DRAFT: THERMODYNAMIC ANALYSIS OF A REVERSE OSMOSIS DESALINATION SYSTEM USING FORWARD OSMOSIS FOR ENERGY RECOVERY

Leonardo D. Banchik
Department of Mechanical Engineering
Massachusetts Institute of Technology
Cambridge, MA 02139-4307 USA
Email: banchik@mit.edu

John H. Lienhard V
Fellow of ASME
Department of Mechanical Engineering
Massachusetts Institute of Technology
Cambridge, MA 02139-4307 USA
Email: lienhard@mit.edu

ABSTRACT

Thermodynamic analysis is applied to assess the energy efficiency of hybrid desalination cycles that are driven by simultaneous mixed inputs, including heat, electrical work, and chemical energy. A seawater desalination cycle using work and a chemical input stream is analyzed using seawater properties. Two system models, a reversible separator and an irreversible component based model, are developed to find the least work required to operate the system with and without osmotic recovery. The component based model represents a proposed desalination system which uses a reverse osmosis membrane for solute separation, a pressure exchanger for recovering a fraction of the flow work associated with the pressurized discharge brine, and a forward osmosis (FO) module for recovering some of the chemical energy contained within the concentrated discharge brine. The energy attained by the addition of the chemical input stream serves to lower the amount of electrical work required for operation. For this analysis, a wastewater stream of varying solute concentration, ranging from feed to brackish water salinity, is considered as the chemical stream. Unlike other models available in the literature, the FO exchanger is numerically simulated as a mass exchanger of given size which accounts for changing stream concentration, and consequently, stream-wise variations of osmotic pressure throughout the length of the unit. A parametric study is performed on the models by varying input conditions. For the reversible case it is found that significant work reductions can be made through the use of an energy recovery device when the inlet wastewater salinity used is less than the feed salinity of 35 g/kg. For the irreversible case with a typical recovery ratio and feed salinity, significant work reductions were only noted for a wastewater inlet of less than half of the feed salinity due to pump work losses. In the irreversible case, the use of a numerical model to simulate the FO exchanger resulted in a maximum work reduction when the pressure difference between streams was around one half of the osmotic pressure difference as opposed to the precise value of one half found in zero-dimensional exchanger models.

NOMENCLATURE

Roman symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>g</td>
<td>specific Gibbs free energy</td>
<td>kJ/kg</td>
</tr>
<tr>
<td>h</td>
<td>specific enthalpy</td>
<td>kJ/kg</td>
</tr>
<tr>
<td>\dot{m}</td>
<td>mass flow rate</td>
<td>kg solution/s</td>
</tr>
<tr>
<td>m^*</td>
<td>dimensionless mass flow rate ratio</td>
<td>-</td>
</tr>
<tr>
<td>P</td>
<td>pressure</td>
<td>bar</td>
</tr>
<tr>
<td>P^*</td>
<td>dimensionless pressure ratio</td>
<td>-</td>
</tr>
<tr>
<td>pr</td>
<td>permeation ratio</td>
<td>-</td>
</tr>
<tr>
<td>\dot{Q}</td>
<td>heat transfer rate</td>
<td>kW</td>
</tr>
<tr>
<td>r</td>
<td>recovery ratio</td>
<td>-</td>
</tr>
<tr>
<td>s</td>
<td>specific entropy</td>
<td>kJ/kg-K</td>
</tr>
<tr>
<td>T</td>
<td>temperature</td>
<td>°C</td>
</tr>
<tr>
<td>w</td>
<td>salinity mass fraction</td>
<td>g solute/kg solution</td>
</tr>
<tr>
<td>W</td>
<td>work rate</td>
<td>kW</td>
</tr>
</tbody>
</table>

