorrelations range from –0.12 to 0.14 and the 5-year autocorrelations range from –0.17 to 0.30.  None 

of the estimates is significantly different from zero.  Somewhat surprisingly, annual returns show a hint of 

mean reversion.  The average autocorrelation is –0.18, and the estimates for portfolios 7 and 9 are 

significantly negative, equal to –0.23 and –0.26.  However, none of the market indices nor the average 

coefficient across the 12 size portfolios is significant.  Again, the general conclusions from Panel B are 

consistent with previous evidence.  Full autocorrelations provide little evidence of reversals once we skip 

the Great Depression.5 

 
4.2. Monthly regressions, 1926 – 1998 

In Section 2, I argued that monthly regressions provide a better way to test for mean reversion (see 

also Jegadeesh, 1990).  They should be more powerful than full autocorrelations and they better isolate 

reversals in individual months.  I first present evidence for the full sample and later test for mean 

reversion after 1945. 

Table 3 reports the full-sample regressions.  The predictive variables are either 1-, 3-, or 5-year 

cumulative past returns (Panels A, B, and C, respectively).  For each portfolio, I estimate: 

                                                      
4 Quantitatively, 1-year autocorrelations in Panel A tend to be more negative, while 3- and 5-year autocorrelations 

tend to be less negative, than those of Fama and French (1988).  Also, reversals in the smallest stocks are much 
smaller here.  The main reason for these differences is that I use raw returns while they use continuously-
compounded returns.  The difference is less important after 1945 because return volatility diminishes, especially for 
the smallest stocks. 

5 The autocorrelations for 1-year returns in Panel B are more negative than those of Fama and French (1988).  
The difference seems to be explained by several factors:  I use value-weighted portfolios of all stocks (instead of 
equal-weighted portfolios of NYSE stocks), raw returns (instead of continuously-compounded returns), and a longer 
sample (1946 – 1998 instead of 1941 – 1985). 
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 ht
k

thhht r r ++ ++= νβα , (5) 

where h varies from 1 to 18.  Because of space limitations, the table reports the sum of the slope estimates 

for adjacent months, β1 + β2, β3 + β4, etc., rather than individual estimates.  Again, bias and significance 

levels are obtained from simulations, while standard errors are estimated from the actual data.6  As 

mentioned earlier, all regressions use the same set of monthly returns for the dependent variable, 

regardless of the time lag or the predictive return.  Thus, the first dependent return in all regressions is 

July 1932 (1926 + 5 years + 18 months). 

The results in Table 3 are striking.  Consider, first, the regressions with 1-year returns.  Panel A 

shows that 1-year returns are strongly negatively correlated with returns over the subsequent 18 months.  

The table reports the raw estimates multiplied by 100, so the numbers can be interpreted as the percentage 

of past returns that reverse in any given period.  The last column shows that, on average, 30% of annual 

returns reverse over the next 18 months.  The temporary component of returns is close to zero for the 

smallest stocks, but it grows to –44.9% for portfolio 10.  The estimate is between 25% and 45% for 

portfolios 4 – 12 and the three market indices.  These coefficients imply dramatic time-variation in 

expected returns.  Using the point estimates in Panel A, forecasts of 18-month returns have a standard 

deviation of 9.4% for the average portfolio. 

Statistically, 1-year returns seem to have predictive power for at least 14 months.  The estimates for 

months 3 – 4 and months 9 – 14 are significantly negative for nearly all portfolios.  The average 

coefficient for the 12 size portfolios, as well as the estimates for the three market indices, are also 

significant in these months.  More generally, all forecast horizons consistently suggest mean reversion in 

returns, with most estimates at least one standard error below zero.  The last column reports the sum of 

the coefficients across all 18 months.  The sum is significantly negative for 8 of the 12 size portfolios and 

all three market indices. 

 To borrow a line from Fama and French (1988), there is little evidence in the literature that 

                                                      
6 I run a separate simulation for each coefficient in the table.  As an aside, simple bias-adjusted t-statistics (bias-

adjusted slopes divided by their standard errors) give a reasonable picture of statistical significance.  The monthly 
regressions are much better behaved than full autocorrelations. 
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foreshadows these results.  There are two main differences between the monthly regressions and the 

autocorrelations in earlier studies.  First, the monthly regressions extend the forecast horizon out to 18 

months.  Table 3 shows that mean reversion can take many months to show up in prices, so 1-year 

autocorrelations miss much of the reversals.  Within the first eight months, only the estimates for months 

3 and 4 are reliably different from zero.  Reversals again become significant in month 9 and remain 

significant until month 14.  In fact, 34% of the total reversal occurs after month 12 for the average 

portfolio.  Standard autocorrelations miss these patterns and they completely neglect reversals that occur 

after month 12. 

 The second main difference is the sample period.  For the monthly regressions, the sample of 

dependent returns begins in July 1932.  I use the same sample of dependent returns to enhance 

comparison between 1-, 3-, and 5-year returns and to simplify the statistical tests.  The 1-year 

autocorrelations in Table 2, however, begin in 1927 to be consistent with the tests of Fama and French 

(1988).  This minor difference has a surprisingly large impact on the estimates.  In the first six years of 

data, 1926 – 1931, the autocorrelation of annual returns is a remarkable 0.64 for the average size 

portfolio.  Because these returns are so volatile, they strongly attenuate the full-sample autocorrelations.  

If I use data after 1931 to estimate 1-year autocorrelations, the average estimate drops from –0.08 to –

0.16.  The autocorrelations are not as significant as the monthly regressions, since they miss reversals 

beyond 1-year, but the estimates are nearly as large as the 3- and 5-year autocorrelations in Table 2.  I will 

argue later that the post-1931 sample provides a more accurate picture. 

 The patterns across size portfolios in Panel A are also interesting.  Portfolios above the median 

market value of NYSE stocks have the most negative estimates.  For portfolios 1 – 6, the temporary 

component of returns varies from 2.1% to 34.7%, with an average of 21.9%.  For portfolios 7 – 12, the 

percentage varies from 34.7% to 44.9%, with an average of 39.3%.  Reversals drop off slightly for the 

very largest firms, but they remain more negative than any of the estimates in the bottom size quartile.  In 

addition, variation in conditional expected returns tends to be greater for the larger stocks.  Forecasts of 

18-month returns have a standard deviation of 8.5% for the smallest six portfolios and 10.2% for the 

largest six.  These patterns, which run counter to conventional wisdom, are generally supported by the 
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other holding periods.  

 Panels B and C report regressions using 3- and 5-year returns.  The predictive power of 3-year 

returns is relatively weak, while the power of 5-year returns is comparable to 1-year returns.  Using 3-

year returns, only a few of the individual months, and none of the joint tests, is significant at the 5% level.  

However, this probably overstates the drop in predictive power when going from 1- to 3-year returns.  All 

but three of the estimates for portfolios 4 – 11 are more than one standard error below zero.  Exactly half 

of the estimates for these portfolios have p-values between 0.05 and 0.10.  In the last column, the 18-

month sums are significant at the 10% level for five portfolios.  The estimates are, of course, highly 

correlated across portfolios, so it may not be surprising to find clustering of significance levels.  But my 

point here is simply that the differences between 1- and 3-year returns are less dramatic than the statistical 

tests might suggest. 

 The results for 5-year returns, in Panel C, provide stronger evidence of reversals.  In contrast to 1-

year returns, mean reversion is most pronounced at the early lags.  The slope estimates are significant in 

months 1 – 10 and remain negative for the following eight months.  The average coefficient is greater 

than two standard errors below zero in months 3 – 8.  The largest estimates are close to three standard 

errors below zero and significant at better than the 1% level.  Joint tests across all 18-months are 

significant for the equal-weighted index and seven of the 12 size portfolios. 

 Economically, the predictive power of 1-year and 5-year returns is similar.  The raw point estimates 

for 5-year returns are smaller, but the implied variation in expected returns is about the same.  The table 

shows that, on average, 10.1% of 5-year returns reverse over the following 18-months.  This compares 

with 30.9% for 1-year returns.  However, the average standard deviation of 1-year returns is 37% while 

the standard deviation of 5-year returns is over 100% during this time period.  The higher volatility of 5-

year implies the variation in predicted returns is about the same (approximately 9.5% for the average 

portfolio).7 

                                                      
7 It would be interesting to test whether 1- and 5-year returns have incremental explanatory power relative to each 

other.  The evidence in Table 3 suggests they both are important:  if only 1-year returns are significant, I would 
expect the 5-year slope estimates to be closer to zero.  The 5-year regressions add four years to the predictive 
variable.  If these years are simply noise, without predictive power, the slope coefficients in Panel C should drop by 
roughly 4/5ths compared with Panel A.  The actual declines are smaller, between 1/2 and 2/3. 
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 Again, the predictive power of 5-year returns appears to be as strong for large stocks as for small 

stocks.  The slope coefficients are greatest for portfolios 7 – 9, consisting of firms in the 3rd size quartile.  

The estimates are significant for portfolios 3 – 9 and they drop considerably in magnitude for the very 

smallest and largest portfolios.  In contrast to 1-year returns, the estimates are fairly symmetric across size 

portfolios.  Indeed, as a general rule, the data suggest that mean reversion in small stocks tends to catch 

up to that in large stocks as the holding period grows.  Regressions for other sample periods and for 7-

year returns confirm this observation. 

 When interpreting the results, it is important to remember that estimates in adjacent months are 

highly correlated.  The correlation is roughly equal to (k – 1) / k, the overlap in consecutive observations 

of the predictive variable.  For the 5-year regressions, the correlation between adjacent columns is 

approximately 0.96 (58 / 60 because each column is the sum of two months).  The correlation is lower, 

0.85, for the 1-year regressions.  This difference probably explains why the pattern across forecast 

horizons is smoother for 5-year returns.  I note, however, that some of the changes from one month to the 

next in Panel C appear to be statistically significant.  For example, the average coefficient drops by 0.45 

between columns 1 and 2 and then jumps by about the same amount, 0.43, between columns 5 and 6.  The 

standard deviation of these changes is approximately 0.20, suggesting that the patterns are not simply 

random fluctuations in the data. (Recognizing, of course, that searching for the largest changes induces a 

data-snooping bias.) 

 
4.3. Monthly regressions, 1946 – 1998 

 The full-sample tests provide strong evidence of reversals.  Previous studies, however, suggest that 

any trace of mean reversion disappear after 1940.  That finding raises doubts about the reliability of the 

full-sample regressions:  it is not clear whether the volatile Depression era simply provides a fertile 

testing ground or whether the patterns are unique to that period.  Mean reversion after 1940 would go a 

long way to showing that the patterns are real. 

 Table 4 reports monthly regressions for the period 1946 – 1998.  January 1946 is the first month that 

enters as a dependent variable in these regressions, so the predictive variables actually use returns from 
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the early 1940s.  The statistical significance is again based on the simulated distribution of White’s (1980) 

t-statistics.  These results may be excessively conservative:  there is little evidence during this period that 

changes in volatility are correlated with past returns.  The inferences below would be uniformly stronger 

if the tests are based on normal t-statistics. 

 Panel A shows that the predictive power of 1-year returns remains strong in this period.  Moreover, 

the general patterns across forecast horizons and size portfolios are similar to those in the full sample.  

The slope estimates are, with one exception, everywhere negative for months 3 – 18; most are more than 

one standard error below zero.  The individual estimates, as well as the averages across the 12 size 

portfolios, are strongly significant in months 9 – 14, with some significance earlier in months 7 and 8.  

During those middle months, the p-value of the average coefficient ranges from 0.008 (months 11 – 12) to 

0.059 (months 7 – 8).  In addition, the three market indices are negatively autocorrelated, with 

significance levels between 0.005 and 0.024 in months 9 – 14.  The final column shows that significance 

carries over to the joint tests.  Mean reversion across all months is significant for 8 of the 12 size 

portfolios and the three market indices. 

 Economically, the coefficients remain large, but smaller than the estimates from the full sample.  

Temporary price movements account for between 20% and 30% of annual returns for most portfolios 

(compared with 25% to 45% in the full sample).  Portfolios in the 3rd quartile exhibit the strongest mean 

reversion, for which 29% to 31% of annual returns reverse over the following 18 months.  The estimates 

for the smallest stocks once again trail off, but not as much as in the full sample.  The estimate for 

portfolio 1 drops from –2.1% in the full sample to –18.3% after 1945 (neither is significant at 

conventional levels).  Finally, it is clear from the table that mean reversion shows up in prices slowly.  

The largest estimates are for months 9 – 14, and mean reversion in those months accounts for a 

substantial fraction of the reversals. 

These results largely confirm the conclusions from the full sample.  They also support Lewellen’s 

(2000) evidence that momentum profits (Jegadeesh and Titman, 1993) do not translate into persistence in 

returns.  Lewellen shows that size portfolios, similar to those used here, exhibit strong momentum over 6- 

to 12-month horizons:  a strategy that buys past winners and sells past losers earns significant profits for 
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up to 18 months after formation.  Despite this momentum, size portfolios are negatively autocorrelated 

over 6- and 12-month horizons.  (The apparent contradiction is explained by cross-serial correlation 

among stocks.)  Together with the results here, the evidence suggests that mean reversion exists at all but 

the very shortest horizons. 

 As an aside, it is interesting to compare the standard errors reported in Tables 3 and 4.  Even though 

the subsample regressions use 15 fewer years of data, the standard errors decline for all but the smallest 

stocks.  The standard errors in Table 4 are also more uniform across portfolios.  In principle, the standard 

errors should depend only on the length of the sample, and not on the portfolio, which seems nearly true 

after 1945.  The standard errors should also be fairly uniform across monthly lags, but both Tables 3 and 

4 show that the early lags tend to be less precise. 