Greek symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
</table>

Copyright © 2012 by ASME
As fresh water resources are strained, the world is increasingly turning to saline water sources to meet water demands. Both membrane and thermal technologies are commercially available for desalinating saline water sources, but a concern surrounding their implementation is the high energy cost associated with separation. As a result of a variety of technological improvements, such as the development of the pressure exchanger and falling membrane costs, reverse osmosis (RO) separation is currently the most widely used method for desalination [1]. In an effort to make RO more viable, an energy recovery device (ERD) is proposed to reduce the amount of electrical work required for operation.
FIGURE 1: SCHEMATIC DIAGRAM OF A REVERSIBLE SEPARATOR WITHOUT AND WITH A REVERSIBLE ENERGY RECOVERY DEVICE

by \dot{m} are in units of kilogram of solution per second. The control volume displayed in Fig. 1a, the reversible separator without recovery, was studied by [19] and represents a typical desalination process. This system is referred to as system A. As shown, system A rejects a concentrated brine stream which contains a higher salt concentration, and thus has a higher Gibbs free energy, than the feed stream. The difference in Gibbs energy is related to a difference in osmotic pressure and can be used to drive a mass flux of water from the less saline to the more saline stream when the streams are separated by a semi-permeable membrane. This additional mass flow can be used to create work transfer in the pressure exchanger.

The control volume displayed in Fig. 1b, referred to as system B, uses system A to separate the feed stream into a product and brine stream, and then uses a reversible energy recovery device to recover work. System B recovers work by taking in a chemical stream and rejecting a diluted brine stream. In the cases considered in this paper, the chemical stream is a low salinity water stream, such as might result from wastewater after secondary treatment. The wastewater stream enters the reversible ERD at a certain salinity, transfers an amount of water into the brine stream, and exits at an increased concentration. The wastewater inlet stream must have a salinity less than the salinity of the brine stream if work is to be recovered. This paper will only consider the case where the wastewater that exits the ERD has the total mass flow rate of salts as the incoming wastewater. This means that the wastewater which dilutes the brine stream is pure water with zero salinity which implies perfect salt rejection by the FO module.

Governing Equations

To find the maximum reduction of work that can be attained by the reversible energy recovery device, a control volume analysis is performed on systems A and B.

Least work formulation. The First and Second Laws of Thermodynamics are given in Eqns. (1 and 2) for an open, steady state, work-consuming system in thermal equilibrium with its environment where changes in the kinetic and gravitational potential energy of each stream are neglected. The heat transfer into each system is at the ambient temperature.

\[
0 = \dot{Q} + W_{\text{sep}} + \sum_{\text{in}} \dot{m}h - \sum_{\text{out}} \dot{m}h - T_0 \sum_{\text{out}} \dot{m}s + \dot{S}_{\text{gen}} \quad (1)
\]

The work of separation, W_{sep}, is given by

\[
W_{\text{sep}} = \sum_{\text{out}} \dot{m}h - T_0 \sum_{\text{in}} \dot{m}s + \dot{S}_{\text{gen}} \quad (3)
\]
For a reversible system, \(S_{\text{gen}} = 0 \), and Eqn. (3) becomes Eqn. (4).

\[
\dot{W}_{\text{least}} = \dot{W}_{\text{sep}}^{\text{rev}} = \sum_{\text{out} \to \text{in}} \dot{m} \theta - T_0 \sum_{\text{out} \to \text{in}} \dot{m} s \tag{4}
\]

If we assume for simplicity that all streams entering and exiting the control volume are isothermal at the environment temperature, then the energy balance given in Eqn. (4) becomes a Gibbs free energy \((g \equiv h - Ts)\) balance as given in Eqn. (5).

\[
\dot{W}_{\text{least}} = \sum_{\text{out}} \dot{m} g - \sum_{\text{in}} \dot{m} g \tag{5}
\]

Conservation of mass. For both separator models, conservation of mass must be satisfied. Solution and salt balances for system A are given in Eqns. (6 and 7). Here we define \(w \) as the mass fraction of salt in units of grams of solute per kilogram of solution (parts per thousand).