 The regressions with 3- and 5-year returns, reported in Panels B and C, provide weaker evidence of 

mean reversion than 1-year returns.  Compared to the full sample, however, the predictive power of 3-

year returns actually increases after 1945.  Panel B shows that many of the individual slope coefficients 

on 3-year returns are significantly negative.  The average coefficient is significant in months 7 – 12, and 

the return on the average size portfolio is negatively autocorrelated at lags of 7 to 14 months.  More 

generally, most coefficients are between 1.25 and 2.00 standard errors below zero, with roughly half of 

the individual estimates significant at the 10% level.  These results, however, imply only weak 

significance for the joint tests.  Across all 18 months, 3-year returns have significant predictive power for 

only two portfolios, 7 and 9.  The p-values for portfolios 4 through 10 range from 0.032 to 0.086, and the 

average size portfolio is significant at the 0.056 level.  Taken as a whole, 3-year returns appear to be 

marginally significant. 

 In contrast, Panel C shows that the predictive power of 5-year returns largely disappears.  Only a few 

of the individual coefficients, and none of the joint tests, is significant at the 5% level.  The slope 

estimates for the equal-weighted index and the average size portfolio are typically more than one standard 

error below zero, but the estimates for the value-weighted index are close to zero and even slightly 

positive.  Over all 18 months, estimates for the smaller portfolios are roughly 1.2 standard errors below 

zero, with a minimum p-value of 0.072 for portfolio 3.  Compared with the full-sample evidence in Table 
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2, the estimates drop by more than half.  Thus, the predictive power of 5-year returns, if real, is too weak 

to show up reliably in the post-1945 period. 

 
4.4. Predictive power of 1-year returns in various subperiods 

 The evidence above suggests that 1-year returns have strong predictive power.  The reversals are 

statistically significant in both the full sample and the shorter post-1945 period.  However, as noted 

above, the full-sample results are sensitive to the first few years of CRSP data.  The reader might worry 

that the subperiod results are also sensitive to the period chosen, so it might be useful to look at the data a 

bit more closely. 

 Table 5 reports bias-adjusted slope coefficients when 12-month returns (Panel A) and 18-month 

returns (Panel B) are regressed on lagged annual returns.  The 12-month regressions are standard auto-

correlations and the 18-month regressions mimic the tests in Tables 3 and 4 (the slopes are similar to the 

18-month sums in those tables).  I report estimates for three subperiods, 1932 – 1945, 1946 – 1971, and 

1972 – 1998.  The first period covers the Depression and World War II years; the other two periods split 

the post-1945 sample roughly in half. 

The table shows that mean reversion in 1-year returns is quite robust.  The point estimates for the 

three subperiods are all negative, similar in magnitude, and typically at least one standard error below 

zero.  Reversals appear to be strongest in the second subsample, 1946 – 1971, but the difference between 

that period and the others is well within the bounds of sampling variation. 

Since the three periods are fairly short, it is not surprising that the statistical significance in each is 

modest.  However, weak significance in all three periods translates into strong joint significance.  For 

example, the average autocorrelation in Panel A has a p-value of 0.161 in the first subperiod, 0.120 in the 

second, and 0.298 in the third.  The estimates are essentially independent, so the probability that we 

would observe autocorrelations this negative is less than 0.6% if the true autocorrelation is zero (0.161 × 

0.120 × 0.298).  Similarly, the probability of observing the 18-month slope estimates is less than 0.3% 

(0.137 × 0.082 × 0.303).  In fact, the estimates are significant when any two subperiods are considered 

together.  The consistency of the estimates provides strong evidence that the true autocorrelations are 
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negative. 

Finally, I note that the estimates are similar for other subperiods (not reported in the table).  For 

example, the average 18-month slope is –0.21 for the period 1941 – 1998, –0.31 for the period 1951 – 

1998, and –0.27 for the period 1961 – 1998 (these have not been corrected for bias, which should be 

between –0.04 and –0.06 extrapolating from the other periods).  The individual slope coefficients are also 

similar to those reported in Tables 2 – 6.  Overall, mean reversion in annual returns seems to be reliably 

present in the data. 

 

5. Summary 

 At the beginning of the paper, I described four stylized facts taken from the literature on long-

horizon autocorrelations in returns.  They provide a convenient framework for discussing the 

contributions of the current study. 

(a) Mean reversion in stock prices is marginally significant, at best.  No.  Long-horizon autocorrelations 

may be marginally significant, but the evidence for mean reversion is strong.  The monthly 

regressions show that 1-year and 5-year returns both have significant predictive power in the full 

sample (1926 – 1998).  For most size portfolios and the three market indices, between 25% and 45% 

of annual returns reverse over the subsequent 18 months.  The percentage falls to between 10% and 

15% for 5-year returns. 

(b) Mean reversion is non–existent after 1945.  No.  The predictive power of past returns appears to fall 

after 1945, but there remains reliable evidence of reversals.  One-year returns, and to a less extent 3-

year returns, are negatively correlated with future returns for at least 14 months.  Between 20% and 

30% of annual returns reverse over the subsequent 18 months.  The reversals are statistically 

significant 8 of the 12 size portfolios and for all three market indices.  The point estimates imply 

economically significant time-variation in expected returns. 

(c) Mean reversion is stronger for small stocks.  No.  The monthly regressions consistently find that 
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mean reversion is as strong or stronger for larger portfolios.  Size portfolios above the median 

market value of NYSE stocks typically have the most negative point estimates, especially the 

portfolios in the 3rd quartile.  Across the size portfolios, mean reversion appears to drop off for both 

the very smallest and the very largest portfolios. 

(d) Mean reversion is strongest over 3- to 5-year horizons.  No.  From a statistical standpoint, 1-year 

returns have the most reliable predictive power.  They are negatively related to future returns in both 

the full sample, the shorter 1946 – 1998 period, and various subperiods.  Five-year returns are 

strongly significant in the full sample, but not in the shorter subperiod; three-year returns are 

marginally significant only after 1945.  Economically, the predictive power of 1-year returns is also 

as strong or stronger than 3- and 5-year returns.  In the full sample, 1- and 5-year returns forecast 

similar time-variation in expected returns.  After 1945, the predictive power of 1-year returns is 

stronger than either of the other holding periods. 

 This paper has not attempted to disentangle rational- and irrational-pricing stories for mean 

reversion.  Time variation in expected returns appears to be economically large, but perhaps not 

impossible for rational models to explain.  A number of tests could help distinguish among potential 

theories.  For example, one might test whether expected stock returns are always greater than the riskfree 

rate – negative risk premia are difficult to reconcile with market efficiency.  Also, if mean reversion 

captures changes in discount rates, then we might expect that the patterns in the data are related to 

business conditions or changes in risk.  Finally, the patterns across size portfolios and time horizons 

provide a rich source of information.  A model should explain why mean reversion is strongest in 1-year 

returns, why reversals take many months to show up in prices, and why reversals appear weak in the very 

smallest and very largest portfolios. 
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Table 1 
Summary statistics, 1926 – 1998 

Each month from January 1926 through December 1998, 12 value-weighted size portfolios are formed from all NYSE, Amex, and NASDAQ stocks 
classified as ordinary common equity on CRSP. The breakpoints are determined by equally-spaced NYSE percentiles. The table reports the average 
return and standard deviation of each portfolio (in percent), the number of firms in the portfolio on average and at the end of the sample, and the fraction 
of total market value in the portfolio on average and at the end of the sample. The table also reports these statistics for equal- and value-weighted market 
indices and the equal-weighted combination of the 12 size portfolios. 

 Average return (%)  Std. deviation (%)  Avg. number of firms  Avg. market value (%) 

Portfolio 1926–98 1946–98 1926–98 1946–98 1926–98 1946–98 12/98 1926–98 1946–98 12/98

Small 1.87 1.22 11.71 6.08  1,074 1,432 3,141  0.8 1.1 0.7
2 1.46 1.21 9.96 5.64  275 352 908  0.8 1.0 0.7
3 1.24 1.17 8.86 5.58  207 260 607  1.0 1.1 0.8
4 1.22 1.19 8.41 5.43  177 219 505  1.2 1.4 1.0
5 1.27 1.23 7.79 5.24  157 193 427  1.6 1.8 1.2
6 1.23 1.21 7.49 5.11  142 173 370  2.1 2.3 1.4
7 1.20 1.18 7.17 5.01  127 152 354  2.7 2.9 2.0
8 1.10 1.16 6.80 4.82  119 141 330  3.6 3.9 2.7
9 1.14 1.15 6.59 4.77  114 134 279  5.2 5.5 3.7
10 1.09 1.17 6.29 4.52  108 126 253  8.1 8.3 6.0
11 1.03 1.10 5.83 4.31  103 120 233  14.2 13.8 11.7
Largest 0.97 1.06 5.19 4.00  101 117 221  58.7 56.9 68.1
VW index 1.01 1.10 5.50 4.15  2,706 3,420 7,628  100.0 100.0 100.0
EW index 1.30 1.23 7.55 5.17  2,706 3,420 7,628  100.0 100.0 100.0
Avg. size portfolioa 1.24 1.17 7.36 4.85  2,706 3,420 7,628  100.0 100.0 100.0
 
a Equal-weighted combination of the 12 size portfolios. 
 
 
 



Table 2 
Full autocorrelations 
 
The table reports bias-adjusted autocorrelations and Newey-West (1987) standard errors for 1-, 3-, and 5-year 
returns. Panel A shows estimates for 1926 – 1998 and Panel B shows estimates for 1946 – 1998. The table 
reports autocorrelations for 12 size portfolios, equal- and value-weighted market indices, and the equal-
weighted combination of the size portfolios. ‘Average ρ’ equals the average autocorrelation for the 12 size 
portfolios. The coefficients are estimated from OLS regressions using overlapping monthly observations, and 
bias and significance levels are obtained from bootstrap simulations. 

 Autocorrelation  Std error 

Portfolio 1 yr 3 yr 5 yr 1 yr 3 yr 5 yr

Panel A: 1926 – 1998      
Small 0.01 -0.05 -0.05 0.05 0.09 0.08
2 -0.02 -0.16 -0.17 0.06 0.13 0.14
3 -0.07 -0.22 -0.30 0.08 0.12 0.13
4 -0.09 -0.25 -0.32* 0.09 0.13 0.13
5 -0.11 -0.23 -0.29* 0.10 0.11 0.10
6 -0.09 -0.26 -0.31* 0.10 0.11 0.12
7 -0.13 -0.27* -0.26* 0.11 0.10 0.10
8 -0.11 -0.21 -0.12 0.12 0.11 0.10
9 -0.13 -0.31 -0.25 0.11 0.13 0.11
10 -0.12 -0.23 -0.06 0.12 0.10 0.09
11 -0.08 -0.26 -0.09 0.12 0.12 0.12
Large -0.01 -0.18 0.13 0.12 0.13 0.09
VW index -0.07 -0.22 0.00 0.12 0.12 0.09
EW index -0.08 -0.24 -0.34* 0.09 0.12 0.13
Ave. size portfolio -0.10 -0.27 -0.27 0.09 0.13 0.15
Average ρ -0.08 -0.22 -0.17 0.09 0.09 0.09

Panel B: 1946 – 1998    
Small -0.09 -0.05 0.05 0.10 0.10 0.05
2 -0.13 -0.06 -0.10 0.10 0.14 0.10
3 -0.16 -0.12 -0.12 0.10 0.15 0.11
4 -0.18 -0.08 -0.17 0.10 0.16 0.11
5 -0.18 -0.06 -0.12 0.10 0.17 0.12
6 -0.21 -0.09 -0.15 0.10 0.15 0.12
7 -0.23* -0.10 -0.10 0.11 0.15 0.09
8 -0.22 -0.02 -0.02 0.10 0.18 0.13
9 -0.26* -0.06 0.08 0.10 0.15 0.13
10 -0.21 0.00 0.07 0.11 0.15 0.14
11 -0.21 0.08 0.28 0.10 0.15 0.16
Large -0.07 0.14 0.30 0.10 0.14 0.17
VW index -0.18 0.08 0.20 0.10 0.15 0.16
EW index -0.16 -0.04 -0.20 0.10 0.18 0.15
Ave. size portfolio -0.21 -0.10 -0.07 0.10 0.15 0.09
Average ρ -0.18 -0.03 0.00 0.09 0.13 0.08

* Estimate is significant at the 5% level (one-sided) based on bootstrap simulations. 
 



Table 3 
Monthly regressions, 1926 – 1998 
 
The table reports bias-adjusted slope coefficients and White (1980) standard errors when monthly returns are 
regressed on past 1-, 3-, or 5-year returns (Panels A, B, and C, respectively). The table shows estimates for horizons 
of 1 to 18 months (estimates for adjacent months are summed, i.e., 1+2, 3+4, ...) and the total across all months. 
Estimates are shown for 12 size portfolios, equal- and value-weighted market indices, and the equal-weighted 
combination of the 12 size portfolios.  The coefficients are estimated from OLS regressions, and the bias and 
significance levels are obtained from bootstrap simulations. 