\[
\dot{m}_f = \dot{m}_p + \dot{m}_b \tag{6}
\]

\[
\dot{m}_{f \text{ww}} = \dot{m}_p w_p + \dot{m}_b w_b \tag{7}
\]

Equations (6 and 7) still apply for system B along with additional balance expressions for the streams interacting with the control volume around the reversible energy recovery device given in Eqns. (8–10).

\[
\dot{m}_b + \dot{m}_{\text{ww, in}} = \dot{m}_{\text{db}} + \dot{m}_{\text{ww, out}} \tag{8}
\]

Two salt balances are required for the brine and the wastewater streams because the salt is conserved in both streams.

\[
\dot{m}_{b \text{wb}} = \dot{m}_{\text{db} \text{wb}} \tag{9}
\]

\[
\dot{m}_{\text{ww, in} \text{ww, in}} = \dot{m}_{\text{ww, out} \text{ww, out}} \tag{10}
\]

Dimensionless parameters. Equations (11–13) present three dimensionless parameters used for analysis: recovery ratio, \(r \); permeation ratio, \(pr \); and a mass flow rate ratio, \(m^* \). The first dimensionless parameter, recovery ratio, is defined for the reversible separator as the ratio of product mass flow rate to that of the feed.

\[
r \equiv \frac{\dot{m}_p}{\dot{m}_f} \tag{11}
\]

This parameter is greater than zero, and limited to some value less than one to avoid scaling or precipitation in the RO unit.

The second dimensionless parameter, permeation ratio, is defined for the ERD as the ratio of the permeate wastewater to the inlet wastewater stream mass flow rate.

\[
pr \equiv \frac{\dot{m}_{\text{ww, in}} - \dot{m}_{\text{ww, out}}}{\dot{m}_{\text{ww, in}}} = \frac{\Delta \dot{m}_{\text{ww}}}{\dot{m}_{\text{ww, in}}} \tag{12}
\]

Where \(\Delta \dot{m}_{\text{ww}}\) is the water from the inlet wastewater which dilutes the brine stream. The permeation ratio is greater than or equal to zero. It will be less than one to avoid salt precipitation in the FO unit.

The final parameter, \(m^* \), represents the ratio of wastewater entering the ERD to the brine mass flow rate. The brine mass flow rate is selected as the denominator because the wastewater interacts with the brine stream for the purpose of work recovery.

\[
m^* \equiv \frac{\dot{m}_{\text{ww, in}}}{\dot{m}_b} \tag{13}
\]

Expressions for Least Work

Following Eqn. (5) and using the solution balances from Eqns. (6 and 8), we may now express the least amount of work per unit of product water for both systems in terms of the dimensionless parameters \(r \), \(pr \), and \(m^* \). For system A,

\[
\frac{\dot{W}_{\text{least, A}}}{\dot{m}_p} = \left(\frac{1}{r} - 1 \right) g_b + \frac{1}{r} g_f \tag{14}
\]

For system B,

\[
\frac{\dot{W}_{\text{least, B}}}{\dot{m}_p} = m^* \left(\frac{1}{r} - 1 \right) \left[(1 - pr)(g_{\text{ww, out}} - g_{\text{db}}) + g_{\text{db}} - g_{\text{ww, in}} \right] + \left(\frac{1}{r} - 1 \right) g_{\text{db}} + g_p - \frac{1}{r} g_f \tag{15}
\]

We define the recovered least work of the energy recovery device as the difference between the least work for system A and system B in Eqn. (16).

\[
\frac{\dot{W}_{\text{rec, least}}}{\dot{m}_p} = \frac{\dot{W}_{\text{least, A}}}{\dot{m}_p} - \frac{\dot{W}_{\text{least, B}}}{\dot{m}_p} \tag{16}
\]

A specific recovered least work of greater than zero means that the ERD is advantageous for work recovery.
TABLE 1: REVERSIBLE MODEL INPUTS