 Forecast horizon (months) 

Portfolio 1-2 3-4 5-6 7-8 9-10 11-12 13-14 15-16 17-18 Sum

Panel A: Lagged 1-year returns 
 β × 100 

Small 1.9 -1.1 0.5 2.4 0.0 -2.3* -2.2* -1.0 -0.3 -2.1 
2 1.0 -2.7* -0.4 2.1 -1.0 -3.7* -3.3* -1.8 -1.0 -10.8 
3 -0.7 -4.9* -2.2 0.8 -2.8 -5.8* -4.8* -2.2 -1.7 -24.4 
4 -0.7 -4.7* -2.4 0.3 -3.0 -6.0* -5.4* -2.7 -1.7 -26.4*
5 -2.0 -5.9* -3.4 -0.6 -4.0* -6.8* -6.3* -3.3 -2.6 -34.7*
6 -2.2 -5.6* -3.2 -0.8 -3.8* -6.5* -5.6* -2.9 -2.4 -33.1*
7 -2.3 -5.7* -3.8 -1.7 -5.3* -7.4* -6.3* -3.7 -3.1 -39.5*
8 -3.1 -6.6* -4.6* -2.6 -5.3* -7.5* -6.3* -3.4 -2.6 -42.0*
9 -2.5 -5.5* -3.9 -2.2 -4.9* -6.4* -5.4* -2.9 -2.3 -36.2*
10 -4.4 -6.5* -4.9* -3.2 -5.8* -7.2* -6.2* -3.6 -3.1 -44.9*
11 -2.9 -4.7* -4.0 -3.4 -5.5* -6.6* -5.3* -3.4 -2.7 -38.6*
Large -2.2 -3.6 -3.1 -2.7 -5.2* -6.2* -5.4* -3.4 -2.8 -34.7 

VW index -3.1 -5.1* -4.0 -3.3 -5.8* -7.0* -5.9* -3.6 -3.0 -40.9*
EW index -0.6 -4.3* -2.5 -0.4 -3.5* -5.9* -5.3* -3.0 -2.3 -27.8*
Ave. size port -1.0 -4.6* -2.4 -0.2 -3.4* -5.9* -5.1* -2.8 -2.1 -27.7*
Average β -1.7 -4.8* -3.0 -1.0 -4.0* -6.1* -5.3* -2.9 -2.2 -30.9*

 std error × 100 

Small 1.5 1.0 1.4 2.0 0.8 0.8 1.1 0.9 1.0 7.3 
2 1.8 1.4 1.7 2.2 1.3 1.4 1.6 1.4 1.7 9.9 
3 2.1 2.0 2.3 2.8 1.8 2.0 2.4 2.1 2.1 14.5 
4 2.1 2.0 2.4 3.0 1.9 2.1 2.4 2.1 2.3 14.9 
5 2.5 2.4 2.4 2.8 2.2 2.3 2.6 2.4 2.5 16.8 
6 2.7 2.4 2.5 2.8 2.2 2.3 2.6 2.4 2.5 16.7 
7 2.8 2.6 2.6 3.0 2.2 2.4 2.6 2.4 2.4 17.0 
8 2.9 2.8 2.7 2.8 2.5 2.5 2.7 2.5 2.6 18.9 
9 2.7 2.5 2.6 2.6 2.3 2.3 2.4 2.3 2.3 16.6 
10 3.5 3.1 2.9 2.9 2.8 2.8 2.9 2.8 2.7 21.3 
11 3.0 2.8 2.7 2.6 2.6 2.6 2.7 2.6 2.5 19.7 
Large 3.2 3.0 2.8 2.6 2.7 2.7 2.7 2.6 2.4 20.7 

VW index 3.1 2.9 2.8 2.6 2.6 2.7 2.7 2.6 2.5 20.2 
EW index 2.3 2.0 2.1 2.5 1.8 1.9 2.2 2.0 2.1 14.1 
Ave. size port 2.3 2.0 2.2 2.6 1.8 2.0 2.2 2.0 2.1 14.1 
Average β 2.4 2.2 2.2 2.5 2.0 2.1 2.3 2.1 2.1 15.3 

* Estimate is significant at the 5% level (one-sided) based on bootstrap simulations. 

(Table continues) 



 

Table 3 
Monthly regressions, 1926 – 1998 (continued) 

 Forecast horizon (months) 

Portfolio 1-2 3-4 5-6 7-8 9-10 11-12 13-14 15-16 17-18 Sum

Panel B: Lagged 3-year returns 
 β × 100 

Small 0.5 0.3 0.6 0.8 0.6 0.5 0.1 -0.1 -0.1 3.2 
2 0.0 -0.2 0.1 0.4 0.1 -0.1 -0.6 -0.7 -0.9 -1.8 
3 -0.8 -1.0 -0.9 -0.7 -1.2 -1.3 -1.6 -1.6 -1.8 -10.9 
4 -1.0 -1.2 -1.1 -0.9 -1.3 -1.7 -2.0* -1.7 -1.9 -12.7 
5 -1.7 -1.8 -1.5 -1.4 -1.6 -1.7 -1.9 -1.6 -1.7 -14.9 
6 -1.7 -1.7 -1.8 -1.6 -1.8 -1.7 -1.9 -1.5 -1.7 -15.3 
7 -1.9 -2.1 -2.0 -1.8 -2.2 -2.3 -2.3* -1.8 -1.9 -18.4 
8 -2.5 -2.4 -2.3 -2.3 -2.6 -2.5 -2.4* -1.7 -1.7 -20.4 
9 -2.2 -2.3 -2.1 -2.0 -2.3 -2.1 -2.1 -1.7 -1.5 -18.5 
10 -3.3 -3.0 -2.7 -2.5 -2.8 -2.6 -2.4 -1.7 -1.5 -22.4 
11 -1.6 -1.5 -1.5 -1.6 -2.0 -1.9 -1.9 -1.4 -1.2 -14.7 
Large -1.4 -1.1 -1.3 -1.3 -1.6 -1.4 -1.4 -0.8 -0.5 -10.7 

VW index -2.1 -1.9 -1.9 -1.9 -2.2 -2.1 -2.0 -1.3 -1.1 -16.5 
EW index -1.0 -1.2 -1.0 -0.9 -1.3 -1.4 -1.6 -1.4 -1.5 -11.2 
Ave. size port -1.1 -1.2 -0.9 -0.7 -1.1 -1.3 -1.5 -1.4 -1.4 -10.6 
Average β -1.5 -1.5 -1.4 -1.2 -1.5 -1.6 -1.7 -1.4 -1.4 -13.1 

 std error × 100 

Small 0.5 0.4 0.4 0.4 0.4 0.5 0.4 0.4 0.4 3.6 
2 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.7 0.8 6.4 
3 1.2 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 9.4 
4 1.3 1.2 1.2 1.2 1.2 1.2 1.1 1.1 1.2 10.1 
5 1.4 1.4 1.4 1.4 1.4 1.4 1.3 1.3 1.3 11.6 
6 1.4 1.4 1.3 1.4 1.4 1.3 1.2 1.3 1.3 11.2 
7 1.5 1.5 1.5 1.5 1.5 1.4 1.3 1.3 1.3 12.1 
8 1.7 1.7 1.6 1.6 1.6 1.5 1.4 1.4 1.4 13.2 
9 1.5 1.5 1.5 1.4 1.4 1.4 1.3 1.3 1.3 11.8 
10 2.0 1.9 1.9 1.8 1.8 1.7 1.6 1.6 1.5 15.1 
11 1.6 1.5 1.5 1.5 1.4 1.3 1.3 1.3 1.2 11.9 
Large 1.6 1.5 1.5 1.5 1.4 1.4 1.3 1.3 1.2 11.9 

VW index 1.7 1.6 1.6 1.6 1.5 1.5 1.4 1.4 1.3 12.8 
EW index 1.2 1.1 1.1 1.1 1.1 1.1 1.0 1.1 1.1 9.4 
Ave. size port 1.2 1.1 1.1 1.1 1.1 1.1 1.0 1.0 1.1 9.2 
Average β 1.3 1.3 1.2 1.2 1.2 1.2 1.1 1.1 1.1 10.1 

* Estimate is significant at the 5% level (one-sided) based on bootstrap simulations. 