<table>
<thead>
<tr>
<th>Input</th>
<th>Value / Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient temperature T_0</td>
<td>25 °C</td>
</tr>
<tr>
<td>Ambient pressure P_0</td>
<td>1 bar</td>
</tr>
<tr>
<td>Feed mass flow rate m_f</td>
<td>1 kg/s</td>
</tr>
<tr>
<td>Feed salinity w_f</td>
<td>35 g/kg</td>
</tr>
<tr>
<td>Product salinity w_p</td>
<td>0 g/kg</td>
</tr>
<tr>
<td>Recovery ratio r</td>
<td>0.4</td>
</tr>
<tr>
<td>Mass flow rate ratio m^*</td>
<td>$0.1 \rightarrow 0.6$</td>
</tr>
<tr>
<td>Permeation ratio pr</td>
<td>$0 \rightarrow \text{max}$</td>
</tr>
<tr>
<td>Inlet wastewater salinity $w_{ww, in}$</td>
<td>$35 \rightarrow 1.5 \text{ g/kg}$</td>
</tr>
</tbody>
</table>

Limits of permeation ratio. We now briefly discuss the limits of pr and their effect on the least work of separation with recovery. In the limit of pr equals to zero, system B functions exactly as system A because no wastewater is being used to dilute the brine stream. This can be shown mathematically by substituting $pr = 0$ into Eqn. (15) and recognizing that $g_{ww, in} = g_{ww, out}$ and $g_{db} = g_b$ when $pr = 0$.

In the other limit, pr can only equal one when the salinity of the incoming wastewater is zero. When saline wastewater is used, pr cannot equal one because of the constraint that the leaving waste stream should not be so concentrated that salt precipitation could occur. It is for this reason that we do not consider a specific maximum pr in our analysis.

Reversible model inputs. For simulation of the reversible model, we consider a system with a recovery ratio of 0.4. This will allow for a clear comparison of work with the irreversible system which is also operated at a recovery ratio of 0.4. As seen in subsequent sections, irreversible system performance with an m^* of greater than about 0.6 will result in a disadvantageous use of the ERD due to excessive losses associated with pump work. As a result, we do not consider values of m^* above 0.6 in the present section. The specific Gibbs free energy of each stream is evaluated using a seawater property package developed by Sharqawy et al. [20]. The seawater package allows for properties of a stream to be evaluated as a function of temperature and salinity and is applicable for temperatures of 0–120°C and salinities of 0–120 g/kg.

Reversible Model Results and Discussion

We now plot the equation presented in Eqn. (16) with the inputs listed in Table 1. Each plot in Figs. 2a–2d shows the recovered least work per kilogram of product water as a function of pr and several values of m^*. Four plots are given for wastewater salinities ranging from 1.5 to 35 g/kg. For a recovery ratio of 0.4, the specific least work of system A alone is 3.63 kJ/kg of product water.

The recovered least work plots show that in the reversible case, considerable reductions in the work required can be achieved for the range of m^* plotted. Each successive figure allows for higher permeation ratios to be used because for lower salinities of inlet wastewater, pr can approach one. The maximum pr displayed corresponds to a waste water outlet salinity of nearly 120 g/kg which is the salinity limit for a stream in the seawater property package used.

By comparing the figures, several conclusions can be drawn. As expected, a lower inlet wastewater salinity will allow for larger reductions in least work. We can also note that recovered least work increases for increasing m^*. As pr decreases to zero, the recovered least work approaches zero; meaning that the system B work is equal to the system A work as less water is extracted from the wastewater stream. An optimum permeation ratio exists for each m^*. This is because a trade-off exists between diluting the brine stream coming into the reversible ERD at the expense of rejecting a more highly concentrated wastewater stream. The optimum permeation ratio appears to increase for decreasing inlet wastewater salinities. This is because at higher inlet wastewater salinities, a high pr will reject a highly concentrated wastewater stream, penalizing the attainable work reduction. The largest work recovery of 3.1 kJ/kg of product water can be found for a wastewater salinity of 1.5 g/kg at the local optimum permeation ratio of 0.965. This corresponds to a least work of 0.53 kJ/kg of product water for system B.