(Table continues) 



 

Table 3 
Monthly regressions, 1926 – 1998 (continued) 

 Forecast horizon (months) 

Portfolio 1-2 3-4 5-6 7-8 9-10 11-12 13-14 15-16 17-18 Sum

Panel C: Lagged 5-year returns 
 β × 100 

Small 0.1 -0.1* -0.1* -0.1* -0.1 0.0 0.0 0.0 0.0 -0.3 
2 -0.2 -0.5* -0.7* -0.6* -0.6 -0.4 -0.2 -0.3 -0.3 -3.8 
3 -1.1* -1.6* -1.6* -1.5* -1.5* -1.2 -0.9 -0.9 -0.8 -11.2*
4 -1.4* -1.9* -1.9* -1.7* -1.6* -1.1 -0.9 -0.8 -0.7 -12.0*
5 -1.4* -1.9* -1.9* -1.7* -1.6* -1.2 -0.9 -0.8 -0.7 -12.3*
6 -1.4* -2.0* -2.0* -1.8* -1.8* -1.2 -0.9 -0.7 -0.6 -12.5*
7 -1.9* -2.5* -2.4* -2.0* -1.9* -1.3 -0.9 -0.9 -0.7 -14.5*
8 -1.9* -2.4* -2.2* -1.9* -1.8* -1.3 -0.9 -0.8 -0.6 -13.9*
9 -1.9* -2.4* -2.3* -1.9* -1.8 -1.2 -0.8 -0.7 -0.5 -13.5*
10 -1.9* -2.4* -2.1* -1.8* -1.7 -1.2 -0.8 -0.7 -0.5 -13.2 
11 -1.5* -1.9* -1.8* -1.6* -1.5 -1.0 -0.7 -0.6 -0.3 -10.9 
Large -0.8 -1.1 -1.0 -0.8 -0.7 -0.3 -0.1 -0.1 0.1 -4.7 

VW index -1.5 -1.8* -1.7* -1.4 -1.3 -0.8 -0.6 -0.5 -0.2 -9.8 
EW index -1.1* -1.6* -1.6* -1.5* -1.4* -1.1 -0.8 -0.8 -0.7 -10.4*
Ave. size port -0.8* -1.3* -1.4* -1.3* -1.2* -0.9 -0.5 -0.5 -0.4 -8.3*
Average β -1.2* -1.7* -1.7* -1.4* -1.4 -1.0 -0.7 -0.6 -0.5 -10.1*

 std error × 100 

Small 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 1.3 
2 0.3 0.3 0.3 0.3 0.4 0.5 0.5 0.5 0.4 3.1 
3 0.6 0.7 0.6 0.7 0.8 0.8 0.8 0.7 0.7 5.7 
4 0.7 0.7 0.7 0.7 0.9 1.0 1.0 0.8 0.8 6.5 
5 0.8 0.8 0.7 0.8 0.9 1.0 1.0 0.8 0.7 6.6 
6 0.7 0.7 0.7 0.8 0.9 1.0 1.0 0.9 0.8 6.8 
7 0.9 0.9 0.8 0.9 1.0 1.1 1.1 0.9 0.8 7.4 
8 0.9 0.9 0.9 0.9 1.0 1.0 1.0 0.8 0.7 7.5 
9 0.9 0.9 0.8 0.9 1.1 1.2 1.1 0.9 0.8 7.7 
10 1.1 1.1 1.0 1.0 1.1 1.1 1.0 0.9 0.8 8.3 
11 0.9 0.9 0.8 0.9 1.0 1.0 0.9 0.8 0.7 7.1 
Large 0.9 0.9 0.8 0.8 0.9 0.8 0.8 0.7 0.6 6.6 

VW index 1.0 1.0 0.9 0.9 1.0 1.0 0.9 0.8 0.7 7.3 
EW index 0.6 0.6 0.6 0.6 0.7 0.8 0.8 0.7 0.6 5.4 
Ave. size port 0.5 0.5 0.5 0.5 0.7 0.8 0.8 0.7 0.6 4.9 
Average β 0.7 0.7 0.7 0.7 0.8 0.9 0.8 0.7 0.6 5.8 

* Estimate is significant at the 5% level (one-sided) based on bootstrap simulations. 
 



Table 4 
Monthly regressions, 1946 – 1998 
 
The table reports bias-adjusted slope coefficients and White (1980) standard errors when monthly returns are 
regressed on past 1-, 3-, or 5-year returns (Panels A, B, and C, respectively). The table shows estimates for horizons 
of 1 to 18 months (estimates for adjacent months are summed, i.e., 1+2, 3+4, ...) and the total across all months. 
Estimates are shown for 12 size portfolios, equal- and value-weighted market indices, and the equal-weighted 
combination of the 12 size portfolios.  The coefficients are estimated from OLS regressions, and the bias and 
significance levels are obtained from bootstrap simulations. 

 Forecast horizon (months) 

Portfolio 1-2 3-4 5-6 7-8 9-10 11-12 13-14 15-16 17-18 Sum

Panel A: Lagged 1-year returns 
 β × 100 

Small 2.1 -0.7 -1.2 -2.0 -3.3* -3.7* -4.1* -2.8* -2.7 -18.3 
2 0.5 -1.8 -1.5 -1.8 -3.3* -3.5* -3.7* -2.2 -2.7 -20.0 
3 0.1 -2.3 -2.0 -2.6 -3.7* -3.8* -3.7* -1.9 -2.0 -21.9 
4 -0.6 -2.8 -2.2 -2.6 -3.8* -4.0* -4.0* -2.1 -2.4 -24.6*
5 -1.0 -3.1 -2.1 -2.6 -3.9* -4.0* -3.6* -1.5 -2.0 -23.9*
6 -1.2 -3.4 -2.7 -3.0 -3.9* -4.3* -3.5* -1.3 -1.6 -24.8*
7 -1.6 -3.4 -2.9 -3.5* -4.7* -5.0* -4.2* -2.1 -2.2 -29.7*
8 -1.2 -3.3 -2.9 -3.8* -4.8* -4.9* -4.1* -1.8 -1.8 -28.6*
9 -2.4 -4.2* -3.5 -3.9* -4.9* -4.9* -4.0* -1.8 -1.7 -31.2*
10 -2.2 -3.2 -2.6 -3.2 -4.2* -4.6* -3.8* -1.9 -2.1 -27.7*
11 -1.6 -2.7 -2.6 -3.4* -4.3* -4.5* -3.4* -1.1 -1.1 -24.7*
Large 1.1 0.4 -0.3 -0.9 -2.8 -3.3 -3.6* -1.9 -1.5 -12.8 