THERMODYNAMIC ANALYSIS OF IRREVERSIBLE SEPARATION

To determine how much work is recovered through use of the ERD integrated with an RO system, we must first find the least work required for the irreversible RO system without energy recovery. We then integrate the system with an additional pump, an FO-based mass exchanger for energy recovery, and a turbine to recover a fraction of the wastewater pumping losses. The RO system with an FO mass exchanger and pump comprise a system proposed in literature [21]. A wastewater turbine was added to the present model after early analyses pointed to excessive, recoverable losses in the wastewater pump.

The governing equations used for analysis of the system performance are given after the system descriptions.
Reverse Osmosis System with Pressure Exchanger

A typical single pass seawater RO system with a pressure exchanger (PX) is displayed in Fig. 3a. In this system, denoted as system A, a feed stream of seawater at a given salinity is initially pumped to a pressure of 2 bar by pump P1. The feed is then split into two streams. One stream is pre-pressurized by the PX and the other is sent to a high pressure pump, P2, where it is brought to the top pressure of 69 bar required for operation of the cross-flow RO exchanger. The stream exiting the PX is pressurized to an intermediate pressure of 65.4 bar and is pumped to 69 bar by pump P3 after which it joins the high pressure stream exiting pump P2. The full mass flow is now sent through the RO where a fraction permeates through the membrane to become product water at the environment pressure of 1 bar. The remaining mass exits the RO module at a higher salinity than the feed stream and at a slightly lower pressure, 67 bar, due to viscous losses within the exchanger. The full amount of pressurized brine is finally sent through the PX before being rejected to the environment. The PX is designed to allow two streams with the same volume flow rate to enter and exit. Conditions selected for this model RO system are representative of an actual large scale RO plant [19, 22].

Modified System with Forward Osmosis Exchanger

A modified version of the schematic diagram of Fig. 3a is shown in Fig. 3b. This system now includes an FO exchanger, a pump (P4), and a turbine (T1) for energy recovery. In this system configuration, the brine stream exiting the RO module enters...
the FO module at a high salinity relative to the feed stream. On the opposite side of the FO membrane, a wastewater stream is pumped to a pressure of \(P_{ww} \) by P4 and runs in a counterflow configuration to the brine stream. Along the length of the FO exchanger, mass is exchanged. The mass exchanged is pure water which permeates from the wastewater stream through the semi-permeable membrane to the brine stream. The driving force responsible for mass flux results from hydraulic and osmotic pressure differentials in the usual way. The remaining wastewater that exits the FO unit is depressurized through a turbine, T1, in order to recover a fraction of the pumping work from pump P4. The FO unit, pump, and turbine comprise the ERD and can potentially reduce the net work of the RO system by increasing the volumetric flow rate entering the PX. As the volumetric flow rate entering the PX increases, the amount of feed water that can be pre-pressurized by the PX increases, thereby reducing the amount of work required by the high pressure pump, P3.

Forward osmosis exchanger. The FO exchanger was numerically modeled in Engineering Equation Solver [23] as a finite difference counterflow mass exchanger with \(N \) sections of unit width by a differential length. By testing for the convergence of permeate flow rate through the FO exchanger for each
additional section added, N was determined to be fifty sections.

Governing Equations

To evaluate the pump work associated with pressurizing an incompressible fluid, Eqn. (17) is used.

$$W_{\text{pump}} = \frac{m(P_{\text{out}} - P_{\text{in}})}{\rho \eta_{\text{pump}}}$$ \hspace{1cm} (17)

The turbine work associated with depressurizing an incompressible fluid is given by Eqn. (18).

$$\dot{W}_{\text{turb}} = \frac{m(P_{\text{in}} - P_{\text{out}}) \eta_{\text{turb}}}{\rho}$$ \hspace{1cm} (18)

The pressure of the feed stream exiting the pressure exchanger is given by Eqn. (19), which is derived by equating the work of pressurization of the feed stream to the depressurization of the diluted brine stream [19].