VW index -0.8 -1.9 -2.0 -2.7 -4.2* -4.6* -4.3* -2.1 -1.9 -24.5*
EW index 0.5 -2.0 -2.1 -2.7 -3.9* -4.1* -4.1* -2.2 -2.0 -22.6*
Ave. size port -1.0 -3.1 -2.7 -3.3* -4.6* -4.8* -4.4* -2.4 -2.5 -28.7*
Average β -0.7 -2.5 -2.2 -2.8 -4.0* -4.2* -3.8* -1.9 -2.0 -24.0*

 std error × 100 

Small 1.9 1.9 1.8 1.7 1.6 1.6 1.7 1.6 1.7 12.0 
2 2.1 2.1 2.1 1.9 1.8 1.8 1.9 1.8 1.9 13.1 
3 2.1 2.1 2.1 1.9 1.8 1.8 1.9 1.8 1.9 13.2 
4 2.1 2.2 2.1 1.9 1.8 1.8 2.0 1.8 2.0 13.3 
5 2.2 2.2 2.1 1.9 1.9 1.9 2.0 1.9 2.0 13.3 
6 2.1 2.2 2.1 1.9 1.8 1.8 1.9 1.8 1.9 12.8 
7 2.2 2.3 2.2 2.0 1.9 2.0 2.1 2.0 2.0 13.9 
8 2.2 2.2 2.1 1.9 1.9 1.9 2.0 1.9 2.0 13.6 
9 2.3 2.3 2.2 2.0 2.0 1.9 2.1 1.9 2.0 13.8 
10 2.4 2.4 2.3 2.1 2.1 2.2 2.3 2.2 2.2 15.0 
11 2.4 2.3 2.2 2.0 2.1 2.1 2.1 2.0 2.1 14.5 
Large 2.5 2.3 2.2 2.2 2.2 2.2 2.2 2.1 2.1 15.8 

VW index 2.4 2.3 2.2 2.1 2.1 2.1 2.2 2.0 2.0 14.7 
EW index 2.1 2.1 2.0 1.8 1.7 1.8 1.9 1.8 1.9 12.8 
Ave. size port 2.2 2.2 2.1 1.9 1.9 1.9 2.0 1.9 1.9 13.4 
Average β 2.0 2.1 2.0 1.8 1.8 1.8 1.9 1.7 1.8 12.5 

* Estimate is significant at the 5% level (one-sided) based on bootstrap simulations. 
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Table 4 
Monthly regressions, 1946 – 1998 (continued) 

 Forecast horizon (months) 

Portfolio 1-2 3-4 5-6 7-8 9-10 11-12 13-14 15-16 17-18 Sum

Panel B: Lagged 3-year returns 
 β × 100 

Small 0.3 0.1 -0.1 -0.4 -0.5 -0.4 -0.4 -0.4 -0.4 -2.0 
2 -0.1 -0.2 -0.5 -0.8 -0.9 -0.8 -0.8 -0.6 -0.6 -5.3 
3 -0.4 -0.7 -1.0 -1.3 -1.4* -1.2 -1.1 -0.7 -0.7 -8.5 
4 -1.1 -1.3 -1.4 -1.5 -1.5* -1.4 -1.4* -0.7 -0.7 -11.0 
5 -1.2 -1.2 -1.3 -1.6* -1.7* -1.5 -1.3 -0.6 -0.6 -10.9 
6 -1.2 -1.4 -1.6 -1.9* -1.8* -1.5* -1.3 -0.5 -0.4 -11.6 
7 -1.8 -1.9 -2.0* -2.1* -2.1* -1.8* -1.6* -0.7 -0.5 -14.3*
8 -1.7 -1.8 -2.0* -2.2* -2.2* -1.8* -1.6 -0.4 -0.1 -13.6 
9 -2.2 -2.4* -2.5* -2.6* -2.6* -2.2* -2.0* -0.6 0.0 -17.2*
10 -2.3 -2.1 -2.1 -2.1 -2.1* -1.9 -1.7 -0.4 -0.1 -14.6 
11 -1.3 -1.3 -1.4 -1.7 -1.7 -1.3 -1.1 0.1 0.5 -9.2 
Large -0.2 0.0 -0.4 -0.4 -0.7 -0.5 -0.6 0.5 1.0 -1.3 

VW index -1.4 -1.3 -1.5 -1.6 -1.7 -1.5 -1.4 0.0 0.5 -9.9 
EW index -0.5 -0.7 -1.0 -1.2 -1.4 -1.2 -1.2 -0.5 -0.5 -8.2 
Ave. size port -1.4 -1.4 -1.6 -1.8* -1.8* -1.6* -1.5* -0.8 -0.7 -12.5 
Average β -1.1 -1.2 -1.4 -1.5* -1.6* -1.4* -1.2 -0.4 -0.2 -9.9 

 std error × 100 

Small 0.8 0.6 0.6 0.6 0.5 0.5 0.5 0.4 0.4 4.7 
2 1.0 0.9 0.9 0.8 0.8 0.7 0.7 0.7 0.7 6.8 
3 1.0 1.0 0.9 0.9 0.9 0.9 0.8 0.8 0.8 7.5 
4 1.2 1.1 1.0 1.0 1.0 0.9 0.9 0.9 0.9 8.1 
5 1.1 1.1 1.0 1.0 1.0 0.9 0.9 0.9 0.9 8.0 
6 1.1 1.1 1.0 1.0 1.0 0.9 0.9 0.9 0.9 8.0 
7 1.3 1.2 1.2 1.1 1.1 1.0 1.0 1.0 0.9 8.8 
8 1.3 1.3 1.2 1.1 1.1 1.1 1.0 1.0 1.0 9.0 
9 1.4 1.4 1.3 1.2 1.1 1.1 1.1 1.1 1.1 9.3 
10 1.5 1.5 1.4 1.3 1.2 1.2 1.2 1.1 1.1 10.2 
11 1.4 1.4 1.3 1.2 1.1 1.1 1.1 1.1 1.1 9.5 
Large 1.3 1.3 1.3 1.2 1.1 1.1 1.2 1.1 1.1 9.6 

VW index 1.4 1.4 1.3 1.2 1.2 1.1 1.1 1.1 1.1 9.6 
EW index 1.1 1.0 1.0 0.9 0.9 0.9 0.9 0.9 0.8 7.7 
Ave. size port 1.2 1.1 1.1 1.0 1.0 0.9 0.9 0.9 0.8 8.1 
Average β 1.1 1.0 1.0 0.9 0.9 0.8 0.8 0.8 0.8 7.3 

* Estimate is significant at the 5% level (one-sided) based on bootstrap simulations. 
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Table 4 
Monthly regressions, 1946 – 1998 (continued) 

 Forecast horizon (months) 

Portfolio 1-2 3-4 5-6 7-8 9-10 11-12 13-14 15-16 17-18 Sum

Panel C: Lagged 5-year returns 
 β × 100 

Small 0.1 0.0 0.0 0.0 -0.1 -0.1 -0.1 -0.1 0.0 -0.3 
2 -0.2 -0.4 -0.3 -0.3 -0.4 -0.5 -0.5 -0.5 -0.4 -3.4 
3 -0.4 -0.6 -0.5 -0.5 -0.6 -0.7* -0.7* -0.6 -0.5 -5.2 
4 -0.5 -0.9 -0.7 -0.7 -0.7 -0.8 -0.9* -0.7 -0.6 -6.4 
5 -0.5 -0.8 -0.5 -0.6 -0.6 -0.7 -0.8 -0.6 -0.5 -5.6 
6 -0.6 -0.9 -0.6 -0.6 -0.6 -0.6 -0.7 -0.5 -0.4 -5.4 
7 -0.8 -1.1 -0.8 -0.7 -0.7 -0.8 -0.9 -0.6 -0.4 -6.8 
8 -0.5 -0.9 -0.6 -0.6 -0.6 -0.6 -0.5 -0.3 -0.1 -4.8 
9 -0.7 -1.1 -0.7 -0.6 -0.5 -0.5 -0.5 -0.3 0.0 -5.1 
10 -0.6 -0.8 -0.4 -0.3 -0.2 -0.3 -0.4 -0.3 -0.1 -3.4 
11 -0.1 -0.3 -0.1 -0.1 0.0 0.1 0.1 0.3 0.6 0.4 
Large 0.8 0.6 0.6 0.6 0.7 0.7 0.4 0.5 0.6 5.2 

VW index 0.0 -0.2 0.0 0.0 0.1 0.2 0.0 0.1 0.3 0.5 
EW index -0.2 -0.5 -0.4 -0.5 -0.6 -0.6 -0.7 -0.6 -0.5 -4.6 
Ave. size port -0.5 -0.8 -0.6 -0.6 -0.6 -0.7 -0.7 -0.6 -0.4 -5.6 
Average β -0.3 -0.6 -0.4 -0.4 -0.4 -0.4 -0.5 -0.3 -0.1 -3.4 

 std error × 100 

Small 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 1.5 
2 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.3 3.2 
3 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.4 4.1 
4 0.6 0.6 0.6 0.6 0.6 0.5 0.5 0.5 0.5 4.7 
5 0.6 0.7 0.6 0.6 0.6 0.6 0.6 0.6 0.5 4.9 
6 0.6 0.7 0.6 0.6 0.6 0.6 0.6 0.6 0.5 4.9 
7 0.8 0.8 0.8 0.7 0.7 0.7 0.7 0.7 0.6 5.8 
8 0.8 0.8 0.8 0.8 0.7 0.7 0.7 0.7 0.7 6.2 
9 0.9 0.9 0.9 0.8 0.8 0.8 0.8 0.7 0.7 6.5 
10 0.9 1.0 0.9 0.9 0.8 0.8 0.8 0.8 0.8 7.1 
11 0.8 0.9 0.8 0.8 0.8 0.7 0.7 0.7 0.7 6.5 
Large 0.9 0.9 0.9 0.8 0.8 0.7 0.7 0.7 0.7 6.7 

VW index 0.9 1.0 0.9 0.9 0.8 0.8 0.8 0.8 0.7 7.0 
EW index 0.6 0.6 0.5 0.5 0.5 0.5 0.5 0.5 0.5 4.3 
Ave. size port 0.6 0.6 0.6 0.6 0.5 0.5 0.5 0.5 0.5 4.4 
Average β 0.6 0.6 0.6 0.6 0.5 0.5 0.5 0.5 0.5 4.6 

* Estimate is significant at the 5% level (one-sided) based on bootstrap simulations. 
 



Table 5 
Predictive power of 1-year returns in various subperiods 
 
The table reports bias-adjusted slope coefficients and Newey-West (1987) standard errors when either 12-
month returns (Panel A) or 18-month returns (Panel B) are regressed on lagged annual returns. The table shows 
estimates for 1932 – 1945, 1946 – 1971, and 1972 – 1998. The coefficients are estimated from OLS regressions 
with overlapping monthly observations, and bias and significance levels are obtained from bootstrap 
simulations. The table reports estimates for 12 size portfolios, equal- and value-weighted market indices, and 
the equal-weighted average of the size portfolios. 

 Slope estimate  Std error 

Portfolio 1932–45 1946–71 1972–98 1932–45 1946–71 1972–98

Panel A: Autocorrelations      
Small -0.03 -0.10 -0.03 0.08 0.13 0.16
2 -0.04 -0.13 -0.07 0.09 0.12 0.16
3 -0.12 -0.14 -0.13 0.11 0.12 0.17
4 -0.14 -0.15 -0.16 0.11 0.12 0.17
5 -0.19 -0.20 -0.13 0.12 0.11 0.18
6 -0.14 -0.23 -0.14 0.12 0.12 0.18
7 -0.20 -0.23 -0.20 0.12 0.11 0.19
8 -0.20 -0.21 -0.20 0.12 0.12 0.18
9 -0.14 -0.25 -0.24 0.13 0.11 0.17
10 -0.19 -0.23 -0.16 0.13 0.13 0.17
11 -0.16 -0.22 -0.16 0.13 0.12 0.16
Large -0.22 -0.06 -0.05 0.13 0.15 0.14
VW index -0.21 -0.15 -0.17 0.13 0.14 0.15
EW index -0.13 -0.17 -0.10 0.11 0.12 0.16
Ave. size portfolio -0.13 -0.20 -0.18 0.11 0.11 0.18
Average β -0.15 -0.18 -0.14 0.11 0.11 0.16

Panel B: Predicting 18-month returns    
Small -0.03 -0.26 -0.01 0.10 0.14 0.22
2 -0.04 -0.24 -0.06 0.11 0.14 0.21
3 -0.10 -0.25 -0.12 0.11 0.14 0.21
4 -0.14 -0.27 -0.16 0.12 0.14 0.21
5 -0.24 -0.30 -0.12 0.12 0.14 0.22
6 -0.16 -0.33 -0.11 0.11 0.14 0.21
7 -0.25 -0.34* -0.23 0.13 0.13 0.22
8 -0.20 -0.29 -0.25 0.12 0.15 0.22
9 -0.12 -0.33* -0.29 0.14 0.13 0.19
10 -0.16 -0.29 -0.24 0.11 0.16 0.21
11 -0.15 -0.28 -0.21 0.15 0.15 0.20
Large -0.23 -0.12 -0.16 0.12 0.18 0.19
VW index -0.21 -0.23 -0.28 0.13 0.16 0.18
EW index -0.14 -0.30 -0.12 0.12 0.14 0.21
Ave. size portfolio -0.13 -0.32 -0.22 0.12 0.14 0.21
Average β -0.15 -0.27 -0.16 0.11 0.13 0.19

* Estimate is significant at the 5% level (one-sided) based on bootstrap simulations. 
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