$$P_{i, \text{out}} = P_{i, \text{in}} + \eta_{\text{comp}} \eta_{\text{exp}} \left(\frac{m_{\text{dil, in}} \rho_{i}}{m_{\text{dil, in}} \rho_{f}} \right) (P_{\text{dil, in}} - P_{b})$$ \hspace{1cm} (19)

The differential mass flow rate through each section of the exchanger is a function of four parameters: the water permeability constant, the differential area of each section, the local difference in hydraulic pressure across the membrane, and the local difference in hydraulic pressure across the membrane:

$$d\dot{m}_{i} = \rho_{\text{pure, } i} A_{m, i} (\Delta \pi_{i} - \Delta P_{i})$$ \hspace{1cm} (20)

Here $A_{m, i}$, in units of square meters, is the differential area of each membrane section and is given by the total membrane area of the exchanger, A_{m}, divided by N number of sections, $A_{m, i} = A_{m}/N$. A is defined as the water permeability constant, is a property of the membrane characteristics, and has units of meters cubed per second of permeate per square meter per bar [13–15]. The local hydraulic and osmotic pressure differences are given by Eqns. (21a and 21b):

$$\Delta \pi_{i} = \pi_{b, i} - \pi_{\text{ww, i}}$$ \hspace{1cm} (21a)

$$\Delta P_{i} = P_{b, i} - P_{\text{ww, i}}$$ \hspace{1cm} (21b)

The differences in osmotic and hydraulic pressures are equal to the brine value of the i^{th} section minus the wastewater value of the i^{th} section. Both gradients have units of pressure in bar. Equation (20) denotes forward osmosis operation and requires that $\Delta \pi_{i} > \Delta P_{i}$. For a purely FO unit, the hydraulic pressure difference ΔP_{i} is zero. For RO operation, $\Delta P_{i} > \Delta \pi_{i}$. The ERD is FO-based because this system will operate at a hydraulic pressure gradient between FO and RO operation. This operation is referred to in the literature as PRO [2, 8, 10–18].

The mass of the permeate for each section is calculated, added to the brine stream, and subtracted from the wastewater stream. The salinities for subsequent sections are calculated based on the new water flow rates which will alter the osmotic pressures in each stream. For simplicity, this model does not consider changes in hydraulic pressure along the FO module.

The total permeate mass in the forward osmosis exchanger is equal to the sum of the differential mass flow rates through each section, Eqn. (22).

$$\Delta \dot{m}_{\text{ww}} = \sum_{i=1}^{N} d\dot{m}_{i}$$ \hspace{1cm} (22)

Equations (23a and 23b) define the net work of the components shown in Fig. (3a and 3b). Equation (23c) presents the difference of the two net works per kilogram of product water, or the specific recovered work, for assessment of plant performance.

$$W_{\text{net, A}} = W_{p1} + W_{p2} + W_{p3}$$ \hspace{1cm} (23a)

$$W_{\text{net, B}} = W_{p1} + W_{p2} + W_{p3} + W_{p4} - W_{T1}$$ \hspace{1cm} (23b)

$$\frac{W_{\text{rec}}}{m_{p}} = \frac{W_{\text{net, A}}}{m_{p}} - \frac{W_{\text{net, B}}}{m_{p}}$$ \hspace{1cm} (23c)

A specific recovered work, Eqn. (23c), of greater than zero results in an advantageous use of the ERD.

Dimensionless parameters for irreversible case.

In this section we describe dimensionless parameters that are useful for the irreversible system analysis. From the reversible case, we again use recovery ratio, Eqn. (11), to govern the streams in the RO module. We also use the dimensionless flow rate of wastewater to brine stream, m^{*} from Eqn. (13), to define the flow rate of incoming wastewater in the irreversible case simulations.
A new parameter P^*, Eqn. (24), is a pressure ratio defined to set the limits of operation for pump 4 in system B as a value between zero and one.

$$P^* = \frac{\Delta P}{\Delta \pi_{\text{max}}} = \frac{P_{b,\text{in}} - P_{\text{ww, in}}}{\pi_{b,\text{in}} - \pi_{\text{ww, in}}} \quad (24)$$

By Eqn. (24), $\Delta P = 0$ when $P^* = 0$ which means that pump 4 pressurizes the wastewater to match the brine stream pressure at 67 bar (assuming no hydraulic pressure drop in the FO module). According to Eqn. (20) this will maximize the mass flow rate through the FO exchanger. When $P^* = 1$, pump 4 pressurizes the wastewater stream to the lowest pressure allowable for maintaining forward osmosis operation. A balance between P^* and m^* will be required for optimum system performance.

Irreversible model assumptions. In these model simulations we made several assumptions to reduce the problem space. We neglected hydraulic pressure drop in the FO exchanger and also the presence of internal or external concentration polarization. According to Wilf [24], for typical spiral wound seawater RO membranes, salt rejection rates are about 99.8% with a water permeability of 1.0 L/m2-hr-bar. We neglected salt permeation through the FO membrane because of the high rejection rate. The total membrane area for the FO exchanger is equivalent to the total RO membrane area required for a single pass seawater RO desalination plant with the same amount of product water, as given by Wilf [24]. Parameter values used for the simulation are listed in Table 2. It is also unclear whether current forward osmosis membranes can withstand the applied hydraulic pressures present in the current model [18]. For the recovery ratio chosen, the mass flow rate of the brine and product streams will be 0.6 and 0.4 kg/s. The density and osmotic pressure of each stream are evaluated as functions of temperature and salinity using seawater properties developed by Sharqawy et al. [20].

Irreversible Model Results and Discussion

For the inputs shown in Table 2, the net work required for system A is a constant 8.798 kJ/kg of product water. The work recovered by the system with recovery, Eqn. (23c), is plotted against P^* varying between zero and one for a range of m^* values in Figs. 4a–4d. Each figure corresponds to a value of the wastewater inlet salinity which varies between 35 and 1.5 g/kg.

Figure 4a shows that for a wastewater inlet salinity equal to that of the feed stream salinity, at any m^*, the addition of the ERD to the RO system is not advantageous. This is because the work required by pump 4 is greater than the work saved by pumping less feed in pump 2. The conclusion is all the more convincing given that concentration polarization and pressure drop in the forward osmosis exchanger were not considered in this analysis.

![Figure 4a](image)

TABLE 2: IRREVERSIBLE MODEL INPUTS

<table>
<thead>
<tr>
<th>Input</th>
<th>Value / Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient temperature</td>
<td>T_0</td>
</tr>
<tr>
<td>Ambient pressure</td>
<td>P_0</td>
</tr>
<tr>
<td>Feed mass flow rate</td>
<td>m_f</td>
</tr>
<tr>
<td>Feed salinity</td>
<td>w_f</td>
</tr>
<tr>
<td>Product salinity</td>
<td>w_p</td>
</tr>
<tr>
<td>Recovery ratio</td>
<td>r</td>
</tr>
<tr>
<td>Pump efficiency</td>
<td>η_{pump}</td>
</tr>
<tr>
<td>Turbine efficiency</td>
<td>η_{turb}</td>
</tr>
<tr>
<td>PX compression efficiency</td>
<td>η_{comp}</td>
</tr>
<tr>
<td>PX expansion efficiency</td>
<td>η_{\exp}</td>
</tr>
<tr>
<td>Total FO membrane area</td>
<td>A_{m}</td>
</tr>
<tr>
<td>Permeability coefficient</td>
<td>A</td>
</tr>
<tr>
<td>Mass flow rate ratio</td>
<td>m^*</td>
</tr>
<tr>
<td>Applied pressure ratio</td>
<td>P^*</td>
</tr>
<tr>
<td>Inlet wastewater salinity</td>
<td>$w_{\text{ww, in}}$</td>
</tr>
</tbody>
</table>
work shown in Fig. 4c is 1.74 kJ/kg and corresponds to $m^* = 0.6$ and $P^* = 0.53$.

As expected, more work can be recovered for very low values of inlet wastewater salinity as shown in Fig. 4d. The greatest recovered work value of 2.15 kJ/kg, shown in the figure, corresponds to $m^* = 0.6$ and $P^* = 0.49$. This work recovered yields a total system B work of 6.64 kJ/kg of product water. This represents a work reduction of about 24.4% which can be significant for large scale plants. Although not shown in the figures, values of m^* greater than 0.6 do not result in greater recovered work for the input conditions chosen. This highlights the trade-off associated with the choice of m^*. For lower m^*, the pump 4 work decreases but less permeate can be attained through the exchanger. The opposite is true for higher values of m^*.

Figures 5a–5d show the variation of recovered work with permeation ratio, as previously shown for the reversible case. In Fig. 5a it is once again apparent that for the case in which the inlet wastewater stream and feed stream salinities are 35 g/kg, any value of m^* cannot contribute to a system A work reduction. The main reason for the overestimation of work reduction in the reversible case stems from the fact that there is no pump in the reversible case and there is no energy penalty for introducing a

FIGURE 4: SPECIFIC RECOVERED WORK VS. P^* WITH FIXED INLET SALINITY, VARYING WASTEWATER SALINITY, AND VARYING m^*
large mass flow rate of wastewater stream into the system. This pump work penalty can also be seen by the fact that when \(pr \) is equal to zero, i.e., when zero wastewater permeates through the forward osmosis membrane, the recovered work does not equal zero as it did in the reversible case. This is because of the energy penalty associated with pumping the wastewater through the ERD system regardless of whether permeate was forced through the membrane. Similar to the reversible case, the other figures also exhibit the existence of an optimum \(pr \) which increases with decreasing wastewater inlet salinity.

CONCLUSIONS

Desalination systems reject a highly concentrated discharge brine which has a higher Gibbs free energy than the feed stream. With a forward osmosis mass exchanger, a portion of this energy can be recovered to reduce the system’s net work of separation. A forward osmosis based energy recovery device can also be used to recover work from an available wastewater stream of a salinity less than that of the rejected brine stream.

Expressions were derived to describe the least work of separation for a system without and with a reversible energy recovery device. Along with the recovery ratio, two new dimensionless parameters relating the mass flow rates in the reversible energy recovery device, \(m^* \), and permeation ratio, \(pr \), were defined to assess the performance of a system with energy recovery. In addi-
tion to investigating the thermodynamic limits of separation for a reversible system, a simple model of an irreversible component-based system with and without energy recovery was numerically simulated.

The major conclusions of this paper are as follows:

1. Reversible results suggest that significant work reductions can be made with an energy recovery device. Results show that only small reductions in net least work can be made when an inlet wastewater stream salinity equal to that of the feed is used.

2. For maximum work recovery, a wastewater turbine is recommended to recover a fraction of the energy penalty incurred in pumping the wastewater into the FO mass exchanger.

3. With reasonable assumptions made with respect to the FO membrane area and characteristics, the irreversible case shows that for an inlet wastewater stream and feed stream of 35 g/kg salinity, an energy recovery device is not advantageous under any circumstances. This conclusion is made more convincing by recognizing that concentration polarization and pressure drop in the forward osmosis membrane will further contribute to losses in the system.

4. An optimal hydraulic pressure difference between streams in the FO exchanger exists for maximum work reduction. This pressure, contrary to expressions found in the literature, was not found to equal half of the maximum osmotic pressure difference between the streams.

ACKNOWLEDGMENT

The authors would like to thank the King Fahd University of Petroleum and Minerals in Dhahran, Saudi Arabia, for funding the research reported in this paper through the Center for Clean Water and Clean Energy at MIT and KFUPM under PROJECT NUMBER R4-CW-08.

REFERENCES

